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ABSTRACT 

Several software programs are available to calculate a pump downhole load-position card from 
dynamometer data. Most of these programs use the wave equation, with various solutions (Fourier 
Series, Method of Characteristics, Finite Differences, etc.) to help set damping conditions. A 
downhole tool with strain gauges is available to measure the actual forces at the pump as well as 
mid-string. Use of this tool has led to providing actual downhole values much less than those 
predicted by the software programs. This paper will present the actual data collected by this 
downhole lead cell. This data will then be compared to load values calculated by these 
commercially available software programs. 

BACKGROUND 

With the release of more sophisticated software programs, the question arises as to the relative 
strengths and weakneses of each. The wave equation is relatively straight forward, but solutions 
may be developed in several ways according to the asumptions made. Because different software 
programs treat these assumptions differently, which program to select for a particular downhole 
assembly may become important. The only way to verify the accuracy of the various software 
programs is to gather empirical data of the actual downhole load or force values. 

This paper addresses validation of various computer programs as well as accurate rod stress 
predictions for buckling analysis. 

INTRODUCTION 

There has always been a demand for optimizing pumping systems to: 

Maximize production; 
Increase longevity of the system (not just make it work); and 
Minimize operating costs. 

Consideration of these items should lead to a smooth, economical operation of a beam-pumping unit 
well. In today’s operating environment, all of these factors have to be examined. 
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A downhole tool has been available for several years which will measure the actual forces that occur 
where the tool is installed. To date, use of this tool to gather relevant information to examine 
software predictive programs had been ignored. 

Mobil Exploration and Producing U.S., Inc. (MEPUS) decided to obtain downhole force data at 
both the bottom of the rod string as well as in the middle of the rod string. Both of these areas can 
be critical in the design of the rod string. Excessive compression forces can lead to premature 
failures in the well, which will greatly increase operating costs. With the use of the downhole tool, 
the data gathered was compared to several existing software programs as well as the API 11L 
calculations. These interpretations have resulted in a more efficient and optimized rod string design. 

The Downhole Load Cell (DHLC) tool has direct application for assessing and developing models 
for shallow, viscous oil wells and deviated, high friction wells. Also, the tool can be used in the 
development of two-stage pump Bottom-Up models. 

DOWNHOLE LOAD CELL (DHLC) EOUIPMENT 

The Downhole Load Cell (DHLC, Figure 1) is used to gather the empirical data for these tests. 
The DHLC consists of a pressure transducer, strain gauge load cells, and a microprocessor with a 
timetable and a calibration phase. Glenn Albert of Albert Engineering designed and developed the 
tools that were used in this work. These tools are an advancement of the pioneering effort 
conducted while he was at the University of Oklahoma. 

The data is collected by a self-contained battery operated processor that is run on the rod string. 
Sampling is conducted at predetermined times while the tool is in the wellbore. Quantitative data is 
collected (usually four periods) at 50-60 Hz, and at other times the data is collected at a 10 Hz 
sampling rate. 

The key to capturing valid data is to conduct a standing valve check while testing. The standing 
valve check will allow measurement of the weight of the pump below the tool when positioned at 
the bottom of the rod string. With this value known, the rest of the data gathered can be assessed 
and then compared to the solutions offered by the various software programs. 

Usually standing valve tests were conducted during each test period to ensure there was no drift in 
the tool. If drift occured, it was corrected. During some of the tests, the beam unit was started up 
to observe the forces occurring downhole. A travelling valve check was conducted to confirm the 
load value as well. Results will be discussed later in the paper. 
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WELL TESTS AND CHARACTERISTICS 

Data from four wells will be presented in this paper. These wells are located in the Four Comers 
area and the Permian Basin. Pertinent data on the four wells selected are presented, cases 1 through 
4, in Table 1. 

Wells chosen for the DHLC test program represent the most common lift designs for Mobil in West 
Texas, New Mexico, and Utah. The test wells range in depth from 5,300 to 6,400 feet. Production 
rates vary from 60 to over 560 BFPD. Plunger diameters also vary from 1.25 to 2 .OO inches. The 
wells were tested so measured and modeled loads could be compared for their lift installations. 

