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ABSTRACT

The desirability of using a tubinganchor ina pumping
well to increase effective pump stroke and to reduce
wear on sucker rods, tubing and casing has been
recognized for many years. It is well known that an
unanchored tubing string “breathes” as a portion of the
fluid load in the tubing is alternately transferred
between the tubing and the sucker rods during the
pumping cycle. The elimination of this movement of
the tubing string by means of an effective anchor
should provide obvious benefits to the operators of
rod pumped wells. However, the use of tubing anchors
in the past has, in general, given overall results that
have been somewhat disappointing at best. In many
cases there has been little or no increase in pump
efficiency, and rod and tubing wear have continued
to reduce appreciably the operator’s margin of profit.

It has only recently been brought to light that the
nature of the movement of the tubing string in a pump-
ing well is much more complicated than the simple
up-and-down breathing motion previously envisioned.
In fact, in nearly all wells the lower portion of the
tubing string buckles around the sucker rodsinspiral
fashion on each upstroke of the pump. It is this
previously unknown buckling that accounts for the
disappointing results of anchoring tubing in the past.
Armed with the knowledge that a tubing string must
be anchored in tension to completely eliminate the
harmful effects of buckling as well as breathing, oil
field equipment manufacturers have made available
to the industry properly designed tubing anchors which,
when coupled with the proper setting techniques for
this equipment, now make it possible to achieve the
results that were anticipated many years ago.

INTRODUCTION

The phenomenon of cyclic breathing of tubing strings
in rod pumped wells is well known, and the use of
tubing anchors to prevent this motion has long enjoyed
universal acceptance. However, the actual benefits
realized have rarely lived up to expectations. Com-
pression type anchors have been most widely used,
and even thought the overall results have been some-
what disappointing, operators have continued to use
them for the prevention of tubing breathing as well as
for their secondary function as catchers should the
tubing string part or be dropped. The theory of
setting down tubing weight on a compression type
anchor as a means of preventing tubing breathing is
sound but, unfortunately, it has been a case of only
partial knowledge of the complete problem.

In their excellent recent paper, Lubinski and Blen-
karn! made known three major points in regard to
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down hole pumping problems. First, the lower portion
of a freely suspended tubing string in a rod pumped
well buckles around the sucker rods in spiral fashion
on each upstroke of the pump; second, tubing must be
anchored in tension to prevent buckling; and third, in
nearly every case the effects of tubing buckling dictate
far more serious consideration than do the effects of
tubing breathing.

With the exception of the Lubinski-Blenkarn report,
very little has been written on the subject of anchoring
tubing strings in rod pumped wells. It is strongly
felt that the proper application of present day know-
ledge in this regard will be reflected in significant
reductions in “normal” operating costsand inincreased
profits.

The author’s purpose in writing this paper is to
provide a single source of reference that contains a
review of the factors that create the need for tubing
anchors, a discussion of the merits and limitations of
the basic types of tubing anchors available to the
industry, and sufficient, easily applied data to insure
that field personnel will be able toutilize current tubing
anchoring knowledge to its fullest advantage.

THE PROBLEM OF
TUBING MOVEMENT IN ROD PUMPED WELLS

In order to thoroughly understand the need for tubing
anchors and their proper use in rod pumped wells,
it is in order to begin with a discussion of the various
factors which cause tubing movement when a well is
pumped. The three basic forms of tubing movement
which must be-considered are elongation, breathing and
buckling.

Tubing Elongation

Tubing elongation in itself has no detrimental effects,
but the fact that it occurs should be recognized and
taken into account in anchoring a tubing string. Elonga-
tion occurs as the result of increased fluid load on the
standing valve, decreased buoyancy and thermal
expansion.

Fluid Load Elongation

Fluid load elongation is the result of the filling
of the tubing with fluid as the well pumps up. The
magnitude of the fluid load is, among other things, a
function of the density (weight per unit volume) of
the produced fluid. Therefore, in a well in which the
water percentage or “cut” is increasing, additional
tubing elongation takes place with the passage of time.



Buoyancy Decrease Elongation

Buoyancy decrease elongation is caused by the
lowering of the annulus fluid level when a well is
placed on production. The distance the fluid level is
lowered inany given case is approximately proportionate
to the rate at which a well is produced. Tubing in
wells that are not normally pumped off - that is where
the operating fluid level remains above the pump -
will suffer additional elongation as a result of either
or both increased production rate and decrease in
reservoir pressure. In limited reservoirs with rel-
atively high pressure decline rates, the latter point
is worthy of special consideration when setting a
tubing anchor.

