Methods for Improved Utilization

of Beam Pumping Units

KAY W. LEWIS Mobil Oil Corporation

INTRODUCTION

In the past decade the number of secondary recovery projects has increased rapidly in the Permian Basin and surrounding area. Water injection is the most popular method of re-energizing reservoirs. As a result, demands on the artificial lift equipment have increased due to higher individual well productivity. In many instances larger equipment has been installed.

Two major reasons for replacing beam equipment in the past have been torque limitations and displacement limitations. Torque limits are usually reached prematurely because the unit is being operated in the longest stroke. Displacement, limits are usually defined by an arbitrarily established maximum operating speed. As a result equipment is replaced when, with some modification, it could well have met the increased demands for a prolonged period.

The slow, long-stroke pumping method is considered the best method for trouble-free operation of beam units. In the past, operators were able to employ this method because allowables were low and most fields were under primary recovery. As a result, lift equipment was not loaded.

Now, with allowable factors up and secondary recovery projects responding, demands placed on lift equipment have increased significantly. Since producing wells are predominately equipped with beam units, any improvement in the loading efficiency of these units could result in substantial savings through delayed or unnecessary investment for larger units. One way to achieve this improvement is through the use of the fast, short-stroke pumping method, when applicable. Another way is by controlled overloading of existing equipment.

GEAR BOX LIMITATIONS

The fast, short-stroke pumping method can improve the efficiency of a unit by producing more fluid with a given size gear box and should be considered when additional capacity is needed prior to purchasing a larger unit. Figures 1a, 1b and 1c demonstrate the ability of the fast, short-stroke method to outproduce the slow, long-stroke method with a given size gear box. Figure 1a is a plot of Peak Torque versus Polished Rod Velocity for 64-in., 74-in. and 86-in. stroke lengths. (These stroke lengths are normally available on API 228,000 in.-lb units.) Calculations were made using the design method presented in API RP 11L. This figure demonstrates that at the same polished rod speed, the longer strokes result in higher torque values. Figure 1b is a plot of Production versus Polished Rod Speed and demonstrates that production varies directly as the polished rod speed. Figure 1c is a plot of Production versus Peak Torque at various polished rod speeds and stroke lengths. If the gear box limitation were 250,000 in.-lb, this figure indicates that 465 BPD can be produced with the 64-in. stroke as opposed to 325 BPD with a 74-in. stroke and 240 BPD with an 86-in. stroke.

Figures 2a, 2b and 2c are similar plots with 86-in., 100-in., 120-in. and 144-in. stroke lengths. (These stroke lengths are normally available with 320,000 and 456,000 in.-lb units.) As before, considering the gear box alone as the limiting factor, more production can be realized in the shorter strokes.

CRITICAL SPEED

A factor to consider when designing rod pump installations is the critical speed. Critical speed, for the purpose of this memo, is defined as the speed at which the minimum load on the polished rod approaches zero. This is the speed at which the carrier bar is about to leave the polished rod clamp.

Using the available computer program (M6036) to make the necessary calculations, critical speeds for various stroke lengths, plunger sizes and depths were determined. Table 1 shows the results of these calculations.

FIGURE 2C

TABLE 1 CRITICAL PUMPING SPEEDS

Stroke	Pumping	SP P	M @ Va lunger S	rious izes
Length - In.	Depth - Ft	1.50 In.	<u>1.75 In.</u>	2.00 In.
48	3000	30	30	30
54	3000	28	28	27.5
64	3000	-	25	24.5
74	3000	-	23	22.5
86	3000	-	-	20.5
74	5000	26.6	27	27.3*
86	5000	24.6	24.6	24.7
100	5000	22.5	22.1	22.2
120	5000	19.4	19.2	19.2
144	5000	16.7	16.8	16.8

The effect of the plunger size appears to be minimal. This may be somewhat misleading since the calculations do not consider pump friction. The table also indicates that the critical speed is faster for the shorter stroke lengths, and that for the same stroke length the critical speed increases as the pump setting depth increases. Actually, for the latter circumstance the major factor is the rod weight. Figures 3a through 3h show graphically the effects of plunger size, stroke length and depth on the critical speed. These Figs. and Table 1 are presented to emphasize the point that critical speeds are greater than normally anticipated. In the great majority of cases, some other design parameter will limit the design before the critical speed is approached.

OTHER DESIGN LIMITATIONS

Other parameters to consider when designing pumping installations are peak load and rod stress.

*Projected

TABLE 2aPRODUCTION LIMITATIONS - BPD

	PROD	<u>, IN BPI</u>	<u>) @ VAR</u>	IOUS STI	<u>ROKE LE</u>	NGTHS
PARAMETERS	<u>64''</u>	<u>74"</u>	<u>86''</u>	<u>100''</u>	120"	<u>144''</u>
Critical Speed	-	-	830	850	820	820
Allow. Rod Stress - GR. C	227	284	290	311	343	320
Allow. Rod Stress - GR. D	42 1	415	418	458	485	526
Peak Torque-250,000 InLb	465	325	24 0	160	-	-
Peak Torque-350,000 InLb	-	-	430	345	280	-
Peak Torque-500,000 InLb	-	-	-	585	512	415
	PARAMETERS Critical Speed Allow. Rod Stress - GR. C Allow. Rod Stress - GR. D Peak Torque-250,000 InLb Peak Torque-350,000 InLb Peak Torque-500,000 InLb	PARAMETERS64"Critical Speed-Allow. Rod Stress - GR. C227Allow. Rod Stress - GR. D421Peak Torque-250,000 InLb465Peak Torque-350,000 InLb-Peak Torque-500,000 InLb-	PROD. IN BPIPARAMETERS64"Critical Speed-Allow. Rod Stress - GR. C227Allow. Rod Stress - GR. D421415Peak Torque-250,000 InLbPeak Torque-350,000 InLb-Peak Torque-500,000 InLb	PROD. IN BPD @ VAR PROD. IN BPD @ VAR PARAMETERS 64" 74" 86" Critical Speed - - 830 Allow. Rod Stress - GR. C 227 284 290 Allow. Rod Stress - GR. D 421 415 418 Peak Torque-250,000 InLb 465 325 240 Peak Torque-350,000 InLb - - 430 Peak Torque-500,000 InLb - - -	PROD. IN BPD @ VARIOUS STR PARAMETERS 64" 74" 86" 100" Critical Speed - - 830 850 Allow. Rod Stress - GR. C 227 284 290 311 Allow. Rod Stress - GR. D 421 415 418 458 Peak Torque-250,000 InLb 465 325 240 160 Peak Torque-350,000 InLb - - 430 345 Peak Torque-500,000 InLb - - 585	PROD. IN BPD @ VARIOUS STROKE LE PARAMETERS 64" 74" 86" 100" 120" Critical Speed - - 830 850 820 Allow. Rod Stress - GR. C 227 284 290 311 343 Allow. Rod Stress - GR. D 421 415 418 458 485 Peak Torque-250,000 InLb 465 325 240 160 - Peak Torque-350,000 InLb - - 430 345 280 Peak Torque-500,000 InLb - - 585 512