DISCUSSION OF RODSTRING MODELS 

Two problems exist in the modeling of rod pumping systems. The first problem is the simulation of 
rod pumping systems for the purpose of design. This is known as the “Bottom-Up” model and is 
named as such because of assumed pump action. The rod dynamics and surface loads are calculated 
from this pump action. 

The second problem is the diagnosing of an existing rod system where surface loads are physically 
measured. This is known as the “Top-Down” model. From known surface loads, rod dynamics and 
pump loads are calculated. Although each problem is solved differently, use of the DHLC tool is 
relevant to both in acquiring accurate solutions. 

Generally, two mathematical models are used to represent rod pumping systems. These models are 
the one dimensional, damped wave equation and Newton’s linear equation of motion for a lumped 
system. The wave equation is a second order, hyperbolic partial differential equation which 
describes the motion of standing waves. The equation of motion for a lumped system is a second 
order differential equation which describes the motion of a discrete number of elements under 
forced, harmonic motion. Both models are valid for harmonic, steady state, forced linear systems 
and rely on viscous damping in the simulation of rod string and pump motion. The wave equation 
approach is the most common in industry today. 

In a simplified form, the wave equation is given by: 

v 2 a2U a2U a4 -=-.--.-++c- . . . . . 
dz2 d2 cf2 

Eq. 1’ 

where v is the velocity of force propagation in the rod string material. In simplified form, 
Newton’s equation of motion is given by: 
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- +c/ cat +f& a2x 
m cz-2 cz 

=o ....Eq.25 

where k is an elastic spring constant for the rod string material. The other terms in these equations 
are defined at the end of the paper. 

In the comparison of seven software programs (Models A-G below), three solution techniques were 
used. The techniques consist of the use of finite differences, Fourier series, and the method of 
characteristics to solve the wave equation. For the “Bottom-Up” case, three solution techniques are 
also used. The models involve two solutions with a finite difference technique to the wave equation 
and one with a lumped, discrete technique to the equation of motion. Lastly, the rodstring solution 
in API’s FWl 1 L is included for reference. 

The software programs are labelled as follows: 

Top-Down 

Model A - Finite Difference 
Model B - Characteristics 
Model C - Fourier Series 

Bottom-Up 

Model D - Finite Difference 
Model E - Lumped Analysis 
Model F - Finite Difference 
Model G - API RPllL 

DISCUSSION OF SOLUTION TECHNIOUES 

It is not the intent of this paper to present the details of the mathematical models and solution 
techniques. However, it is important that these methods be understood by rod system designers and 
trouble-shooters. 

Finite difference solutions are used in Models A, D, and F. The use of finite differences is a valid 
method of obtaining a numerical solution to the one dimensional, linear hyperbolic wave equation. 
This method assumes periodic (steady-state) solutions, so only two boundary conditions are 
required. The models are based on the use of Taylor Series approximations to generate finite 
difference analogs for the displacement derivatives in the wave equation. This method affords 
flexibility in tapered and multi-material rodstrings. Also, this method offers direct determination of 
truncation error. The solution can be matched to rod taper lengths, so no interpolation at taper 
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changes is necessary. Increasing data sampling in the Top-Down model yields higher resolution of 
pump loads. However, numerical solutions at matching higher resolution requires greater 
computation time. 

Two limitations exist in the finite difference method. First, the solution is dependent on an energy 
dissipating damping coefficient (validated only by downhole measurement). Second, finite 
differences typically can not resolve a “ringing” effect when sudden load reversals occur. Data 
smoothing or fast integration can be necessary for the model to make physical sense. Thus, some 
resolution can be lost. In the Bottom-Up models, the solution is dependent on accurate pump 
condition predictions. When predicted poorly, surface loads can deviate greatly from measured 
loads. 

A method of characteristics solution is used in Model B. The method of characteristics is another 
numerical approach to the one dimensional, linear hyperbolic wave equation. This method 
introduces auxiliary functions which greatly simplify the wave equation solution through translation 
to a characteristic coordinate system (eigenvalue matrix). The method is flexible in allowing time 
and depth dependent damping coefficients. Also, the method yields straight forward solution error 
estimates. Computational time is greatly decreased in this method because of the simplified 
integration scheme used for solution. 

