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ABSTRACT 

INTRODUCTION 

Although many papers have been written on the 
subject of drilling mud displacement from wellbores 
during cementing operations (see references, l-l 1, 
for example), there are still many unresolved 
fundamental and practical questions. In particular, 
both laminar and turbulent flow conditions can 
produce good displacements”8-“; however, it is still 
not clear which represents the most effective 
displacement mechanism. Also, the displacement 
achieved under laminar conditions can vary greatly, 
involved and the flow conditions. In some cases, 
depending on the material properties of the fluids 
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achieved, while in others, unstable fingering of the 
displacing phase occurs, resulting in extremely low- 
efficiency displacements. Even in the stable 
displacement cases, it has been only recently that 
efforts have been reported relating the displacement 
efficiency to the cement and mud material 
properties (densities and rheological properties) and 
the displacement rates.* In the unstable cases, 
turbulent flow displacement would probably be 
dictated, but, as yet, there is no basis for estimating 
the displacement expected under different rates, nor 
the amount of the displacing phase which would be 
required. Further, the critical conditions separating 
stable and unstable displacement regimes have only 
been partially defined, and these relate only to 
Newtonian fluids, whereas drilling fluids and 
cements are highly non-Newtonian. 

It is clear that our knowledge of the fundamentals 
of the displacement processes in cementing is still 
quite limited, and, as a result, it is doubtful that 
many cementing operations are as effective or 
efficient as they might be if this information were 
available. Under normal conditions, satisfactory 
cement jobs are possible with sub-optimal 
displacements; however, under more demanding 
operations, such as displacement in permafrost 
zones, high-efficiency displacements of the water 
base fluids are required. Clearly, in these latter 
situations, a more accurate description of the 
displacement process is necessary, and such 
descriptions must influence the selection of the mud 
and cement properties to be used. 

In the present paper, we cannot consider all of the 

questions just raised. Instead, we focus on those 
aspects rtlating to the dependence of laminar flow 
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displacement efficiency on the densities and 

rheological properties and the displacement rates. 
The fluids are considered to be non-Newtonian, and 
the displacement zone is taken as the narrow gap 
annuli between concentric cylinders, or 
equivalently, the region between two parallel plates. 
The approach is analytical and similar to that used 
previously by Flumerfelt’; however, the rheological 
descriptions are more complete. Although the 
solution is approximate, it still provides a basis for 
analyzing mud displacement and for establishing 
those conditions most favorable for effective and 
efficient displacements during cementing. 

THE PHYSICAL MODEL AND 
ASSUMPTIONS 

The displacement process is assumed to take 
place as depicted in Figure 1. A well defined, stable 
penetrating front of the displacing fluid (cement 
slurry) is assumed to move through the displaced 
phase (mud) under laminar flow conditions. Since 
the desire here is the calculation of displacement 
efficiency (volume displaced at time t/volume of the 
flow field), the position of the penetrating front 
must be known at any time during the displacement 
process. 

The exact analysis of such a problem would 
require the solution of the equations of motion and 
continuity for the velocity a nc 1 pressure fields in 

FIGURE I-THE DISPLACEMENT PdOCESS 
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each of the phases, i.e.,v=(v,(y,z,t), v,(y,z,t)O) and 
p = p(y,z,t) for the displaced (or annular) phase, and 
v = (v, (y,z,t), vy (y,z,t), 0) and i; = fi(y,z,t) for the 
displacing phase (the core fluid). The equations 
which result are non-linear, simultaneous, partial 
differential equations, for which exact analytical 
solution is not possible. Even numerical solutions of 
such problems for Newtonian fluids are quite 
involved. ” 

Here we utilize an approximate analysis similar to 
that used in lubrication problems13 by focusing on 
maximum gradient effects. In particular, the 
following assumptions are employed. 

1. The displacing and displaced fluids are 
completely miscible. This means that inter- 
facial forces can be neglected. 

2. The penetrating front is well defined and 
stable. This requires that diffusion and con- 
vective mixing at the interface between the 
phases is negligible. Diffusion effects will be 
negligible if 4B*?/ ( DIzL)>>I , where B is one- 
half the gap width between the plates, L is the 
length of the flow field, v is the average axial 
velocity, and Dl2 is the diffusivity of fluid “1” 
in fluid “2.” 