Thermal Elongation

Thermal elongation results from the raising of
the temperature of the tubing by the relatively hot
produced fluid and is to some degree affected by the
production rate, This point is discussed further in
the Appendix.

TUBING BREATHING

Tubing “breathing” is a common oil field term that
describes the up-and-down motion of an unanchored
tubing string as fluid load in the tubing is alternately
transferred between the tubing and the sucker rods
during the pumping cycle.

During each downstroke of the pump when the
traveling valve is open and the standing valve is closed,
a downward force is exerted on the tubing string at the
level of the pump that is equal to the pressure differ-
ential across the closed standing valve times the
cross sectional area of the tubing inside diameter.
That downward force causes the tubing to elongate.

During each upstroke of the pump when the traveling
valve is closed and the standing valve is open, a
portion of the total fluid load supported by the tubing
during pump downstroke is transferred to the sucker
rod string and, as a result, the tubing string contracts.
The amount of the reduction in load on the tubing
string is equal to the pressure differential across the
traveling valve times the cross sectional area of the
pump plunger. It therefore follows that the magnitude
of the load change on the tubing during the pumping
cycle is a direct function of the pump plunger cross
sectional area. The larger the diameter of the
plunger, the greater the load change; hence, the greater
the elongation and contraction or “breathing” distance
of the tubing.

Influence Of Plunger Size

The influence of plunger size on tubing breathing
becomes particularly noticeable in the special case
where an extra large diameter pump is used to obtain
high production rates. (The term “extra large” is
used here to mean a pump plunger diameter that is
greater than the inside diameter of the tubing.) During
upstroke of an extra large plunger, all of the fluid
load that caused the tubing to elongate is transferred
to the rod string and, in addition, a force comes into
being that exerts an upward lift on the tubing at the
point where the reduction to tubing inside diameter
occurs. That upward force is equal to the pressure
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in the tubing at that point times the differential area
between the plunger outside diameter and tubing inside
diameter. Thus it can be seen that an “extra large”
plunger may seriously aggravate tubing breathing.

Disregarding the dampening effect of friction be-
tween the tubing and casing, the entire tubing string
is influenced by the “breathing” action. Each joint of
tubing in the string stretches and contracts an equal
amount, but the amount of movement is additive. For
example, assume that each joint of tubing stretchesand
contracts 1/8 of an inch during one complete cycle of
the pump. The coupling connecting the top two joints
of tubing will travel a distance of 1/8 of an inch. The
next coupling down will travel two times 1/8 of an
inch, or 1/4 of an inch, because the stretch of the
second joint of tubing will be added to that of the first
joint of tubing. Each coupling in the string will have
1/8 of an inch greater up-and-down motion than the
one immediately above it, which results in the maximum
breathing motion occurring at the level of the pump
where the load change is taking place.

The most apparent detrimental effects of breathing
are tubing and casing wear and decrease in effective
pump stroke. The decrease in effective pump stroke
is probably less obvious than the wear effect, but it is
easily understood. As the plunger starts its upward
travel, the load transfer to the sucker rods takes
place. The resultant tubing contraction causes the
pump barrel to move upward also. Thenas the plunger
starts downward, the load transfer reverses to the tubing
with the result that the pump barrel moves downward
with the plunger. The movement of the pump barrel in
the same direction as the pump plunger on both up-
stroke and downstroke subtracts directly from the
plunger stroke. In other words, the effective plunger
stroke is the actual plunger stroke less the distance
the pump barrel breathes.

TUBING BUCKLING

Tubing buckling is a recently discovered phenomenon
that could be defined as the corkscrew configuration
assumed by the lower portion of a freely suspended
tubing string during pump upstroke in a rod pumped well.

Now that its existence is known, the reasons for
the generally disappointing results of anchoring tubing
in the past become quite apparent. In most cases,
buckling is a greater contributor to wear and loss
of efficiency than breathing. Unfortunately, the widely
accepted method of anchoring tubing to prevent breath-
ing with a compression or set down type anchor, with
little or no tailpipe run below it, does not prevent
buckling; in fact, it aggravates buckling to the extent
that most of the benefits that should be realized
through prevention of breathing are cancelled.