TABLE 2b PRODUCTION LIMITATIONS - BPD

	PROD.	IN BPD	<u>@ VAR</u>	<u>IOUS STR</u>	<u>OKE LEI</u>	NGTHS
PARAMETER COMB. (2a ABOVE)	64''	<u>74</u> "	86''	100"	<u>120''</u>	144"
1, 2 & 4	227	284	240	160	-	-
1, 2 & 5	227	284	29 0	311	280	-
1, 2 & 6	227	284	29 0	311	343	320
1, 3 & 4	42 1	325	240	160	-	-
1, 3 & 5	421	415	418	345	280	-
1, 3 & 6	421	415	418	458	485	415

NOTE: Tables 2a & 2b are based on 1.75-in. pump operating @ 100 percent efficiency, 7/8 & 3/4 standard rod taper, 5000-ft pump setting depth with the fluid level at the pump and a fluid gravity of 1.0.

The allowable rod stress depends primarily on the grade rod and the minimum load. Peak load is limited by the beam rating. All parameters should be considered when establishing the most efficient operating conditions for an installation. Tables 2a and 2b demonstrate the production limitations imposed by the different parameters.

In some cases in the example shown, the limiting parameter is set by the gear box while in others by the rod stress. The critical speed was never the limiting parameter.

A study was recently made to aid in recommending maximum safe operating conditions for the existing 80,000 and 114,000 in.-lb units in a shallow West Texas Water Flood Project. Available stroke lengths from 25 in. through 54 in. and pump sizes of 1.25 in., 1.5 in., and 1.75 in. were considered. Rod strings of 100 percent 3/8 and 100 percent 3/4, as well as the standard 7/8-3/4 tapered strings were used. Parameter limitations used were: (1) peak torque of 1.25 times the gear box rating; (2) allowable rod stress for Grade C rods; and (3) maximum load range of 70 percent. A maximum production of 202 BPD @ 80 percent efficiency was calculated for a 78-34 tapered rod string and 1.75-in. pump operating at twenty-five 32-in. strokes per minute. In the application, the fast, short-stroke pumping method was the more efficient.

OVERLOADING

Overloading of equipment, as a general practice, is not recommended. In some instances overloading can be justified. An example would be overloading an existing beam unit for a short period (less than a month) to get an increased capacity test. Another example would be overloading of a beam unit on a responding waterflood well. The unit may have no value other than salvage and would be little or no loss if it failed.

In the former case, the short test period, the beam and structural members and the reducer may be overloaded by a factor of two with no damage, provided the gears and bearings are in good condition and properly lubricated. Shock loads, such as occur in a pump-off condition would be very detrimental and must be avoided.

In the latter permanent overload case, additional limitations are involved. As well as checking the condition of the bearings, gears and gear lubricant, it is recommended that an EP lubricant be used, if not already in service. Neither the reducer nor the beam and other structural members should be overloaded in excess of 25 percent. The gear lubricant should be inspected monthly for contaminants and changed if necessary. Shock loads must be avoided. Counterbalancing should be checked often and the proper counterbalance maintained.

Perhaps the most critical item in reducer life is the lubricant film on the gear teeth. If this film breaks down and wear, caused by metal-to-metal contact, occurs, the life expectancy of the gears is reduced. This is the case whether the reducer is overloaded or not. The decrease in life expectancy would be proportional to the amount of load applied. If the lubricant film can be maintained, it does not seem unreasonable to anticipate that the reducer could be 50 percent overloaded and still have an almost normal life expectancy.

One company has had some actual experience with deliberate overloading. Results were good. An overload of 50 percent was applied to a group of approximately fifty 57,000 in.-lb units. In a few cases the overload reached 75 percent. Only one gear box failure occurred over a seven-year period. These good results were attributed to maintaining proper counterbalance and a strong preventive maintenance program particularly with respect to gear box lubricant.

OTHER FACTORS

Other aids for better utilization of existing units are also available. Extra high slip motors have proven beneficial by reducing load ranges. This reduction in load range will not only benefit the gear box but should prolong rod life. To receive full benefit from the extra high slip motors, the motors must be loaded.

The use of sinker bars on the bottom of rod strings is another aid. This added weight will reduce compressive forces in the lower part of the string.

A minimum pump submergence should be maintained to achieve higher pump efficiencies. Submergence should be limited to a depth that assures satisfactory pump filling. This is done to keep the pressure around the pump intake low which permits the dissolved gas to come out of solution prior to reaching the pump and permits it to be produced in the annulus rather than through the pump. A properly designed gas anchor is imperative under these circumstances. Another advantage in setting the pump as high as practical is the reduction in rod weight.