As with other methods, the method of characteristics model relies on an equivalent damping factor, 
validated only through actual stress measurement. Also, since surface data is measured at uniform 
time intervals, a specific rodstring length interval is dictated by the solution characteristic slope. 
Therefore, interpolation is necessary to determine loads and positions at rod diameter and material 
changes if the interval does not coincide with solution nodes. The interpolation and simplification 
yields some undetermined error in the solution. 

A Fourier series solution is used in Model C. The model is based on the use of Fourier series 
trigonometric expansions to solve the wave equation. The model takes measured surface loads, 
polished rod positions, and times, and generates a Fourier series approximation. Using Fourier 
series representations of boundary conditions and various intermediates, including displacement and 
force coefficients, the dynamic load is determined as a function of both time and depth. Although 
this method represents an exact analytical solution when an infinite number of terms is included, in 
practice, only 10 to 16 terms are used. 

Although the Fourier series method is widely used in the Top-Down problem, some errors are 
inherent to this technique. Truncation error estimates are difficult to define. Also, since a Fourier 
series approximation of polished rod load results in data smoothing at the onset, resolution is 
immediately sacrificed. As the solution is transmitted downhole, resolution is lost as well. The loss 
of resolution can be greater than with other methods. High resolution is important in determining 
cyclical load variations from higher order harmonics. 
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Exclusively a Bottom-Up solution, Model E, uses a solution of the equation of motion. The 
discretized, lumped analysis approach dissects the rodstring into separate masses, dampeners, and 
springs. Newton’s second law is applied to the discretized rod string, yielding second order 
differential equations of motion. Redefining variables yields first order differential equations. When 
considered with downhole pump boundary conditions, these equations are readily solved with 
improved computational speed. 

Several concerns are relevant to discretized, lumped analysis. For example, the optimum number of 
discretized elements cannot be determined without experimental verification. Also, weighted 
discrete analysis must be defined where rod diameter and material changes occur. This method is 
directly dependent on the natural frequency of the combined rod string (as is API RPllL’s solution). 
Lastly, this model cannot yield accurate results when pumping frequencies are larger than the 
fundamental frequency of vibration of the rodstring. (Fortunately, most systems are operated at less 
than half of the natural frequency.) Model G is based on test data correlations as outlined in the 
RPllL. This method can be considered interpolative from the original electric analog model 
results. Readers are referred to API’s recommended practice for further information on this 
method. Limitations are readily identifiable with this approach. 

Unless a mathematical model is greatly simplified and solved analytically, models involving 
differential equations must be solved through numerical analysis. Models A through F are solved 
numerically. In these numerical solutions, three main sources of error occur. These sources are 
input, truncation, and roundoff errors. Input errors occur when measured values or assumed values 
are inexact. Truncation errors occur in an algorithm when polynomial or trigonometric expansions 
are used. Usually, error bounds can be determined for the algorithm being employed. Roundoff 
errors occur because computer hardware operates on a fixed number of digits. Excess digits are lost 
in multiplication and division operations. Input and truncation errors can be significant, destroying 
solution accuracy. The fact that no model yields an exact analytical solution must be understood 
from the outset. For the first time, equipment exists to accurately determine downhole forces. 
These values can then be used to compare to the predictive models. 

DHLC RESULTS 

The DHLC measured pump loads demonstrate the complexity of rod string simulation. Case #l- 
downhole (Figure 2) is the load versus time plot. Pump loads are initially as high as 3,850 lbs. 
during the onset of the upstroke and drop to 3,000 lbs. at the end of the upstroke. During the 
transition from upstroke to downstroke, two load reversals are seen (from 11 .O to 11.5 seconds). 
As the plunger travels through the downstroke cycle, the maximum compressive dynamic load is 
300 lbs. This load occurs midway through the downstroke where the plunger velocity is greatest. 
The peak pump discharge pressure occured at the end of the downstroke. This was not expected. 
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This phenomenon is probably due to wave dynamics in the produced fluid. Thus, fluid inertia and 
compression effects are tied to plunger loading. 