3. The volumetric flow rate Q is constant at each 
cross section of the flow; i.e., we have constant 
rate displacement. 

4. The process occurs under quasi-steady condi- 
tions; i.e., the problem can be analyzed as a 
steady state problem at any time. The solution 
depends on time through the evolution of these 
steady state solutions. 

5. There is only one important component of 
velocity, namely vr (or 0,). 

6. The velocity gradients in the z direction are 
negligible in comparison to the velocity 
gradients in the radial direction, i.e., the 
velocity and pressure fields are only dependent 
on y. 

Physically, the last three assumptions imply that 
at each small region, AZ, (see Figure 2) the flow 
can be approximated as that of a layer of one fluid 
moving thrbugh another fluid, both in parallel flow. 



Subject to these assumptions and interpretations, 
the equations of motion for the flow in the respec- 
tive phases reduce to the forms associated with 
parallel shear Bows.‘~ 

(1) 

The first equation refers to the displacing fluid 
and the second to the displaced fluid. The geometri- 
cal quantities B and 6 are as defined in Figure 1. 
Each of these equations stems from a force balance 
between the viscous forces resiting shear, the 
pressure forces, and the gravitational forces. 

In order to relate the viscous shear stresses ?,,and 
Tyz to the velocity field, a rheological equation of 
state is required. For drilling muds and cement 
slurries, an accurate description can be obtained 
using the rheological model of Robertson and 
Stiff.15’16 

r -I* 
(3) 

(4) 

It should be noted that this model includes the 
Newtonian fluid model, the Bingham plastic model, 
and the power-law model as special cases. The yield 
stresses associated with this description are given 
by the following. 

To complete the problem, we must specify the 
boundary conditions. Here we assume zero stress in 
the center of the flow channel, continuity of stress 
and velocity at the interface, and no slip conditions 
at the wall. These can be summarized as follows. 

;,,=Oat y =O (6) 

Fsz q Tyr at y = 6 

?, q vz at y = 6 

vI q 0 at y = B 

(7) 

(8) 

(9) 

The specification of the problem is complete, and 
the solution now proceeds in a fairly direct way. 

THE SOLUTION 

The solution procedure follows closely that given 
previously*, and the detailed steps are given else- 
where. ” Integration of Equations I and 2 with the 
boundary conditions, Equations 6 and 7, gives the 
stress fields at any position z in the flow field: 

qyz z - - dp 
dz 

+ ̂ pg y, y66 

+ ;g y- @-p) g& KybB 

or, alternately, in functional form: 

8,, = r^,,, dP 
dz’ 

y i Tyz = Tyz 

[ 3 

3, y, 6 (12, 13) 
dz 

The substitution of these equations into the rheo- 
logical descriptions, Equations 3 and 4, coupled 
with the use of the boundary conditions, Equations 
8 and 9, give the velocity fields in both phases, i.e.: 

v^, = v^, (14, 15) 

where we have not bothered to give the lengthy ex- 
pressions, but just the functional dependence. Th: 
dimensionless forms of the actual expressions are 
summarized in the appendix. 

In light of the fact that the volumetric flow rate 
Q at each cross section of the flow is constant we 
can obtain: 

Q = 2 J%,Wdy + 2 s,” v,Wdy 
0 

or using Equations 14 and 15 

Q=Q dp 6 
dz’ 

Solving for dpi dz and substituting into Equations 
14 give: 

ib = ?z (Q, y, 6) (17) 

By integrating the velocity of the fluid particles 
at the interface (y=6), we can determine the z 
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position of the interface at any time t, assuming 
z=O at tD. The result is: 

(18) 

which defines the position of the interface 6 as a 
function of z, Q, and t. This result can be integrated 
to give the volume displaced as a function of time: 

v = 2WJH z 1 ,A dd z<L (19) 

iLo 

where W is the width of the flow system. 

Although the solution procedure outlined here is 
straightforward, the actual expressions and details 
are quite involved (see the appendix for summary of 
important equations). At various steps, numerical 
procedures are required to realize the solution. In 
particular, the implicit nature of the equation 
corresponding to Equation 16 above requires a root 
finding procedure to determine dp; dz for known 
values of Q and 6. Also, due to the complex form of 
z 1 Z=6, analytical integration of Equation 19 is not 
possible, and hence, a numerical integration scheme 
is needed. Computer programs and detailed 

descriptions of these calculations have been 
prepared by Beirute.” 

