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ABSTRACT 
Available sucker-rod string design models calculate rod taper lengths that ensure proper operation without 
premature fatigue failures. Their common design problems are (a) defining the principle of taper length 
determination, and (b) calculating the true mechanical stresses along the string. The universally accepted 
principle of taper length calculations is to provide the same level of safety against fatigue failure in each taper 
section. Mechanical loads and stresses, on the other hand, are found from highly approximate calculations in 
most of the design procedures. These loads, therefore, can greatly deviate from the true mechanical loads that 
would be measured in the rod string run in the well. The paper discusses the development of a novel procedure 
that estimates rod loads from the predictive solution of the damped wave equation when designing the rod 
string. Since loads calculated that way imitate very accurately the actual loads, the most important limitation of 
previous rod string design procedures is eliminated. Strings designed using the proposed model, therefore, have 
a much enhanced safety against fatigue failures as compared to previous designs. 

INTRODUCTION 
The sucker-rod string is the most vital part of the rod pumping system because it connects the prime mover 
situated at the surface to the subsurface pump that provides the useful work of the installation. A properly 
designed sucker-rod string should provide failure-free pumping operations for an extended period. Improper 
design of rod tapers can lead to early mechanical failures (rod breaks) with a complete termination of pumping 
action and an inevitable loss of production.  

Due to the usually great length of the string dictated by the typical depths of oil wells, a single rod size cannot 
be used for the full length. The general solution is the use of tapered rod strings made up of sections (tapers) of 
increasing diameters toward the surface. This construction very efficiently matches the shape of the ideal rod 
string which is an inverted cone continuously tapering from top to bottom. The mechanical design of tapered 
rod strings is highly complicated because of the type of loading the rods are subjected to. Investigation of the 
possible loads that occur during the pumping cycle shows that the following distributed and concentrated loads 
act on the rod string: 

 Weight of rods in air; it is a distributed load along the string. 
 Buoyancy forces oppose the rod weight and are the result of the immersion of the rods into the 

produced liquid. 
 Fluid load on the plunger of the downhole pump is a concentrated force acting during the upstroke 

only. 
 Dynamic loads are the results of changes in acceleration of the moving masses (rods, fluid column). 
 Frictional forces are: (1) fluid friction between the rods and the produced liquid, and (2) mechanical 

friction between the rods and the tubing string. 

After considering the variation of these forces during a complete pumping cycle, one can easily conclude that 
the rod string is exposed to a cyclic mechanical loading. During the downstroke, the string carries the buoyant 
weight of the rods minus dynamic and friction forces only, while on the upstroke it also carries the load of the 
fluid lifted. Mechanical stresses follow the variation of rod loads and are cyclic, too; they are typically tension 
stresses with the tension level considerably increasing during the upstroke as compared to the downstroke. This 
is the reason why the loading of the rod string can be classified as pulsating tension. 

The typical failure mechanism of sucker-rod strings is the consequence of the type of loading: mostly fatigue 
failure. Fatigue failures occur at much lower levels of mechanical stresses than the tensile strength or even the 
yield point of the material and are basically caused by the extremely high number of repetitions of the variable 
loads. This type of failure is absolutely different from tensile (overpull) failures and is the root cause of the 
great majority of rod string breaks. Therefore, rod string design procedures must inevitably take into account 



the cyclic nature of rod loading; this is why, in order to ensure a sufficiently long service life, the string has to 
be designed for fatigue endurance. 

AVAILABLE ROD STRING DESIGN MODELS 
Fatigue Endurance Limits 

The maximum stress allowed in sucker-rod materials a.k.a. the fatigue endurance limit that ensures a failure-
free operation for a sufficiently high number of cycles (usually 10 million) under pulsating tension loads 
typical for pumping operations is calculated from the modified Goodman formula [ 1 ]. This formula, in a 
generalized form, is valid for different available rod materials and shows that the fatigue endurance limit varies 
with the strength of the steel material as well as with the minimum stress that occurs in the rod. 
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where:  Sa = fatigue endurance limit (allowable stress), psi, 
  SF = service factor, -, 
  T = minimum tensile strength of the rod material, psi, 
  Smin = minimum rod stress, psi, and 
  A, B = empirical constants specific for the rod material, -. 

The constants A and B featuring in the Goodman formula were empirically determined for different steel 
materials using experiments on material samples. Their values are listed, along with the minimum tensile 
strengths of available rods in Table 1. The variable SF represents the effects of the environment where the rod 
string is operating and can be considered as the inverse of a safety factor; it is mainly used to allow for the 
corrosivity of the well fluid and is usually held constant in a given field. 