For Case #l-surface (Figure 3) the surface load versus time is plotted. Along with the surface load, 
the pumping unit’s influence on loading from surface acceleration is demonstrated. Case #l-mid- 
string (Figure 4) presents the midstring load versus time plot. The loads are measured at the 
fiberglass and steel rod interface. The midstring load plot mirrors the surface load plot. 

Case #2-downhole (Figure 5) is the pump load and pressure versus time plot. In this all steel string, 
the pump card has a different nature than in Case #l. The pump loading is more uniform with a 
peak upstroke load of about 5,400 lbs. and a minimum upstroke load of 5,300 lbs. During the 
upstroke, the plunger stalls with a slight reversal in direction and then completes the upstroke. 
Also, the plunger experiences three load reversals on the upstroke to downstroke transition. These 
reversals appear to be caused by higher harmonics and standing wave travel through the rodstring. 
These load reversals are also seen on the downstroke to upstroke transition. On the downstroke, the 
maximum compressive load is about 200 lbs. Once again, the pump discharge pressures do not 
behave as expected. Similar to Case #1-downhole (Figure 2), the discharge pressures have a distinct 
amplitude period, with the maximum pressure occurring during the first half of the downstroke. 
The pressure fluctuations are integral to defining pump loads. 

Case #3-downhole (Figure 6) presents a different pump load and pressure versus time plot. The 
loading is very much like Case #2-downhole. In Case #3, the upstroke maximum load occurs 
immediately at the beginning of the upstroke (4,050 lbs.). The load drops to about 3,550 lbs. just 
prior to a 1,000 lb. load reversal. Then, the load increases to over 3,700 lbs. at the end of the 
upstroke. During the upstroke to downstroke transition, several load reversals appear probably due 
to rodstring harmonics. On the downstroke, the maximum compressive dynamic load is about 150 
lbs. Plunger velocity changes during the downstroke are apparent in the load fluctuations on both 
the up and down strokes. As for Case #2, the maximum pump discharge pressure in Case #3 occurs 
during the first half of the downstroke. The discharge pressure curve exhibits a steady state 
amplitude period. 

Yet another different example, Case #4-downhole (Figure 7) is the pump load and pressure versus 
time plot. In this case, a different load cell configuration was used. The transitional dynamics are 
not observed. This could be the result of inadequate resolution to identify harmonic load transitions. 
However, the basic character of the load curve and pressure curve exist. As seen in the figure, the 
peak upstroke load is about 9,000 lbs. This peak load occurs after the initial upstroke displacement. 
A load transition occurs during the upstroke with a second peak load of about 8,400 lbs. During the 
downstroke, the minimum compressive dynamic load is about 350 lbs. 

As in Cases #2 and #3, the maximum pump discharge pressure occurs during the downstroke (about 
2,700 psi). However, the maximum pressure appears during the second half of the downstroke 
displacement. This indicates that the fluid dynamics are related to the pump’s load plot. 
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MODEL PREDICTIONS COMPARED J’tJ 
MEASURED RESULTS AND CALCULATIONS 

During the study of the different modeling schemes, several important considerations must be 
reviewed. These considerations are the differences in Top-Down and Bottom-Up system loads. 
Gearbox and unit structure loading are both dependent on predicted polished rod loads in the 
Bottom-Up problem. In the Top-Down problem, gearbox and structure loading are dependent on 
actual measured surface loads. In Table 2, Case #l, models A through C predicted gearbox and 
structure loading to within 5 percent. Models D through F predicted gearbox and structure loading 
to an 8 percent and 7 percent variation, respectively. This result is as expected since models A 
through C rely on actual measured surface polished rod loads, while models D through F rely on 
predicted loads. 