Several things about the solution should be 
noted. First, it is approximate, and hence, the 
displaced volume calculated to Equation 19 does 
not necessarily correspond to the actual volume 
entering at the bottom as calculated by QAt where 
At corresponds to the elapsed displacement time. 
(This comparison is only valid up to the time of 
interfacial penetration at the top of the system). As a 
result, it is possible that a material balance 
inconsistency can arise, since the calculated amount 
of fluid displaced from the system may not 
correspond to that which actually entered. To 
correct this problem, we use the same approach used 
previously’ and introduce a correction factor E into 
Equation 19 to account for this effect as follows, 

V = 2Wc J” z 1 !A da (20) 

where c is determined by setting V = QAt. Clearly, 
prior to interfacial penetration at the top of the 
system, the displacement is simply QAt. However, 
the time of penetration must be calculated from 
Equation 18 and subsequent displacement 
efficiencies (V, 2BWL) from Equation 20 with the 
restriction that the integration is only over the 
displacing fluid actually in the flow field geometry, 
i.e., 7. < L. 

To a further point, it should be noted from Figure 
2 that d?,, dy and dv, dy should both be less than or 
equal to zero. It then follows from Equations 3,4, IO 
and I I that 

(21) 

Tyr I - Y-G-dgS30 (22) 

Here again, because of the approximate nature of 
the solution, situations can arise where the 
calculated values of TY, and ~~~ may in fact be slightly 
negative. Under such conditions, we arbitrarily set 
f Yl. andi or rY7 equal to zero and assume the 
displacement front to be flat over the regions where 
this occurs. The physical validity of such an 
approach is discussed elsewhere. “” 

PREDlCTlONS OF DISPLACEMENT MODEL 

We now wish to consider the displacement results 
obtained from the displacement model just 
described. In doing this, we present the results in 
dimensionless form with the important variables 

being: 

k, = - (dpjdz) I pg = the dimensionless 
pressure drop (23) 

kz = & p = the density ratio, displacing 
phase to displaced phase (24) 

k3 = (ml pgB)’ ‘.:(m: pgB)’ ” = an eflectiv,e viscos- 
ity ratio, displac- 
ing phase to dis- 
placed phase (25) 
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FIGURE 2 

kJ 5 Qf (ZB’W(pgB: m) ‘I”) = the dimensionless 
flow rate (26) 

ks = ( T,, pgB) ‘I” = a dimensionless measure of yield 
stress of the displaced phase (27) 

k6 = (;,: pgB) Iin II) kj q a dimensionless measure of 
yield stress of the displacing 
phase (28) 

t* 3 (Qi2BWL) t = dimensionless displacement 
time (29) 

5 = zI,=S/ LZ dimensionless z position of interface (30) 

V* = V~ 2WLB = displacement efficiency (31) 

It should be noted here that t* also represents the 
number of displacement volumes of the displacing 
fluid injected. Also, the displacement efficiency V* 
is equal to t* up until the penetration time t*pcn. 
Further, complete displacement corresponds to V* = 
1.0, and if V* Z t*‘,?” = I, the displacement process is 

opt’mal. Physically, the later corresponds to plug 
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flow displacement. 
Before presenting the results in terms of these 

variables, there are certain features of the flow field 
and displacement mechanics which should be 
discussed. These relate to the various types of 
displacement flow phenomena which can arise with 
materials possessing yield stresses. 

In particular, from Equations 10 and I I, the stress 
field across the gap can be sketched as that given in 
Figure 3(a). In both phases, the stress varies linearly 
with y with slopes of - (dpi dz + sg) and - (dp;‘dz + pg) 
for the displacing and displaced phases, 
respectively. (Note: p^> p for stable displacements). 
Now, a number of different flow cases can be 
visualized depending on whether the yield stresses ry 
and 3, of the materials are greater or less than TY7(6) 
and Tag. For example, if 7AY < ryX6), then the 
internal phase flow field will be plug flow for all 
values of y d ^A, where “h is defined by p,,(y) < FYZ( i) = 
ryr and a shear flow for values y > “h. A similar 
situation occurs in the outer phase when ~~46) < ~~ 
d Tag. In this latter case, the plug and shear flow 
regions are separated at y = A where the latter is 
obtained from ~~ = ryZ (A). Case 2 represented 
in Figure 3(b) illustrates the nature of the flow field 
and displacement process under these conditions. 
Four other cases can be visualized, and these are 
also illustrated in the figure. It should be noted that 
the most efficient displacements will be achieved in 
cases approximating plug flow displacement (case 
5). Poor displacements can be expected in those 
cases where the inner phase channels through the 
center of the outer phase (case 3). 