TABLE 3WELLS OPERATING AT HIGH SPEED

	Approx.			Stroke
Lassa & Wall No	Pump Depun	SDV	eed The loss	Length
		SPM	Ft/Sec.	<u>In.</u>
Mary Foster No. 99	2500	16	3.29	74
Mary Foster No. 102	2500	16.5	3.39	74
Chalk Estate No. 7	1800	19	2.53	48
Chalk Estate No. 10	1800	19.5	1.95	36
Owen Chalk No. 14	1800	20	2.33	42
Owen Chalk No. 24	2600	20	1.50	27
Sloan Chalk No. 11	1800	17.4	2.32	48
A. E. O'Daniel No. 4	2800	20.4	3.06	54
A. E. O'Daniel No. 8	2800	21	2.33	40
A. E. O'Daniel No. 13	2800	17	3.49	74
Fasken FA No. 1	2800	13	4.48	124
SLSA Unit No. 61	4400	20	2.67	48
SLSA Unit No. 118	4400	18	2.70	54
SLSA Unit No. 138	4400	18	3.20	64
SLSA Unit No. 181	4400	14	3.89	100
SLSA Unit No. 206	4400	20	1.89	34
McFarland Queen Unit No. 5	4700	12	4.00	120
McFarland Queen Unit No. 11	4700	14	3.34	86
McFarland Queen Unit No. 14	4700	14	3.34	86
McFarland Queen Unit No. 17	4700	14	3.34	86
McFarland Queen Unit No. 48	4700	15.5	3.70	86
McFarland Queen Unit No. 58	4700	16.5	3.94	86
McFarland Queen Unit No. 64	4700	14	3.89	100

FIELD EXPERIENCE

An informal survey of operating personnel as to their experience with high operating speeds was conducted. High speeds, for the purposes of this survey, were arbitrarily defined as those at or above 50 percent of the free-fall rate of the rods (based on furnished tabular data) or at 20 SPM or greater, whichever was the lesser.

Table 3 shows some examples of wells operating at higher speeds.

The general opinion of the personnel operating these wells was that the high speed operations were not causing any significant problems and that with conditions favorable, high speed operations are satisfactory. One foreman noted that he had experienced less trouble with high-speed smallpump installations than with slow-speed large-pump installations. Generally, all foremen agreed that slow, long-stroke operations are preferred over fast, short-stroke operations.

COMPUTER PROGRAMS

There are available to Mobil personnel two computer programs to facilitate designing and evaluating beam pumping installations. The first program (M6036) performs the design calculations for sucker rod pumping systems for conventional units as set out in API RP 11L. The program is very versatile. One input card can result in from 1 to 40,000 lines of output, each line being a different design condition. Figures 4, 5, 6 and 7 are examples of input and output from this program. Required input is fluid level, pump setting depth, pumping speeds, stroke lengths, plunger diameters, specific gravity of the fluid, tubing size and rod sizes. From 1 to 40 SPM, up to six different stroke lengths, up to 17 different standard rod strings and up to 10 different plunger sizes can be evaluated with one input card. Nonstandard rod tapers can be handled by the program, but additional input is required. This additional input consists of the percentage of each size rod

used in the string and the frequency factor for the non-standard string. These non-standard frequency factors can be estimated from Supplement 1 to API RP 11L.

Some additional features of the program are that output can be limited to fall into a specified range of production and/or below a specified peak torque value. If desired the nondimensional variables, Fo/ Skr, N/No and N/No' will be printed following the data line to which these variables pertain.

In addition to input information, output consists of production at 100 percent efficiency with tubing anchored and unanchored, peak rod load, minimum rod load, counterbalance effect, peak torque, footages of each size rod in the string, polished rod horsepower, motor ratings, allowable stresses for C and D rods and the calculated peak stress on the top rod. Allowable rod stresses are calculated as recommended in API Standard 11B (16th Edition) Supplement 2 issued April, 1968. For C rods, a minimum tensile of 90,000 psi is used in the calculation, while for D rods, 110,000 psi is used. A safety factor of 1.0 is used in both calculations.

The program is well-suited for the design of new installations. The designer is presented with a large number of conditions from which to make the proper selection for the installation under consideration. It can also be useful for evaluating an existing installation. By plugging in the actual conditions, the loads and the nondimensional variables can be output. The shape of an actual dynamometer card can be compared with a "normal" dynagraph in API Bulletin 11L2 having similar nondimensional variables. If the cards are similar in shape, the well is performing normally. If the cards are not similar, the system needs further investigation.

The second program (M6046) calculates torque factors, polished rod positions and permissible loads at specified crank angles and plots a permissible load diagram at a specified load and stroke scale for conventional, air balance and Mark II type beam pumping units. If the plot has the same scale as a dynamometer card, the two can be overlayed and a quick glance can tell whether the gear box rating is being exceeded. Figures 8 through 16 are examples of output from this program. Input required for calculating well load and counterbalance torque factors and polished rod position consists of certain unit dimensions, crank angles, type of unit and direction of rotation. Additional input required to calculate permissible

