MAJOR CODE AND STANDARDS CHANGES AFFECTING PRODUCTION EQUIPMENT

Attieson H. Halbrook Sivalls, Inc.

Codes and standards as promulgated by the various agencies governing oil and gas production equipment have changed so dramatically since 1934 that most manufacturing companies and production companies have little or no idea what is required. These changes started with the advent of OSHA as passed into law in 1970. This paper will address the changes that have occurred since the advent of OSHA to the present day as pertaining to pressure vessels.

With the coming of OSHA, all pressure vessels that are placed in service and hold flammable or combustible liquids and exceed a working pressure of 15 psig must have an ASME Code stamped on the name plate.¹ Pressure vessels manufactured prior to OSHA were grandfathered as long as these vessels remained in the same location and in the same service. Insurance companies insuring vessels in service require compliance with OSHA; therefore, the ASME Code stamp is required.

From the 1930s to the mid-1950s, most manufacturers and users were using the API/ASME Code as applied to pressure vessels. Shortly after that, API/ASME went their separate ways.

API turned all its attention to standardization of equipment -- toward items used by the petroleum industry. ASME turned all its attention to the boiler, pressure vessel industry, and the users of all boilers. Since that separation, not all states have a boiler law that, simply stated, requires all boilers to have a Code stamp and to be registered with the National Board of Boilers and Pressure Vessels. All but two states have a pressure vessel law that requires the use of ASME Code stamped vessels. These states are Texas and Missouri.

API changed in the early 1980s and is still changing its direction. Prior to 1980, API standards were a recommended practice to be used by manufacturers and users. Since then, in order to obtain API certification, the procedures must be adhered to in their entirety and an approved quality control manual must be in place with an audit of the manufacturer on a yearly basis.² ASME requires a quality control manual and an audit every three years.

ASME will not accept a quality control manual written for API, and API will not accept a quality control manual written for ASME. ASME requires its own authorized inspector and API requires its own authorized inspector. The inspectors at this time are not one and the same. Each vessel, heater, etc. will have to have two inspectors, two quality control manuals, two sets of rules, two of everything, and twice the cost incurred by the manufacturers to produce a product and be in compliance with both organizations, even though both organizations recognize each other in their codes and standards.

¹ Federal Register, Vol. 37, No. 202, October 18, 1972, Page 22171, Paragraph (V)(6)

² API Quality Control Document Second Edition January 1

With this in mind, consider recent changes API has made in its codes and standards for heater treaters, line heaters, separators, and quality programs discussed in:

- 1. Heater Treaters API 12L Third Edition January 1, 1986
- 2. Line Heaters API 12K Seventh Edition June 1, 1988
- 3. Separator API 12J Sixth Edition June 1, 1988
- 4. API Spec. Q1, Specification for Quality Programs January 1, 1988.

The following tables list these API codes and standards:

Vertical and Horizontal Emulsion Treaters API 12L 1/1/86

PRE 1986		
API STAMPED	ASME	STAMPED
Yes N/R N/R	User	Option N/R N/R
POST 1986		
Yes		Yes
Yes		Yes
Yes		Yes
	PRE 1986 API STAMPED Yes N/R N/R POST 1986 Yes Yes Yes	PRE 1986 API STAMPED ASME Yes User N/R N/R POST 1986 Yes Yes Yes