Effect of the Density Ratio (k2) 

Figure shows the effect of k2 on the displacement 
efficiency as displacement time is increased. As 
could be expected, the displacement efficiency 
increases with time, since more displacing fluid is 
used to remove the external phase. At t*=l, a 
volume of cement slurry equal to the volume of the 
annulus has been used. The figure indicates that by 
increasing the density of the displacing fluid even 
slightly, the displacement efficiency can be 
drastically improved even for relatively short 
displacement times. It is of interest to note that the 
penetration time increases with k2. In Figure 4, the 
penetration time is that value of t* at which the 
given curve intercepts the dV*/ dt*=l line. It should 
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also be noted that the usage of cement slurry 
excesses can be of some help under certain 
conditions. However, when the time of penetration 
is large, cement excess is of little help. 

FIGURE 3-POSSIBLE FLOW AND DISPLACEMENT 
CHARACTERISTICS 

Effect of the “Viscosity Ratio”(k3) 

Figure 5 indicates that high values of k3 are 
desirable for good displacement efficiencies; all 
other variables remaining the same. Large k3 values 
mean that the displacing phase is more viscous than 
the displaced phase. The model shows that, for 
small values of k3, the penetrating front tends to 
channel through the center of the flow field, leaving 
behind a great deal of external phase that could 
never be removed regardless of the amount of 
displacing phase used. 

FIGURE 4-EFFECT OF k: AND t* ON THE DISPLACEMENT 

EFFICIENCY 

FIGURE S--EFFECT OF kl AND t* ON THE DISPLACEMEN-I 

EFFICIENCY 

Effect of the Displacement Rate (k4) 

As shown by Flumerfelt’ for the case of no yield 
stress in the internal and external phases (ks, k6 
equal to zero), the effect of k4 depends on the values 
of n and s. However, for values of ks and kg different 
from zero, this is no longer the case. Figure 6 shows 
a decrease in displacement efficiency as k4 is 
increased. This effect seems to be independent of the 
relative values of n and fi. The model clearly shows 
that a decrease on k4 readily produces a flat 
penetrating front which gives extremely good times 
of penetration and, therefore, very good 
displacement efficiencies. 
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FIGURE 6 EFFECT OF k4 AND t* ON THE DISPLACEMEN I- 

EFFICIENCY WHEN i?< n AND THE FLUIDS POSSESS YIELD 

S I’RESS. 

Effect of the Displaced Phase Yield Stress (ks) 

As ks increases, the displacement efficiency 
decreases. Large values of ks mean high yield 
stresses for the external phase. Penetration times 
also decrease as ks increases. Figure 7 shows that 
large ks values can cause the penetrating front to 
become very thin, promoting stable channeling, 
which in turn results in very low displacement 
efficiencies. The maximum amount of the external 
phase that can be removed when channeling occurs 
is (refer to Figure 1): 

(32) 

which means that [(I-&) x 1001 percent of the ex- 
ternal phase (mud) will never be removed. 

Eflticr of the Displacing Phase Yield Stress (k6) 

The displacement efficiency increases as k6 
increases, all the other parameters remaining the 
same (see Figure 8). Larger values of kg mean larger 
values of the yield stress in the internal phase. 
Larger yield stresses in the internal phase tend to 
keep the penetrating front together instead of 
channeling through the other phase. Figure 9 shows 
that the penetrating front becomes more blunt as k6 
increases, causing larger penetrating times and, 
therefore, better displacements. Also, notice that 
small values of k6 strongly benefit stable channeling 
with the consequent low displacement efficiencies. 
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0.0 0.0 1 1 

0.0 0.0 0.2 0.2 0.4 5 0.6 0.8 1.0 

FIGURE ‘I--EFFECT OF ks ON THE SHAPE OF THE 

PENETRATING FRONT. 