		M60	36	IN	ρŪ	7	74	DHM				KE	YPUNC	I CODE	SHEE	т 		ALL	DECIM	AL P	INTS A	SSUNA	<u>م</u>		
PUMPING FLUID LEVEL	SE I	PWAP TTING XEPTH	TUR SIZI	SPEC GRAV. PROD.	SI RAI	PM Vie	INC.		د ۲	ENG	KE THS			PLUNG RANG INTE	ER DOL. E ØF RØST	24 34 64 8.477.	RØD (STRING	PERCA S W/NO T ROD	STEE	ES TAPELS	FREQ. PACTOR	PROD EFF RANGE	APD ATT	THRQUE CUT-GPI FACTOR	
FEET	5	7 1 1 1	X //	FL ULD	16 17	Rast 18_19	20 21	ZN. 22 21 24	25 25 27	21 27 30	<i>₹ •⁄</i> 31 32 33	<u>24</u> 34 35 36	ZA/. 37 18 39	2 -4/. 40 41 42	<i>IV.</i> 43 44 45	877KS	DEC R	EASING	710	60 61 62 63	174748-5	68 69 76	NZEH 71 72 73 74	1972 af 1	16 A 76 79
										1														ي ال	Τ
450	7 .	5101010	20	170	112			-4						1:25		67					Lici			Lili	4
										1.1						IT				Litt				1	.
	1	- - i i i i			Ι.Ι					1 - 1	1	<u>.</u>			L.i.	I I	11			ينغ ب ا				111	
45.01		5,2,2,0	2.0	.2.0		12		1	54		1	1.1			425	76	12:7:8	121212		Luu.	1101616		1		_
<u></u>	L						L	I					1		1.1.1	Ľ									4
		_1_1_1	L	1		11	1			L.L.		1	i	1_1_1	L. L	11.	L			\downarrow \perp \downarrow \perp				1	+
13.20		<u>રાઝાલ</u>	ي أ		1.0	114	12	45	54	1.1614	, L_	1	1	1:25	1/1510	6									$\downarrow \mu$
	┶	<u> </u>	1_		1_			1			1	L.1	i		ــ بــ	ιĻ	1 - 1 - 1 + 1			Links	1.1.1				4
<u></u>			Ļ			L	L.	1.	L	a L	1.1	L .	1 : 1	11				<u></u>							4
13:20	2.	3000	20	4-1-1-	1.0	14	Lik	· Her	÷4	1 -1 614	4	÷	1	1/1215	21510	4				1.1.1.	1	1215	120	1/1/1	¥4
		1110	L	Lu			L.	1	l 1	L.L.L.	l L	Lu.	I 1_1_							1		11	111		4
بنيان الساب		_1 _ L					L.,			J.,		┟╷╻	1			Ц					1.1.1				4
				┟╷∟		<u> </u>	і . L.	1	╎╷╷	L	L. I.			111		LI.				1.1.1.					4
			L	1.1.1	L.	L.	1		↓ ↓ ↓ ↓			1.1.1				Ш			ب ب	1					\downarrow
1		<u>.</u>	1.	1 ш.		1.		1.1	↓	ј т.		1.1.1	1	111	1.1	Ц					+		L	ببنا	4
			L.	L	1.1		L.	1	1.	1.1.1.	بليليه ا	L i i i		11	Ļц	ίĻ			<u></u>		┶┶┷		L	\downarrow	4
	4.4	- 1. 1. 1.	Į., .	L	1		1	1.	L	1	L	1.1.1	1	111	1	11	<u></u>			Д. г. ц. ц.		<u></u>	اللاحظ المراجع	누~	4
<u></u>	1.		L .	і і	<u> </u> .	. 1	i.	1	1	1	l	<u>і</u> і і і	1 1 1	1	L	Ц	1		<u></u>	+	<u>ь. ес. †</u>	1-1-4	L	<u> </u>	4
	1.1		1	L1-	4.		i .	1		1	1.1	1 1 1	1.1.1	L	1 1 6.	11			1	1.1.1	<u>↓ г ⊾ н</u>	1 г. г.		ا	щ
	+.	· 	Į	1	1	:	t .	1.	i .	1		1	4	1	1	11		L	+ . <u> </u>	+	. † i <i>i</i>	+ 1.1-		<u>∔ :</u>	Ļ
	4-	- L	.	4	1 .	i .	1	1		1	l i	1.	1 :	1:	1.1-1	11.			1	4.6.4.6	4-+-1-1	L	L	<u> </u>	_ i
	1.		.	ļ.,			ļ.		1	i	4	i		J		1.	ļ.,		÷	1			╞╍┷	+	_+
	44		1.	4 .			i	1	1	i	1		- :	↓ _	1.1.1	11	ا <u>م</u> ار ا			بد د ل	4	↓	L	┫	ட்
	1.		1	1	1		i		1	1	1 .	1.		1 .	1		1 , 1		1	1	l i i i	1	1 1.		1

FIGURE 4

DESIGN CALCULATIONS FOR SUCKER ROD PUMPING SYSTEMS (CONVENTIONAL UNITS) BASED ON API RP 11L M6036

	PUM? SET.	PUMP. FLUID	TUR DIA	SPEC GRAV	PUMP BORE	LGH OF	5 P	PROD PCT.	•(100 EFF)	PEAK	MIN. ROD	CB Eff.	PEAK	;)		ROD	F00	TAGES			POL ROD	HI	KOF MTR	ROD	STRE MPS1	SSES
	FFFT	FFET	IN.	FLD.	IN.	IN+	~	ANCH BPD	UNAN BPD	MLBS	MLBS	ML95	M#IN	9/ IN	8	8/8 IN•	7/8 1N.	678 IN+	5/8 IN•	4/8 In.	TIP.	5Z.	HP	API	API D	CALC.
	(\$200	4500	2.5	0.90	1.25	54 NSTON	12	111	104 ABLES	11.4	5+5 PRECE	8•6	97 DATA	LINE	0 435	0 E0/5	0	5000	0 N / NC	0	4.3		10.0	29.6	34.6	25+8
A	5000	4500	2.0	0.90 • 10N	1.25 -DIME	54 54 510	12	112 VAR1	105 ABLES	12.2 FOR	6+2 PRECE	9.6 DING	101 DATA	LINE	0 ARE	0 1 F0/5	390 KR=0	3610	0 N/N0	0.24	4.1	1 1/NO	10.0	28.3	33+3	20+3
	(2000	4500	2.0	0.90 NON	1.25 -D1*E	54 1510N	12 AL	117 VARI	109 ABLES	14.6 FCR	7.7 PRECE	11.6 DING	DATA	LINE	ARE	0 5 F0/5	000 KR=0	0.12	0 N/NO	0 •0+24	4.9) 1 //NO	10.0 '=0.	29.7 24	34.7	24.3

2 - 5000 4500 2+0 0+90 1+25 54 12 112 105 12+2 6+2 9+6 101 0 0 1390 3610 0 0 4+3 1 10+0 28+3 33+3 0+0

ZEROES IN HI SLIP AND/OR KOF MOTOR COLS. OF OUTPUT INDICATE HP REQUIREMENTS EXCEED PROGRAM LIMITATIONS ZERO IN PEAK CALC. ROD STRFSS COL. INDICATES ROD PERCENTAGES AND FREG. FACTOR WERE INPUT-ROD TAPER MAY BE NON-STD.