In Case #2 (Table 3) the difference is 2 percent and 0 percent for the Top-Down models, and 6 
percent and 3 percent for the Bottom-Up models. Cases #3 and #4 yield slightly different results 
due to algorithm and dynamometer measurement errors. Case #3 (Table 4) gearbox and structure 
loading model differences are 5 percent and 4 percent, respectively for models A through C, and 6 
percent and 3 percent for models D through F. This result indicates the Bottom-Up models are 
predicting structure loading with less difference than the Top-Down models. In Case #4, (Table 5) 
gearbox loading varies by 4 percent in models A through C, while varying only 1 percent in models 
D through F. This result shows the Top-Down models are relying on dynamometer measurements. 

Another interesting result of the model comparisons is the Modified Goodman Diagram (MGD) load 
range difference. For Case #l (Table 2) with two tapers (fiberglass and steel), the top rod section 
MGD loading varies by +3.3 percent for models A through C, and +5.7 percent for models D 
through F. For the bottom rod section, the Top-Down MGD load difference is +8.7 percent, while 
the Bottom-Up difference is + 8.3 percent. This difference indicates that models D through F are 
predicting downhole loading to a tighter tolerance than the models relying on actual measured 
surface loads. This effect is expected since Bottom-Up solutions originate from the pump loading 
boundary conditions. In the other three cases, review of the results shows that for both sets of 
models, the greatest differences usually occur midstring. 

The largest difference in model output appears in the gross plunger stroke. For Case #l (Table 2), 
Top-Down and Bottom-Up differences are 13.4 percent and 17.5 percent, respectively. These 
differences give greatly differing production predictions. In Case #2 (Table 3), these differences are 
2.2 percent and 20.0 percent, respectively. For Case #3 (Table 4), the differences are 7.3 percent 
and 6.8 percent, respectively. And for Case #4 (Table 5), the differences are 0 percent and 1.3 
percent, respectively. Thus, all steel rodstring Top-Down models demonstrate consistent results. 
The fiberglass rodstring (Case #l) yields the greatest difference in the Top-Down prediction. 
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DETERMINATION OF DYNAMIC FORCE 

Another important consideration in using the DHLC is the accuracy of rodstring models in 
predicting rod buckling. The results of each model are presented in different formats. The design 
engineer must be aware of the form in which a computer program’s output is given so that a 
buckling analysis is useful. For example, in the models used, three different presentations are seen. 
Output data was given as the bottom minimum stress (psi), dynamic stress (psi), and bottom 
minimum force (lbs). The bottom minimum stress and force outputs include hydrostatic effects 
while the bottom minimum force output removes the hydrostatic effects. In buckling analysis, 
bi-axial stress analysis yields hydrostatic effect cancellation. In other words, hydrostatic effects can 
negate themselves. The pertinent stress then is only dynamic stress without hydrostatic effects. 
Tables 2-5 present comparisons between the DHLC measured and the modeled pump loads. 
Predicted results are annotated to demonstrate the variety of output presentations. 

On review of the dynamic force predictions, the load differences appear excessive. However, by 
adjusting the zero force baseline to coincide graphically with the beginning of the downstroke (see 
Figure S), a relative compressive load can be determined. This adjustment is necessary for the 
Top-Down models because of errors in dynamometer load cell measurements and rodstring buoyant 
weight calculations. For Case #l (Table 2), peak and minimum polished rod measurements vary by 
580 lbs. and 196 Ibs., respectively, giving considerable difference in the dynamic loads of models A 
through C. Even greater error in measurement is seen in Case #4, where peak and minimum 
polished rod measurements vary by 1,331 lbs. and 1,450 lbs., respectively. This measurement error 
results in a tensile force on the downstroke (actually compressive by DHLC measurement). 
Therefore, an adjusted baseline is absolutely necessary to eliminate errors introduced from 
measurement, 

In the Bottom-Up models, only model D can be manipulated. The difference in model D appears 
from errors in the pump boundary condition and errors in truncation only. Models E and F yield a 
zero compressive load by algorithm design and are useless in any buckling analysis. 