Overview of Design Models 

The earliest tapered rod string design procedure was proposed in the Bethlehem Handbook [ 2 ] in 1953; it 
utilized the simplifying assumption that the string was exposed to a static tension loading. The design goal was 
to set the maximum stress at the top of each taper equal. Strings designed according to this principle became 
inadequate, as deeper and deeper wells had to be produced because rod breaks in the bottom taper section 
became dominant. [ 3 ] It is easy to prove that this behavior is a direct consequence of using static loads in the 
design procedure instead of the actual pulsating tension loads of the rod string. 

Based on the negative experience with the early design, today’s rod string designs include measures to account 
for fatigue loading of the string. West [ 4, 5 ] developed a taper design to attain the same ratio of maximum 
stress to allowable stress (represented by the Service Factor) in each taper. Rod strings designed this way have 
the same safety factor included in every taper section and will not have any weak points. The Neely design 
[ 6 ] aims at reaching the same values of the modified stress (defined by Neely) at the top of each taper section. 
In 1976 the American Petroleum Institute adopted this design model and published pre-calculated taper 
percentages in API RP 11L (today TL 11L [ 7 ]). The Gault-Takacs [ 8 ] model ensures that every taper section 
has the same degree of safety against fatigue failure by setting the service factor (SF) values equal at the top of 
each taper. 

Evaluation of Design Models 

If the objectives of rod string designs, except the Bethlehem model, are compared then it is easy to see that all 
designs try to reach the same safety against fatigue failure in each rod taper. This is ensured when service 
factors (SFs), based on the maximum and minimum stresses found at the top of each taper section and 
calculated from Eq. 1 are equal. Rod strings designed according to this principle have the same safety factors 
included in every taper and do not have any weak points. 

Based on the previous discussion it can be concluded that a proper rod string design procedure should produce 
strings whose tapers are identically safe against fatigue failure; it follows from this that the design should be 
based on the modified Goodman diagram. This defines the generally accepted principle to be used for the 
determination of taper lengths. The required design calculations, however, necessitate the determination of true 



mechanical loads in the different tapers during the pumping cycle, which is a complicated task because the 
loads in a string about to be designed can only be estimated. The approaches of the different available design 
procedures to the calculation of rod loads (minimum, and maximum, as well as dynamic loads) are illustrated 
in Table 2; as seen, in the different models rod loads are estimated by using widely different assumptions. 

The present authors proved [ 9 ] that the loads and stresses estimated by the different design models do not 
represent actual pumping conditions. This means that the mechanical stresses in any string, when run in the 
well will be different from those computed during the design process. Since actual stresses at the top of rod 
tapers are different from their designed values the fatigue loading represented by the relevant service factors 
will also be different. As a consequence, the basic objective of the design procedure, i.e. having identical 
service factors at the top of each taper, will not be met. This is a general problem with all known rod string 
designs that stems from the fact that rod loads required in the design process are only estimated from 
approximate formulas. 

DEVELOPMENT OF A NEW DESIGN PROCEDURE 
Basic Considerations 

As discussed previously, one faces two basic problems when designing a sucker-rod string. The first is the 
principle to be used for the determination of taper lengths; as detailed before, the proper objective is to select 
tapers that have the same level of safety against fatigue failure. To achieve this goal, one has to use the 
modified Goodman diagram and select taper lengths so that they have the same service factor (SF) values. This 
is the final objective of the design procedure developed in this paper. 

The second problem in rod string design involves the calculation of rod loads during the pumping cycle. If 
loads in the different tapers just designed could be measured during the design process then the final rod string 
would surely meet the objectives of the design and would have tapers with identical safety against fatigue 
failures. In reality, however, this approach is impossible to follow and some other solution must be found to 
estimate the loading conditions of the rod string. A feasible answer to this problem is provided by the 
calculation of rod loads from the solution of the one-dimensional damped wave equation. The reason for this is 
that the predictive solution of the wave equation gives loads that match actual measurements very closely, as 
proved by universal experience gained since the introduction of the wave equation by Gibbs [ 10 ] in the late 
1960s. The rod string design procedure developed in this paper, therefore, relies on “true” mechanical loads 
including fluid buoyancy that are predicted from the solution of the wave equation. 