FIGURE 5

DESIGN CALCULATIONS FOR SUCKER ROD PUMPING SYSTEMS (CONVENTIONAL UNITS) BASED ON API RP 11L M6036

PUMP SET. DEPTH FEFT	PUVP. FLUID LEVEL FEET	TUP DIA NOM	SPEC GRAV PROD FLD+	PUMP BORE	LGH OF STR IN.	S P M	PROD. PCT. TUB. ANCH BPD	(100 EFF) TUB. UNAN SPD	PEAK ROD LOAD MLBS	MIN. ROD LOAD MLBS	CB EFF. ML35	PEAK TORQ M#IN LBS.	9/8 IN•	R0 8/8 IN+	D FOG 7/8 1N.	6/8 IN.	5/8 IN•	4/8 IN.	POL Rod HP	HI SLP MTR SZ.	KOF MTR RTG HP	ROD ALLI API C	STRE MPSI OW. API D	PEAK CALC.
		• •				••	- 4															•••		
3900	3900	2.0	1.00	1.25	*2	10	73	69	8.9	4.0	7+0	51	0	. 0	0	3900	0	0	2		2.0	28+4		30.3
3900	5900	4.0	1.00	1.50	* 7	10	98	84	7.7	4.0 7	1.00	74	0	0	0	3400	0	0	342		(•?	28+2	33.4	~~~
3000	3000	2.0	1.00	1.23	24	10	1 2 2	114	10.1	440	7.6	/ 5	0	0		3900	0	0	يە د	2 1	100	28.3		20.0
5000	3900	5.0	1 00	1 25	44	10	100	105	10.1	4.4		93	0			3900	0				10.0	20.1	33.1	22.07
3900	3900	4.00	1000	4.20	04	70	104	,105	9.03	***	/+0		0	U	U	3900	0	0	4.0.3		1.03	28+2	33+4	4747
1000	1900	2.0	1.00	1.50	64	10	150	141	10.4	4.3	7.5	117	0	c	٥	3900	6	0	5.1	1 2	10-0	27.9	32.6	22.4
3900	3900	2.0	1.00	1.25	45	12	89	84	9.2	4.3	7.0	68	Ď	ō	ŏ	3900	ō	ŏ	3.5	1 1	7.5	28.0	33.0	20.4
3900	1900	2.0	1.00	1.50	45	12	121	110	10.1	4.1	7.5	A D	õ	ā	ñ	3900	ō	ň	3.0	1	10.0	27.8	32.4	22.0
3900	1900	2.0	1.00	1.25	54	12	110	105	9.4	4.2	7.0	85	ŏ	ŏ	ŏ	3900	ŏ	ŏ	4.0	5 1	7.5	27.8	32.4	21.1
3900	3900	2.0	1.00	1.50	54	12	150	139	10.4	4.0	7+5	105	ō	ō	ō	3900	ō	ō	5.0	2	10.0	27.6	32.0	23.6
1900	3900	2.0	1.50	1.25	64	12	133	127	9.7	4.0	7.0	107	٥	٥	٥	3900	٥	٥	5.43		10.0	27.6	12-4	22.0
3900	3900	2.0	1.00	1.50	64	12	183	172	10.7	3.8	7.5	131	ŏ	ō	ō	3900	ŏ	ŏ	6.4	2	15.0	27.3	32.1	24.1
3900	3900	2.0	1.00	1.25	45	14	107	101	9.5	4.0	7.0	75	Ō	Ō	Ō	3900	ŏ	ō	3.9	1	7.5	27.4	32.4	21.5
3900	3900	2.0	1.00	1.50	45	14	145	132	10.4	3.0	7.5	86	ā	ō	ā	3900	ā	ā	4.1	2	10.0	27.4	32.4	23.6
3900	3900	2.0	1.00	1.25	54	14	132	125	9.8	3.8	7.0	95	õ	ō	õ	3900	ō	õ	5.1	ĩĩ	7.5	27.3	32.3	22.2
3900	3900	2.0	1.00	1.50	54	14	180	167	10.8	3.6	7.5	115	٥	٥	0	3900	0	0	6.3	3 2	15.0	27.1	32.3	24.4
3900	3900	2.0	1.00	1.25	64	14	159	152	10.2	3.5	7.0	121	õ	õ	ō	3900	ŏ	ō	6.6	2	10.0	27.0	32.0	23.1
3900	3900	2.0	1.00	1.50	64	14	219	205	11.2	3.4	7.5	145	ō	ō	õ	3900	õ	õ	8.0	2	15.0	26.8	31.4	25.3

ZEROFS IN HI SLIP AND/OR KOF MOTOR COLS. OF OUTPUT INDICATE HP REQUIREMENTS EXCEED PROGRAM LIMITATIONS ZERO IN PEAK CALC. ROD STRESS COL. INDICATES ROD PERCENTAGES AND FREQ. FACTOR WERE INPUT-ROD TAPER MAY BE NON-STD.

FIGURE 6

M6036

PUMP SET. DEPTH	PUMP. Fluid Level	TUA DIA Nom	SPEC GRAV PROD	PUMP BORE	LGH OF STP	5 P M	PROD PCT. TUB.	(100 EFF) TUB•	PEAK ROD LOAD	MIN. ROD LOAD	CB EFF.	PEAK TORQ		RO	D FOG	TAGES			POL ROD HP	HI SLF MTR	KOF MTR RTG	-ROD ALL	STRE MPS1	ISSER -
FFFT	FFET	IN.	FLD.	IN.	IN.		ANCH BPD	UNAN BPD	MLBS	MLBS	MLBS	M#IN LBS+	9/8 IN•	8/8 IN•	7/8 IN•	6/8 IN•	5/8 IN•	4/8 IN•		sz.	HP	AP I C	AP I D	CALC.
3900	3900	2.0	1.00	1.50	45	10	99	89	9.9	4+5	7.5	74	0	0	0	3900	0	0	3•2	1 1	7+\$	-28+2		1 33.3
3900	3900	2+0	1.00	1+25	54	10	90	86 114	941	4.6	7.0	75	0	3	0	3900	0	0	3.2	21	7.5	28+3	33.3	20.6
3900	3900	2.0	1.00	1.25	64	10	109	105	9.3	4.4	7.0	93	ŏ	ŏ	ŏ	3900	ŏ	ŏ	4.	i i	7.5	28.2	33.7	21.1
3900	3900	2.0	1.00	1.25	45	12	89	84	9.2	4.3	7.0	68	٥	٥	0	3900	٥	0	3•3	1 1	7 • 5	28.0	35.0	1-20-8
3900	3900	2.0	1.00	1.50	45	12	121	110	10.1	4.1	7.5	80	0	٥	٥	3900	٥	٥	3.1	-1	10-0	-27+8	-22+6	
3900 3900	3900 3900	2.0 2.0	1.00	1.25	54 45	12	110 107	105 101	9.4 9.5	4•2 4•0	7•0 7•0	85 75	0	0	0	3900 3900	0	0	4.0		7+5	27+8	32.8) 21.3 ; 21.5

ZFROFS IN HI SLIP AND/OR KOF MOTOR COLS. OF OUTPUT INDICATE HP REQUIREMENTS EXCEED PROGRAM LIMITATIONS

DESIGN CALCULATIONS FOR SUCKER ROD PUMPING SYSTEMS (CONVENTIONAL UNITS) BASED ON API RP 11L

FIGURE 7

.