Where the measurement error is minimum, adjustment of the baseline yields acceptable results for 
the Top-Down models. For Case #2 (Table 3), the compressive load difference from DHLC 
measurements is only about 13 lbs. For Case #3 (Table 4), the difference is 57 lbs. These results 
are sufficiently accurate for a relevent buckling analysis. However, because of the measured load 
errors in Cases #l and #4, the Top-Down algorithms have skewed the bottomhole dynamic load 
results. In Case #l, the dynamic compressive load difference from DHLC measurement is 258 lbs. 
For Case #4, the difference is 195 Ibs. These results are not within acceptable accuracy for the 
purpose of design changes, but may be qualitatively useful for problem diagnosis. Downhole 
dynamic force determination is dependent on surface load measurement accuracy in the Top-Down 
problem and on pump boundary conditions in the Bottom-Up problem. 
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CONCLUSION 

The DHLC tool has provided a means of determining computer modeling program accuracy. Most 
models yield acceptable results when input errors are minimized and damping factors are properly 
determined. 

When input errors occur in the Top-Down models, excessive deviation between actual and predicted 
rod and pump loads is observed. Simplistic pump loading assumptions in the Bottom-Up models 
create unreliable design predictions. 

In summary, the comparison between measured and modeled rod stresses and system loads 
demonstrates predictive and diagnostic models are acceptably accurate when calibrated to known 
loads. However, if a critical design is under consideration, close inspection of the model selected 
has to be made. When truncation error is determined for any commercial or in-house computer 
simulation program, input errors can be identified and corrected for improved model accuracy. 

NOMENCLATURE 

C = 

7 

; 1 

m= 
t = 

X = 

U = 

V = 

viscous damping factor, l/seconds 
damping constant, lb,/ft/sec 
spring constant, lb,/ft 
lumped mass in rod string, lb,,, 
time, seconds 
axial distance along rod string, ft 
rod displacement, ft 
velocity of force propagation, ft/sec 

ACKNOWLEDGEMENT 

The authors wish to thank the management of Mobil Exploration & Producing U.S., Inc. and 
Texland Petroleum, Inc. for permission to publish this work. 

1. Agnew, J. and Knapp, R.C., Linear Algebra With Applications, Brooks/Cole Publishing 
Company, Monterey, California, 1983, pp. 127-139. 

2. Recommended Practice for Design Calculations for Sucker Rod Pumping Systems, API RPl lL, 
4/ed, American Petroleum Institute, Washington, D.C., June 1988, pp. 4-7. 

3. Beyer, W .H., CRC Standard Mathematical Tables 25/ed, CRC Press, Boca Raton, Florida, 
1978, pp. 35-38, pp. 460-466, and pp. 488-491. 

100 SOUTHWESTERh’ PETROLEUM SHORT COURSE - 94 



4. Diprima, B., Elementary DifSerential Equations and Boundary Value Problems, John Wiley & 
Sons, New York, New York, 1977, pp. 344-345 and pp. 491-499. 

5. Everitt, T.A. and Jennings, J.W., “An Improved Finite-Difference Calculation of Downhole 
Dynamometer Cards for Sucker-Rod Pumps I’, SPE Production Engineering, February 1992, pp. 
121- 127. 

6. Scheid, F., Numerical Analysis 2/ed, Schaum’s Outline Series, McGraw-Hill Book Company, 
New York, New York, 1988, pp. 94-202. 

7. Spiegel, M.R., Fourier Analysis, Schaum’s Outline Series, McGraw-Hill Book Company, New 
York, New York, 1974, pp. 20-44. 

8. Steidel, R.F. Jr., Mechanical Vibrations 2/ed, John Wiley & Sons, New York, New York, 
1979, pp. 313-333 and pp. 365-377. 

Table 1 
Relevant Pumping Unit Data 

r= 

P 

F 

DATA CASE 1 CASE 2 CASE 3 CASE 4 
- 

‘umping Unit Data 

API Unit Designation M456-36S- 144 C320-246-86 C320-250-84 C912-365-168 

Manufacturer L&In (Mark 11) American Lufkin Lufkln 

Pumpmg Speed, SPM 

Stroke Length, In 

Rotation 

11.45 10 21 1 I.0 8 86 

111.8 60.0 84 2 169 8 

ccw ccw cw CCM’ 

Production: 
oil (BOPD) 

water (BWPD) 

35 34 12 16 

424 138 51 545 

gas (MCFPD) 12 II 5 1 

Run Time, hrs 

tod Data 

24 24 14 24 

Material 

Elasticity (psi) 