Design Fundamentals 

The solution of the problem i.e. finding a taper combination with identical service factors is surely an iterative 
process. To reach the final rod string design one has to calculate rod loads and stresses in many cases of 
assumed or calculated taper combinations. Therefore it is important to have an idea on the possible distribution 
of rod loads and stresses along a rod string. Fig. 1 presents the distribution of rod loads with well depth as 
calculated from the solution of the wave equation for a 6,070 ft deep well using an API 86 rod string, 120 in 
polished rod stroke and different pumping speeds. The two families of curves represent downstroke (the left-
hand curves) and upstroke (the right-hand curves) loads; their difference is basically equal to the fluid load on 
the plunger. Based on this and similar cases one can conclude that the variation of maximum and minimum 
loads in rod tapers can be approximated very accurately by straight lines. 

According to the previous observation rod loads along a given taper, found from the solution of the wave 
equation, can be fitted in function of taper length, l, with straight lines as follows: 
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where:  Fmin i, Fmax i = maximum and minimum loads in the ith taper, lbs, 
  l  = taper length, ft, and 
  ai … di = parameters of the best-fitting lines. 



For a given taper in the string, one can determine, based on the modified Goodman diagram, the safety of the 
taper against fatigue failure. In principle, the safety of any taper section against fatigue failure is defined as the 
ratio of the actual maximum stress and the allowable stress. Therefore, expressing the service factor (SF) valid 
at the top of any taper from the formula describing the modified Goodman diagram, i.e. Eq. 1, provides a way 
to indicate the taper’s safety level. Introducing rod loads instead of mechanical stresses into Eq. 1 and solving 
the formula for the service factor, we receive: 
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where:  SFi  = service factor for the ith taper, -, 
  Fmin i, Fmax i = maximum and minimum rod loads in the ith taper, lbs, 
  T  = minimum tensile strength of the rod material, psi, 
  Ai  = metal area of the rod in the ith taper, sq in, and 
  A, B  = empirical constants specific for the rod material, -. 

Substituting in this formula the linear expressions received from curve fitting of the rod load vs. depth 
functions, Eqs. 2 and 3, the following equation is found: 
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This formula represents the relationship between the length of the taper, l, and the service factor, SFi, which 
can be calculated from the maximum and minimum stresses along the taper. It will be used in the design 
procedure to investigate the effect of changing the length of the taper for a fixed service factor. For that reason, 
let’s solve Eq. 5 for the taper length, denoted Li: 
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where:  Li  = length of the ith taper, ft, 
  SF  = assumed service factor, -, 
  ai … di = parameters of the best-fitting lines, -, 
  T  = minimum tensile strength of the rod material, psi, 
  Ai  = metal area of the rod in the ith taper, sq in, and 
  A, B  = empirical constants specific for the rod material, -. 

Eq. 6 forms the cornerstone of the new rod string design procedure developed in this paper because it allows 
one to calculate the required length Li of any taper based on the required or assumed service factor (SF) value. 
As will be shown later, taper lengths during the iteration process will be changed according to this formula, 
while considering the actual values of the variables involved. 

Description of the Calculation Procedure 

Although the developed design can handle any number of tapers, calculation steps are detailed for the case of a 
three-taper rod string in the following. The description of the design procedure is accomplished with reference 
to Fig. 2. 

At the initial conditions (iteration number J = 0) the total rod string length is divided into three equal parts and 
the following taper lengths are calculated: 
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where:  Li,j  = length of the ith taper in the jth iteration, ft, and 
  Ltotal  = total required length of the string, ft. 



Taper lengths being known, one can use the predictive solution of the wave equation to find the distribution of 
minimum and maximum loads along the entire length of the string. The input parameters to the wave equation 
are the usual operating parameters as plunger size, polished rod stroke length, pumping speed, fluid 
parameters, etc. Similarly to other string design models, pump-off conditions and pumping of water are 
assumed to increase the safety of the design. The main parameters of the actual pumping unit are needed also 
for the solution of the wave equation. 

Based on the calculated rod loads the minimum and maximum loads in the first taper are fitted with straight 
lines, according to Eqs. 2, and 3 and the parameters of the best-fitting lines a1 … d1 are found. Service factors 
at the top of each taper SF1,0, SF2,0, SF3,0 are calculated according to Eq. 4 and their average, SF0 is 
determined. 

In the first iteration step (J = 1) the length of the bottom taper (i =1) is modified while keeping the combined 
length of taper one and two constant. To find the bottom taper’s length Eq. 6 is utilized using the target service 
factor SF0 and the parameters a1 … d1; the expressions to find adjusted taper lengths are the following: 
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Using the modified taper lengths, the wave equation is solved again and the distribution of minimum and 
maximum loads in taper two is utilized to find the parameters of the best-fitting lines, a2 … d2. 