I ’ l_LVLLLLLII” 
0 ““Oi 0 ““I kt 0 01 0 1 

FIGURE 8 -EFFECT OF ;i AND ke ON THE DISPLACEMENT 

EFFICIENCY. 

Effect of the Flow Behavior Indexes for the Phases 

Figure 8 shows that V* (displacement efficiency) 
decreases as n increases. Therefore, it is desirable to 
have a displacing phase with small values of 8. The 
effect of n is contrary to that of s, as shows in Figure 
10. The figure shows an increased tendency to 
channeling and short penetration times as n 
decreases. 

FIELD APPLICATIONS OF THE MODEL 

Two case histories are outlined below: 

1. An operator in Fort Bend County, Texas, 
wanted a good cement around the bottom 
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FIGURE IO EFFECT OF n ON THE SHAP.E OF ‘THE 

PENE.rRATING FRONT. 

1200 feet of a 5 inch casing set in a 9 7/ 8 inch 
hole. However, due to well conditions, he 
could not use a heavy, high-strength cement. 
Since the mud weight was only IO lb/gal, the 
job was performed using 130 barrels of a 13 
lb/ gal cement slurry. The cement was 
pumped at 6 BPM. Tests run on the job 
(radioactive tracer survey) indicated possible 
cement channeling. 

This cementing operation was simulated in 
the computer using our program. The model 
predicted a fairly flat penetrating front with a 
relatively high percent of mud removal. How- 
ever, it also predicted that the cement would 
not be able to completely sweep the casing 
and formation, leaving behind a film of mud 
on the walls of the annulus. 

2. A South Texas well needed to be cemented at 
14000 feet. The hole size was 8 I / 2 inches, and 
the casing size was 5 I / 2 inches. The mud 
weight was 18 lb/ gal. The well was cemented 
using a total of 320 barrels of a water external 
cement slurry. Fifty barrels of a water 
external emulsion spacer were pumped ahead 
of the slurry. 

This time the model showed a less blunt pene- 
trating front than for case history 1 but with 
the cement slurry moving completely against 
the casing and formation walls. The displace- 
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ment efficiency was predicted at 91 percent. 
The results from the field (CBL) indicated 
very good cement bond through the entire 
cemented interval. 

CONCLUSIONS 

I. The development of this model has provided 
a basis for specifying the relationship between 
displacement efficiency and the relative 
densities of the mud and cement, their full 
rheological behavior, the geometry of the 
well, and the displacement rate. The model 
allows the user to investigate the effects of 
property changes, rate changes, and the like, 
in order to design a cement job prior to actual 
field application. The results obtained agree 
with previous work with regard to the effect 
of density ratio and viscosities on the dis- 
placement efficiency. 

2. The study shows that the yield stresses are 
quite critical in the displacement process. The 
model predicts that serious cement channel- 
ing through the mud will occur if the yield 
stress of the mud is significantly greater than 
that of the cement. 

3. Field cases agree quite well with the results 
predicted using the model. 

4. The model shows that when the displacement 
process is properly designed, large amounts 
of cement slurry (excess) are not needed to 
achieve good displacement efficiencies. 
Under certain conditions (generally for dis- 
placement cases with low efficiency) the 
use of cement excess can be of some 
advantage. However, in the latter cases, 
turbulent displacement would probably be 
the best alternative. 

NOMENCLATURE 

B = one-half the gap between the parallel 
plates 

g = acceleration of gravity 

L = length of the parallel plates 

m,m = “consistency index” in the Robertson- 
Stiff model, external and internal phase 
-respectively. 
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0.4 
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k 2 _ 1.15 
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ki, = 5~10~~ 

kg = 10-l 

n = 0.95 

” = 1.05 
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n,fi = 

P = 

Q = 

t = 

tpen = 
A 

vz, Vr ZZ 

v ZZ 

v, = 

w = 

x,y,z = 

Z 

a,& = 

Y 
= 

6 

E ZZ 

51 = 

I’ENEIRAIING ERONI. 