)ownhole Data 

Pump Depth, ft 15716 15387 16358 15608 

Plunger Size, in II 75 11 75 II 25 (200 

Pump Intake Pressure, psi 1019 351 408 109 

FluId Specific Gravity (-) 0 99 0 97 I 03 (-) I 05 
-_-- 
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Table 2 
Program Output Comparisons 

Case 1 

hIOI)kLS 
ltcln DHLC ,\ II C I) E F G Itern DHLC A 

Gearbox % 
Unit % 
PRHP (hp) 

PPRL (Ibs) 
MPRL (Ibs) 
SPM 
I 25” FG O/’ 0 
I” SR ‘/ 0 
Pump Stroke 

Gross (Ill) 
Net (m) 

PPIP (PSI) 

16772 
3204 
II 5 

N!A 62 59 bi hl 66 
46 46 34 48 46 49 

N/A 206 21.8 22 0 23.1 23 4 

16663 16772 16192 17700 16706 17739 
3056 3204 3008 4451 2941 3668 
113 11 5 113 113 11.5 IO 5 

67 63 70 59 68 72 
62 74 81 61 70 78 

112 127 125 134 127 114 
NIA 127 123 N/A N/A 114 

1817’ 640 576' 1019 1050 576 

Gearbox % 
Unit % 
PPJ-IP (hp) 
PPIU (Ihs) 
MPRL (Ibs) 
SPM 
7/8" SR Y 
3/4" SR Y: 
Pump Stroke 

Grass (in) 
Net (in) 

PPIP (PSI) 

17383 

62 

1050 

l Calculated by Program l Calculated by Program 

Bottom Min -2833 
Stress (psi) 

Dynamic , -382 

-7284* .3885' -4440 -3051 2634' -2636 

-1434 -1662 -582' -183 -185 -4833 

8 

Mln Stress (psi) 
Bottom Min -2225 -5721 -3051 

s 
Force (Ibs) 

3 Dynamic -3009 -3796 -1126 
Force (Ibs) 

3 Dynamic -300 -500 -500 
Force (Ibr) 

5 Adjusted Baselme 

2 
Gross Plunger N/A 112 127 

3 Stroke (III) 

[ 

* Program output Value 
h Value Forced by Program Boundary Condrrrons 

-3487' -2396 -2096 2070* 

-1305 -457 -144 

-675 -150 0" 

-14s 

0" 

125 125 127 114 

Bottom Min -2716 
stress (PSI) 

Dynamic -453 
Min Stress (psi) 

Bottom Min -1200 
Force (Ibs) 

Dynamic -200' 

Force (Ibs) 
Dynamic -200 

Force (Ibs) 
Adjusted Baselme 

Gross Plunger N/A 
Stroke (in) 

’ Program Output Value 
h Value Forced by Progam Boundary Condxrrons 

Table 3 
Program Output Comparisons 

kOD EL.3 
II C D E 

55 56 
71 71 

79 7s 
17383 17556 
6006 6352 
10.2 IO 2 

89 90 
91 88 

47 46 
47 44 

350 451' 

50 47 
60 68 

6.3 74 
16307 16713 
6080 6153 
102 10.0 

81 84 
88 83 

40 48 
N/A N/A 
351 200 

N/A 

N/A 

NIA 

N/A 

NIA 

.3532* -2408 -2807 -2433* 

-1269 -145 -544' -170 

-1560 -1064* -1238 -1075 

-561 -64 -240 -7s 

-250 -175 -150 0" 

N/A 47 46 42 48 

Case 2 

F G 

‘0 -19 
67 65 
79 70 

16395 15901 
5301 6572 
109 10 2 

86 76 

89 76 

43 48 
35 N/A 

217 200 

-3950 

-1686 

1745' 

-745 

0" 

43 



Table 5 
Program Output Comparisons 

Case 4 

MODEIS 

Table 4 
Program Output Comparisons 

C&e 3 

Iten1 DIILC A 

Gearbox % N/A 
Unit % 78 

PRHP (b) N/A 
PPRL (Ibs) 19587 19587 
MPRL (Ibs) 7738 7738 
SPM 11.0 110 
I” SR Y 0 72 
7/E” SR “/ 0 78 
3/4” SR Y 0 88 ES 
Pump Stroke 