The second iteration step (J = 2) starts with the adjustment of the length of the second taper and keeping the 
length of the first taper. The third taper length is adjusted also and the relevant formulas are: 

1,12,1 LL   11 

202

22020

2,2 cSFBa

bdSFBA
A

T
SF

L



  12 





2

1
2,2,3

i
itotal LLL  13 

Now the wave equation is solved again using the adjusted taper lengths; service factors at the top of each taper 
SF1,2, SF2,2, SF3,2 are calculated according to Eq. 4 and their average, SF2 is determined. Since the aim of the 
design is to reach identical service factors in each taper, the deviation from the average, SF2, of the individual 
SF values is evaluated from the formula: 
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If the error is greater than the required accuracy previously set then the string received in the second iteration 
step must be adjusted further using the procedure described in iteration step one, and the whole process is 
repeated. Otherwise, if the error is below the required accuracy, the process has converged and the final string 
design is reached. At this point a final check is made where the final service factor is compared to its value 
required in the given field. In case the converged SF is below the accepted value then the design is final; 
otherwise the calculations must be repeated using different (a) rod materials, (b) numbers of tapers, or (c) rod 
sizes. 



EXAMPLE PROBLEMS 
To illustrate the operation of the developed rod string design procedure an example problem is presented. The 
task is to design an API 86 rod string in a 6,070 ft deep well with a 2 in pump. The C-456D-256-120 pumping 
unit runs at 10 SPM with a 120 in polished rod stroke length. 

Since the API C and API K materials turned out to be weak, the string was designed for Grade D material and 
the taper lengths presented in Table 3 were received. The average value of the service factors is SFavg = 0.944 
which indicates that the rods are very heavily loaded. In order to find strings with lighter overall loading, the 
design was repeated for stronger materials: high-strength (HS) rods and rods with Tenaris premium 
connections. As shown in Table 3, use of these materials resulted in much lightly loaded strings with average 
service factors of SFavg = 0.543 and SFavg = 0.587, respectively. 

The merits of the string design procedure introduced in this paper are easily seen in Fig. 3, where minimum 
and maximum rod stresses in the tapers are plotted in a dimensionless form of the modified Goodman diagram. 
For every kind of material used the three points belonging to the three tapers fall on lines representing the 
average service factors in the string. This proves that all tapers have the same service factor, consequently the 
same safety included in their design. In comparison to other designs available today, rod loads during the 
whole design procedure were found from the solution of the wave equation. Since the wave equation predicts 
rod loads with the highest possible accuracy the design developed in this paper can be considered as the 
ultimate tool for designing sucker rod strings. 

CONCLUSIONS 
Based on the detailed evaluation of the available procedures for rod string design and the development of a 
new design model the following conclusions were drawn: 

 Available rod string design procedures estimate rod loads from approximate formulas which result in 
loads that are not a true measure of the actual conditions; this is the main cause of their inaccuracy. 

 The ultimate rod string design model presented here calculates rod loads from the solution of the one-
dimensional wave equation and, therefore, results in strings with a much enhanced safety against 
fatigue failures as compared to previous designs. 
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Table 1 
Rod Type T A B 

 psi - - 
API K steel 90,000 4 0.5625 
API C steel 90,000 4 0.5625 
API D steel 115,000 4 0.5625 
High Strength (HS) rods 140,000 2.8 0.3750 
Tenaris rods 125,000 2.3 0.3750 

Table 2 
Year Model Min. Load Max. Load Dyn. Loads Design Goal 

1953 Bethlehem - 
Fluid load plus 
rod weight in air 

- 
Equal max. 
stresses 

1973 West 
Rod weight 
in air 

Fluid load plus 
rod weight in air 
plus dynamic loads 

Mills 
acceleration 
factor 

SF = const. 

1976 Neely 
Buoyant rod 
weight 

Fluid load plus 
buoyant rod weight 
plus dynamic loads 

Special 
formula 

Equal 
modified 
stresses 

1990 
Gault -
Takacs 

Buoyant rod 
weight 

Fluid load plus 
buoyant rod weight 
plus dynamic loads 

From 
RP 11L 

SF = const. 

Table 3 
Rod 
Size 

API Grade D HS Rods Tenaris 
Li SFi Li SFi Li SFi 

in ft - ft - ft - 
1" 2,283 0.944 1,983 0.588 1,965 0.544 

7/8" 1,807 0.947 1,695 0.587 1,680 0.543 
3/4" 1,980 0.943 2,391 0.586 2,424 0.542 
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