“flow behavior index”, external and 
internal phase. Robertson-Stiff model. 

pressure 

volumetric flow rate 

time 

time of penetration 

velocity components, z direction, dis- 
placed (external) and displacing (in- 
ternal) phase respectively 

displacement volume 

true volume displaced 

width of the parallel plates (x direction) 

rectangular Cartesian coordinates 

axial position of the interface 

shear rate correction constants in the 
Robertson-Stiff rheological model (ex- 
ternal and internal phase respectively) 

shear rate 

radial position of the interface 

correction factor to the mass balance 
inconsistency 

maximum thickness of the penetrating 
front 

= value of [at which the penetrating front 
intercepts the upper boundary of the 
flow field 

= thickness of the tip of the penetrating 
front 

= thickness of the plug flow region, ex- 
ternal and internal phase respectively 

= density, displaced and displacing phase 
respectively 

= shape function of the displacement front 

Tyr. 8,/ = shear stress, displaced and displacing 
phase respectively 

Ty, PY = yield stresses, external and internal 
phase respectively 

Other L)imensionless Groups 

= (k2-I);(k,-I) 

= I/n 

= Iif; 

= vzj(pgBj”“]m)“” 

= Cz/ (pgB”“/ m)“” 

= Y/B 

= A/B 

= ^A,B 

= 6/B 

= ~yz/ PgB 

= T”yzi pgB 

= Ty/ pgB = ma”/ pgB 

= Py/ pgB = r%+j pgB 

APPENDIX 

Summary of important Dimensionless Equations 

’ Next are the most important equations needed for 
the computer simulation of the model. Detailed 
development of the equations and additional 
information is given elsewhere. ” 

Stress Profile 

+ 
Y= 

= (kl-k2)Y*r Y* < 5 - (1) 

T* 
YZ 

=-(kl-l)y* - (k,-l)c, 
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51Y”‘l - (2) 
;* >o, 7* >o 
Y= - Y= - 

(3) 

Equation 3 is a calculational restriction on 

equations 1 and 2. 

Thickness of the Plug Flow Regions 

i* = smaller 
value of +(k,-k,) or 5 (4) 

A* = smaller 
value of ( 

7;: + (k,-1)C 
> 
/(kl-1) orl. (5) 

Velocity Profile 

“; = - y;” j(y*-*~)S+l-(l-AS)S+l’\ 
S L J 

-k5(1-y*), A*3*<1 . . . . . . . . . - (6) 

j* = 
-(k,-1)' r 

z 
', (X*-AS)s+1-(l-*S)S+l‘i 

(s+l) ~ I 

s . 

-g;;g (Y” 
s+1 

-5 '+l) -k5(1-A*) -k6(c-y*), 

5" < y" < i* . . . . . . . . . . . . - (7) 

In the regions A* < y* < 5 and ^A* < y* < 0 the 
velocity is constant and can be obtained from 
equations 6 and 7 by setting y* = A* and y* = “h* 
respectively. 

Volumetric Flow Rate 
1 

k4 = (h-b)S (5:+2-i*:+2j 
(i+2)k3 

_ &,-Us 

(s+l) { 
(X*-AS) S+lXL(l-A~)S+l 

1 
+ --& [(l-AC) ‘+‘- (X*-AC) ‘+‘I 

, 

- ~c,(~-X*~) k6($-i*2) 

2 - 2 (8) 

This equation is the equivalent to equation 16 in the 
text of this paper. 

Maximum Thickness of the Penetrating Front 
(kl-1)-T* 

Cf = (k2-1) (9) 

^ 1 
s+2 

k 
4 
= (kyk,)' '- s+2- ;* 

(s+2)k3 'f c > 
- $5: - i**) (10) 

Notice that if Ar < 1, stable channeling Will occur. 

Axil Position qf’the Penetrating Front 

c(5) = gcc,jt* . . . . . . . . . . . . . . (11) 

(12) 

N(5) is known as the shape function of the pene- 
trating front. 

Time of Penetration 

t* = k4 
ee* (k,-1)' 

(s+l) 
(l-AQS+l-(X*-A&)S+l ) -kg(l-X”) 

. . . (13) 

See Figure I for physical interpretation of t,,,. 

Displacement Efficiency 

5, 

v* = 5,5, + r W, t* < t*, 
-e 

c,zo.. ( 

hre 

14) 

5 
i' f 

v* = 5, + / cdC. t* > t* 
P 

(15) 

’ 5, 
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