2FRO IN PEAK CALC. ROD STRESS COL. INDICATES ROD PERCENTAGES AND FREQ. FACTOR WERE INPUT-ROD TAPER MAY BE NON-STD.

1481 -1 SN1T	2400 1951 2	5844 NC. 46046 - TORQ 7/23/71	UE FACTOR CALCULATIONS	5	
ura t	SLOW SPEED SPAFT	SLOW SPEEL SHAFT	SACULE BEARING	CHANK BEARING	SADDLE BEARING
1941 A.M. K. TATIO (TU CPANK BEARTNG TTAL	TC SAUDLE BEARING (IN.)	TAIL BEARING	TAIL BEARING	PCLISHED RCC
-1.	27.00	155.83	96.00	122.25	96.00
SEUN SPEED S	MAFT TO SAUULE BEAN	RING VERTICAL UT	STANCE = 122.75 IN.	HORTZONTAL D	ISTANCE = 96.00 IN.
STR INC. LEWIST	n = 54.78 [1].	GRANK ANGLE	SHIFT = 141.9 DEGREE	ES	
CRANK ANGLE	PCLIS	HEU ROL POSITION	WELL LOAD TORQUE F	ACTOR COUNTERB	ALANCE TERQUE FACTER
1.71.371.157	() 54(0.0248	9.3196		0.2588
20		0.6872	16.5259		0.5000
45		0.1600	22.0340		0.7071
43		0.2948	25.6717		0.8660
75		0.4224	27.4012		0.9659
145		0.5537	27.2460		1.0000
1 u S		0.6799	25.2820		0.9659
120		0.7427	21.6829		0.8660
1 1 5		4.850	16.7744		0.7071
150		C.9517	11.0335		0.5000
165		0.9900	4.9855		0.2588
100		0.9996	-0.9416		0.0000
195		0.9816	-6.5075		-0.2588
210		0.7381	-11.63#1		-0.4999
225		0.6711	-16.3350		-0.7071
240		0.7027	-20.5674		-0.8660
255		0.6755	-24.1756		-0.9659
270		0.5532	-26.7969		~1.0000
235		0.4218	-27.8554		~0.9659
300		0.2405	-26.6854		~0.8660
115		0.1711	-22.8276		-0.7071
336		0.0765	-16.3764		-0.5000
145		0.0175	-8.0958		~0.2588
360		0.0001	0.8460		-0.0000