Indirect Type Oil-Field Heaters (Line Heaters) API 12K 6/1/88

PRE 1984

Shell Working Pressure		N/A		
Shell Thickness	Shell Thickness		N/A	
Firetube Heat Flux (max.)			12,000 BTU/HR/sq. ft.	
Coil Nondestructive Exa	mination		N/A	
Hydrostatic Test			1.5 (Coil design pressure)=Test	
Stress relieving			N/A	
Coil Design Pressures 2" X-Hvy			3372 psig	
0	2" XX-Hvy		6747 psig	
	2-12" .750		N/A	
	2-5" .875		N/A	
	3" X-Hvy		3150 psig	
	3" XX-Hvv		6300 psig	
	4" X-Hvv		2753 psig	
	4" XX-Hvv		5410 psig	
	,		. 0	
	POST 1984			
Shell Working Pressure			1 1b. Max.	
Shell Thickness			3/16" (0.1793) min.	
Firetube Heat Flux (max.)		12,000 BTU/hr/sq. ft.		
Coil Nondestructive Examination X		X-Hvy	10% all buttwelds	
		XX-Hvy	10% all buttwelds	
		.750	100% all buttwelds	
		.375	100% all buttwelds	
Hydrostatic Test			1.5 (coil design pressure)= Test	
Stress relieving		.750	Full Stress Relieve	
		.875	Full Stress Relieve	
Coil Design Pressure	2" X-Hvy		3440 psig	
	2" XX-Hvy		7340 psig	
	2-3".750	1	10,720 - 12,490 psig	
	2-15" .875		12,530 - 14,600 psig	
	3" X-Hvy		3200 psig	
	3" XX-Hvv		6820 - 7940 psig	
	4" X-Hvv		2770 psig	
	4" XX-Hvy		5860 - 6830 psig	

Oil and Gas Separators API 12J Sixth Edition June 1, 1988

This edition expanded what was to be included on the name plate and what the name plate should look like. Additional drawings are provided for the user.

It should be noted at this point that API says that all pressure vessels must be manufactured to ASME Section VIII Division I; however, a manufacturer can build a vessel to these specifications without the use of the API monogram. API has not at this time taken a firm stand on their position. In each publication, they say the specification is a guide for manufacturers and purchasers. With this in mind let's look at:

Specification for Quality Programs API Q1 Second Edition January 1, 1988

APPENDIX I AN EXAMPLE OF A QUALITY MANUAL OUTLINE			
1. General	8. Special Processes		
Table of Contents	Identification of Special Processes		
Scope	Special Processes Program		
Definitions	Records		
Quality Policy Statement	9. Inspection/Testing		
Organization Charts	Inspection Program		
Control of Quality Manual	Testing Program		
Training and Qualification	Records		
2. Design Control	10. Measuring and Testing Equipment		
Design Documentation and Analysis	Calibration Program		
Design Verification	Records		
Design Changes	11. Handling, Storing and Shipping		
3. Instructions, Procedures, Specifications and Drawings	Handling Controls		
	Storing Controls		
Control/Distribution of Instructions, Procedures, Specifications and Drawings	Shipping Controls		
Revision Control of Instructions, Procedures, Speci- fications and Drawings	i- Packaging Controls		
	Cleaning Controls		
4. Process Control	12. Acceptance Status		
Traveler/Process Sheet Program	Status Indicators		
Revision Control	Status of Materials/Products		
Records	Application of API Monogram		
5. Procurement Control	13. Non-Conformance		
Purchasing Specification Control	Control of Non-Conforming Materials and Products		
Services Specification Control	Records		
Supplier Evaluation	14. Audits		
Inspection	Internal Audit Program		
Records	Records		
Material/Product Verification	15. Corrective Action		
6. Identification/Material Control	Controls		
Material/Product Identification	Actions		
7. Traceability	Records		
Traceability Program	16. Quality Records		
Materials	Identification of Applicable Records		
Products	Record Storage		
Records	17. Typical Forms		
Services	I		

SOUTHWESTERN PETROLEUM SHORT COURSE - 89

None of the above comments should be construed to make API appear as if they are not doing their job -- they are. The statements have to be made by API to protect the organization from lawsuits by manufacturers, users, and other individuals.

ASME, on the other hand, is very firm in its position, and a holder of an ASME Code Certificate has to conform to all applicable codes and standards or the certificate and Code symbol stamped will be picked up. ASME has had so many changes over the last ten years with respect to pressure vessel construction that this paper cannot even attempt to cover all of them. In 1988, ASME made a most significant change by stipulating the material used to construct the vessel.

Prior to 1988, pressure vessels made from grade 515-70 and 516-70 material had a design temperature range of -20° F to $+650^{\circ}$ F -- this is no longer the case.

PART UCS -- CARBON AND LOW ALLOY STEEL VESSELS

FIG. UCS-66 IMPACT TEST EXEMPTION CURVES [SEE UCS-66(a)]