Gross (In) 71 
Net (in) N/A 

PPIP (psi) 385 1290’ 

MODELS 
B C 

98 93 

78 El 
IO 0 103 

19587 19884 
7738 7942 
11.0 106 

71 73 

75 80 
81 83 

69 74 

66 72 
100 17X* 

l Calculated by Program 

Bottom Mm -3200 -7175’ 
stress (PSI) 

Dynarmc -339 -4315 
Mm Stress (psi) 

Bottom Mm -1414 -3170 
Force (Ibs) 

Dynamic -150’ -1906 
Force (Ibs) 

Dynamic -150 -250 
Force (Ibs) 

AdJusted Baselme 
Gross Plunger NIA 76 
Stroke (in) 

-4004* -3773 

-1144 -913 

-1769 -1667’ 

-505 -403 

-150 -220 

73 78 

l Procram Output Value 
n Value Forced by Program Boundary Condttlons 

1ter11 DIILC 

Gearbox % 
unit % 

PRHP Uw) 
PPRL (Ibs) 25645 

MPRL (Ibs) 6218 

SPM 90 
I” HS Y 0 

718” HS O/ 0 

314” HS Y’ 0 64 

Pump Stroke 
Gross (in) 

Net (in) 
PPIP (psi) 109 

l Calcula:ed by Program 

Bottom Mm -3090 

Stress (psi) 
Dynamic -566 

Min Stress (psi) 
Bottom Min -1365 

Force (Ibs) 

Dynamic -3001 

Force (Ibs) 
Dynamic -300 

Force (ibs) 
Adjusted Baselme 

Gross Plunger N/A 

Stroke (III) 

* Program Output Value 

.A B C. D E F G 

103 107 101 103 94 

70 67 67 65 67 

34 3 33.9 35 0 NIA 32 3 

25645 243 14 24592 23902 24284 

6218 4768 4249 3 703 6180 

90 89 90 89 89 

62 68 63 69 63 

67 70 66 70 63 

76 77 67 68 63 

IS6 156 149 I51 149 

N/A 150 N/A 151 N/A 
84 195’ 109 195 109 

N/A 1837’ -1864 -3444 -28061 

-920* -282 

-1522 -1240 

-406 -125 

-200 0” 

-3672 

N/A 687 660 -I 14s 

NIA -812 .824* -1623’ 

N/A 304 

N/A -450 

N/A I56 

292 

-540 

156 14’) U/A 

-507 

0” 

! 5 I 

D E F G 

95 97 101 77 

79 79 81 75 
10.9 II 7 103 II 5 

19731 19646 19954 18401 
694 I 7077 6713 8351 
II 2 II 2 106 II 0 

76 71 77 62 

85 76 80 62 
88 78 83 62 

74 79 79 75 

N/A N/A 76 N/A 
408 408 178 408 

-3528 -3098’ 

-668’ -238 

-1559 -1369 

-295 

-100 

-105 

00 

-3757 

-897 

1660’ 

-396 

0” 

74 79 70 

A Value Forced by Program Boundary Condltlons 

P 



DOWNHOLE DYNAMOMETER 

PORTED PRESSURE SENSOR 

TRANSDUCER CLASS 

STRAIN GAGE LOAD CELL 

TEMP SENSOR 
23 25” TOTAL LENGT 

BATTERY PACK 

SERIAL DATA PORT 

ALBERT ENGINEERING. 01-94 

Figure 1 - Downhole dynamometer 

Figure 2 - Case #l - Downhole 
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Figure 3 - Case #l - Mid-string 

LKWNHOLE LWD CEU TEST-13 OCT 1992 

I 

3.07 i61 4.135 4.76 0.Q 0.54 0.99 1.43 1.88 2.32 2..318 

nuE (sEcoNDs) 
- ACTUAL LOADS baS) - ACCELERATION LOADS 

Figure 4 - Case #l - Surface 
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