FIGURE 8

PROGRAM NU. M6046 - TORQUE FACTOR CALCULATIONS 2/23/71

TYPE -1 UNIT TEST

RITATION CRANK BEARING SAUDLE BEARING TAIL BEARING TAIL BEARING PCLISHED RCD (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) -1. (IN.) (IN.) (IN.) (IN.) (IN.) -1. 27.00 155.83 96.00 122.25 96.00 SLOW SPEED SHAFT TO SADDLE BEARING VERTICAL CISTANCE = 122.75 IN. HORIZONTAL DISTANCE = 96.00 IN. STRIKE LENGTH = 54.78 IN. CRANK ANGLE SHIFT = 141.9 DEGREES CRANK ANGLE PCLISHED RUD POSITION POLISHEC ROD POSITIC'4 PERMISSIBLE LCAD (DECREES) (FRACTION DF STRDKE) (IN. FROM BOTTOM OF STRDKE) (LBS.) 15 0.02486 1.361 J3103. 30 0.04972 4.778 27015. (100) 9.465 27629.	UNIT TYPE AND	SLON SPEED SHAFT	SLOW SPEED SHAFT	SACCLE BEARING TO	CRANK BEARING	SÃDDLE	BEARING TO
(IN.) (IN.) (IN.) (IN.) (IN.) -1. 27.00 155.83 96.00 122.25 96.00 SLOW SPEED SHAFT TO SADDLE BEARING VERTICAL CISTANCE = 122.75 IN. HORIZONTAL DISTANCE = 96.00 IN. STROKE LENGTH = 54.78 IN. CRANK ANGLE SHIFT = 141.9 DEGREES CRANK ANGLE PCLISHED RUD POSITION POLISHED ROD POSITIC's PERMISSIBLE LCAD (DEGREES) (FRACTION DE STROKE) (IN. FROM BOTTOM DE STROKE) (LBS.) 15 0.0248 1.361 33103. 30 0.04872 4.778 27015. (100 9.465 25629. 25629.	ROTATION	CRANK BEARING	SAUDLE BEARING	TAIL BEARING	TAIL BEARING	PCLIS	HED RCC
-1. 27.00 155.83 96.00 122.25 96.00 SLOW SPEED SHAFT TO SADDLE BEARING VERTICAL CISTANCE = 122.75 IN. HORIZONTAL DISTANCE = 96.00 IN. STROKE LENGTH = 54.78 IN. CRANK ANGLE SHIFT = 141.9 DEGREES CRANK ANGLE PCLISHED RUD POSITION POLISHEC ROD POSITIC'A PERMISSIBLE LCAD (DECREES) (FRACTION OF STROKE) (IN. FROM BOTTOM OF STROKE) (LBS.) 15 U.0248 1.361 33103. 30 0.0872 4.778 27015. (100) 9.865 27629.	ملك متغلقت تغرب	([N.)	(IN.)	(IN.)	(IN+)		N. J
SLOW SPEED SHAFT TO SADDLE BEARING VERTICAL DISTANCE = 122.75 IN. HORIZONTAL DISTANCE = 96.00 IN. STROKE LENGTH = 54.78 IN. CRANK ANGLE SHIFT = 141.9 DEGREES CRANK ANGLE PERMISSIBLE LCAD CRANK ANGLE PCLISHED RUD POSITION POLISHED ROD POSITIO'4 PERMISSIBLE LCAD (DECREES) IFRACTION OF STROKE) (IN. FROM BOTTOM OF STROKE) (LBS.) 15 U.0248 1.361 33103. 30 0.0872 4.778 27015. 45 0.0872 9.865 27629.	-1.	27.00	155.83	96.00	122.25	96	.00
STROKE LENGTH = 54.78 IN. CRANK ANGLE SHIFT = 141.9 DEGREES CRANK ANGLE PCLISHED RUD POSITION POLISHED ROD POSITIO'A PERMISSIBLE LCAD (DECREES) (FRACTIUN DF STROKE) (IN. FROM BOTTOM OF STROKE) (LBS.) 15 U.0248 1.361 33103. 30 0.08972 4.778 27015. 45 0.1000 9.855 25629.	SLOW SPEED	SHAFT TO SADDLE BEAR	ING VERTICAL DI	STANCE = 122.75 IN.	HOR I ZONTAL	DISTANCE -	96.00 IN.
CRANK ANGLE PCLISHED RUD POSITION POLISHED ROD POSITIC'S PERMISSIBLE LCAD (DECREES) (FRACTION DF STRDKE) (IN. FROM BOTTOM DF STROKE) (LBS.) 15 U.0248 (IN. FROM BOTTOM DF STROKE) (IBS.) 30 0.0872 4.778 27015. (5 0.000 9.465 25629.	STROKE LENG	STH = 54.78 IN.	CRANK ANGLE	SHIFT = 141.9 DEGRE	ES		
(DECREES) (FRACTION OF STROKE) (IN. FROM BOTTOM OF STROKE) (LBS.) 15 0.0248 1.361 33103. 30 0.08872 4.778 27015. 45 0.1000 9.855 25629.	CRANK ANGLE	E PCLISH	ED RUD POSITION	POLISHED ROD POSI	TICH	PERMISSIBLE	LCAD
15 U.0248 l.361 33103. 30 0.0872 4.778 27015.	(DECREES)	{FRAC	TION OF STROKE)	IIN. FROM BOTTOM OF	STROKE)	(LBS.)	
30 0.0872 4.778 27015.	15		0.0248	1.361		. 3103د	
/s 0.1×00 9.865 25629.	· 30		0.0872	4.778		27015.	
45 0.1600	45		0.1800	9.865		25629.	
<u>60</u> 0.2948 16.151 25525.	60		0.2948	16.151		25525.	
75 0.4224 23.140 25985.	75		0.4224	23.140		25985.	
90 0.5537 30.334 26836.	90		0.5537	30.334		26836.	
105 0.6799 37.248 28138.	105		0.6799	37.248		28138.	
120 0.7927 43.428 <u>30165.</u>	120		0.7927	43.428		30165,	
135 0.8850 48.486 33570.	135		0.8850	48.486		33570.	
150 0 .9517 52.140 40314.	150		0.9517	52.140		40314.	
165 0.9900 54.237 61620.	661		0.9900	54.237		61620.	
1aC 0.9996 54.760 -169621.	140		0.9996	54.760		-169621.	
195 0.9816 <u>53.776</u> <u>-1895.</u>	195		0.9816	53.776		-1895.	
<u>210</u> C.9381 51.391 10739.	210		0.9381	51.391		10739.	
225 0.8711 47.720 14876.	225		0.8711	47.720		14876.	
240 0.7827 42.878 16226.	240		0.7827	42.878		16226.	
255 0.6755 37.005 16176.	255		0.6755	37.005		16176.	
270 0.5532 30.306 15339.	270		0.5532	30.306		15339.	
285 0.4218 23.110 14078.	285		0.4218	23.110		14078.	
300 0.2905 15.916 12575.	300		0.2905	15.916		12575.	
315 0.1711 9.374 10730.	315		0.1711	9.374		10730.	
330 0.0765 4.192 7719.	130		0.0765	4.192		7719.	
345 0.0175 0.960 -1464.	345		0.0175	0.960		-1464.	
360 0.0001 0.010 189419.	360		0.0001	0.010		189419.	
PEAK TOROUE HAX. CR HEMENT STRUCTURAL UNBALANCE	SFAR	tokeur	MAX. CB MCMENT	STRUCTURAL U	NBALANCE		
160000. [NLBS. 563000. INLBS. 300. LBS.	160000.	INLBS.	563000. INLBS.	300. L	BS.		

FIGURE 9

131

TYPE ELENT TO A CONTRACT

FIGURE 10

TYPE +2 UNIT	TEST Z	RAM AL MODAS - YURG Test71	AUE FACTOR CALCULATION	5	
0411 1882 A 10	SLOW SPELD SHAFT	SUDW SPEED SHAFT	PITMAN BEARING	CRANK BEARING	TAIL BEARING
RETATION	EDANK OSHDER	26	τu	TO	TC
	LI AL	THE FEARLING	TAIL BEARING	PITMAN BEARING	POLISHED RCC
2.	15.25	123.64	50.00	(IN.) 114.00	(IN.) 120.00
SLUW SPERO SH	HAFT TO TALL REARING	G VERTICAL DI	STANCE = 114.00 IN.	HORIZONTAL DI	STANCE = 48.00 IN.
SINUKE LENGΤ	H = 14.38 IN.	CPANK ANGLE	5+ (FT = 157.1 DEGRE	E S	
CRANK ANGLE (CEGREES)	PELISH (FRAC	FO NDU PLSIFIUN TIUN DE STRUKET	WELL LOAS TORQUE F	ACTOR COUNTERBA	LANCE TORQUE FALLUR
15		5.9803	-11.2382		-7.2580
30		0.9220	~21.6347		-13-9724
45		0.6307	-29,8110		-19.2529
50		0.7157	-35.0079		-22.6093
15		0.5879	- 37.1055		-23.9640
40		0.4577	. 36.4664		-23-5512
105		0.3338	-33.6435		-21.7281
120		0.2228	~29,1459		-18.8236
135		0.1301	-23-3356		-15-0709
150		0,0500	- 16.4380		-10.6162
165		0.0155	-8.6246		-5.5700
160		0.0000	-0.1288		-0.0832
195		0,0149	8.6553		5.5899
210		0.0605	17.1538		11.0785
225		0.1346	24.7100		15.9585
240		0.2327	30.7296		19.8462
255		0.3486	34.7956		22.4721
270		0.4750	36.6707		23.6832
285		3,6040	35-2369		23.4029
300		0.7273	33.4318		21.5914
315		0,8365	28.2327		19 2226
330		0.9233	20.7064		12.3720
345		6.9799	11.1284		7.1870
360		0.9999	0.1285		0.0830

TAIL BEARING TO AIR CYL. BEARING 77.50 IN.

FIGURE 11

FIGURE 12

	•						
UNIT	SLOW SPEED	SHAFT	SLOW SPEED SHAFT	PITMAN BEARING	CRANK BEARING	TALL	BEARING
TYPE AND	10		TO	10	TO		10
DIATION	CRANK BE	ANING	TAIL BEARING	TAIL BEARING	PITMAN BEARING	POLI	MEC REC
-	(1%)		(1N.)	([N.]	111.00		
2.	15.23	,	123.69	50.00	114.00	120	
SLOW SPEED SH	AFT TO TAS	L BEARING	VERTICAL I	DISTANCE = 114.00 IN.	HORIZONTAL	UISTANCE =	48.00 IN.
STROKE LENGTH	• 74,30	<u>14.</u>	CRANK ANG	E SHIFT + 157.1 DEGREE	i <u>s</u>		
CRANK ANGLE		PGLESHE	D ROD POSITION	POLISHED ROD POSI	ION	PERMISSIBLE	LCAD
IDEGREES1		(FRACT	ION OF STROKE)	(IN. FROM BOTTOM OF	STROKE)	(LBS.)	
15			0.9803	72.925		-9726.	
30			0.9220	68.585		-2589.	
45			0.8307	61.792		-98.	
60		······	0.7157	53.239		1261.	
75			0.5679	43.734		2187.	
90			0.4577	34.049		2772.	
105			0.3338	24.830		3032.	
120			0.2228	16.579		2860.	
135		- <u></u>	0.1301	9.684		1964.	
150			0.0599	4.456		-556.	
165			0.0155	1.157		-9149.	
180			0.0000	0.000		*******	
195			0.0149	2,115		27890.	
210			0.0606	4.510		18500.	
225			0.1346	10.015		15273.	•
240			0.2327	17.311		13507.	
255			0.3486	25.934		12311.	
270			0.4750	35.338			·
285			0.6040	44.933		10833.	
300			0.7273	54.105		10578.	
315			0.8365	62.229		10906.	
330			0.9233	68.684		12526.	
345			0.9799	72.890		18890.	
360	_		0.9999	74.385		1248792.	
PEAK TOR 160000. IN.	QUE -LBS,		PISTON DIAMETER 10.00 IN.	CB <u>CVL.</u> PRES 250 - 150	S. RANGE PSI.	S <u>TR. UNB. (</u> 63.	CYL. PRESS PSI.

133

FIGURE 13

loads consists of torque rating of the gear box and counterbalance data. If in addition a permissible load diagram is wanted, the stroke scale and weight scale must be input.

Once a permissible load diagram is drawn for a unit, the plot is applicable until the stroke length or the counterbalance effect is altered; providing, of course, the scale of the dynamometer cards is not changed. A change in pump size, rods, setting depth, fluid level, SPM or tubing size will not affect the validity of the plot. Adding counterbalance moves the plot up the "y" (load) axis an amount corresponding to the added counterbalance effect. Reducing counterbalance moves the plot down the "y" axis an amount equal to the reduced counterbalance effect.

Some suggested program applications follow. If the required input is known, the plot can be drawn prior to going to a well under study and an instant evaluation of the gear box load can be made at the well site by overlaying the plot with a dynamometer card taken at the well. If a dynamometer card is available, a well can be counterbalanced at the office. This can be accomplished by running several plots each with a different counterbalance effect and selecting the counterbalance effect of the plot that best suits the dynamometer card.

SUMMATION

Field experience, although very limited, indicates that high speed operation can be satisfactory. It has been established that controlled overloading of units with proper surveillance and maintenance can result in satisfactory operations. It has been demonstrated that units can be more efficiently loaded with the fast, short-stroke pumping method. The use of these methods, where applicable, in conjunction with other aids such as extra high slip motors and sinker bars, should result in better and fuller utilization of existing equipment, and thereby save money through delayed investments for larger units and in some cases make the purchase of the larger equipment unnecessary. Reduced expenses can also result.

REFERENCES

- 1. API Recommended Practice for Design Calculations for Sucker Rod Pumping Systems (Conventional Units), API RP 11L, First Edition, March 1967.
- 2. API Recommended Practice for Design Calculations for Sucker Rod Pumping Systems (Conventional Units), Supplement 1, API RP 11L, First Edition, March 1967.
- Specification for Sucker Rods, Supplement
 API std. 11B, Sixteenth Edition, April 1968.
- 4. API Catalog of Analog Computer Dynamometer Cards, API Bul 11L2, First Edition, December 1969.
- 5. Gray, H. E., Kinematics of Oil-Well Pumping Units, API Drill. and Prod. Prac., p. 156 (1963).
- 6. Gibbs, S. G., Predicting the Behavior of Sucker-Rod Pumping Systems, *Jour. of Petr. Tech.*, pp. 769-778, July 1963.
- 7. Chastain, Joe., "Text Book for Artificial Lift Efficiency School, Joe Chastain, 1968.
- 8. Gault, R. H., Evaluation of Pumping Unit Capacity, a paper presented at the Tenth West Texas Oil Lifting Short Course, Texas Tech University, Lubbock, Texas, April 1963.

.

·