Probably the main reason for buckling remaining
unknown as long as it did is that the resultant effects
of breathing and buckling are quite similar. Now that
both factors are known to be the cause of the problems
heretofore attributed solely to tubing breathing, effective
preventive action can be taken and the desired re-
sults achieved. (The discussion of tubing buckling
presented herein is basically a review of AIME paper
T.P, 4482, “Buckling of Tubing in Pumping Wells, Its
Effects and Means for Controlling It” by Arthur Lubin-
ski and K, A, Blenkarn of the Pan American Petroleum
Corp., Tulsa, Oklahoma. In view of the existence of
that rigorous and thorough treatment of the subject,



it is felt that tubing buckling need only be covered
here in sufficient detail to develop an understanding
of its effects and how to prevent it. For those desiring
a complete knowledge of tubing buckling, the above
mentioned paper is highly recommended.)

Causes of Buckling

Before actually considering tubing buckling in rod
pumped wells, it is in order to first show what causes
it to occur. First, assume that a pipe with closed ends
is resting on supports at each end. (See Fig. 1).
Gravity causes the pipe to bend. When internal
pressure is applied to the pipe, the pressure forces
acting on the closed ends subject the pipe to tension
and tend to straighten it.
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However, it must be remembered that the internal
pressure also acts on the pipe wr'lls as well as on the
ends. Since the bend in the pipe causes the bottom
gside A-B to be longer than the top side C-D, there is
more area along the outside of the curve of the pipe
than there is along the inside of the curve and, there-
fore, more side force tending to increase the bend
than there is side force tending to straighten it. In
other words, the net force of the pressure acting on
the pipe walls tends to bend it further. The opposing
effects of the forces tending to straighten the pipe and
the force tending to bend it further are equally balanced
and the pipe will remain in the position that it assumed
before pressure was applied. (The proof of this
statement is published in the Appendix of Reference 2.)

Now assume that a similar pipe is supported in the
same manner; the difference being that the inside
diameter of this pipe is reduced slightly at each end,
and the end closure is provided by pistons that are
connected to prevent their being expelled by pressure.
(See Fig. 2). When internal pressure is applied to
this pipe, the balance of forces of Fig. 1 no longer
exists, The areas of the pistons reduce the effective
end areas upon which pressure can act to produce
tension in the pipe, and as a consequence, there is
less straightening tendency. Since the side force
tending to increase the bend in the pipe remains
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unchanged by the substitution of pistons for solid
ends, while the forces that create the tension that
tends to straighten it are reduced, the side force
predominates and the amount of bend in the pipe
increases with the application of internal pressure.

A question might arise regarding the validity of
the foregoing assumption that the pipe has an initial
bend, especially since the pressure force that buckles
the pipe is the direct result of the difference in side
areas created by the bend. It seems logical that if the
pipe were perfectly straight, internal pressure would
not cause a side thrust and the pipe would remain
straight. However, that would be a condition of
unstable equilibrium because even the slightest amount
of bend would cause the side force to appear, and
with its appearance the pipe would commence to
buckle. Simultaneously, an elastic reaction would
appear that would tend to straighten the pipe. The
stronger of the two tendencies determines whether
the pipe buckles or remains essentially straight. At
some value of internal pressure a critical point is
reached where the buckling tendency becomes greater
than the straightening tendency and the pipe buckles.

Determination Of Buckling Force

Buckling occurs as though the pipe were subjected
to a column or end load instead of internal pressure.
Although a column load actually does not exist when
the pipe is pressured internally, the existence of the
analogy greatly simplifies the determination of the
buckling force. It is shown in the literature that the
buckling force is equal to the applied pressure times
the area of the piston effecting the end closure of the
pipe.

If the foregoing theory is now applied to a pumping
well, as shown in Fig. 3, itisapparent that during pump
upstroke, when the standing valve is open and the
traveling valve is closed, the plunger acts in the same
way as the pistons of Fig. 2. If the internal pressure
is great enough, the tubing will buckle as if subjected
to an end or column load that is equal to the pressure
differential across the plunger (pressure above it minus
the pressure below it) times the cross-sectional area
of the plunger. During the downstroke of the pump,
when the traveling valve is open and the standing valve
is closed, the entire end area of the tubing becomes
effective. The resultant increase in tensile force
balances the buckling force, and the tubing straightens,

Most operators are probably well aware that a
drilling string buckles due to setdown weight which is
actually an upward column load. The buckling of a
tubing string is very similar. Both strings buckle
only below a so-called neutral point and both are
essentially straight above it. The calculation of the
distance to the neutral point of a tubing string is not
as simple as that of the buckling force; and since its
determination is not required in the fulfiliment of the
purpose of this paper, it will not be discussed here.
It is sufficient to recognize that bucklin occurs only
in the lower portion of the tubing string in rod pumped
wells. (Those actually interested in the determination
of the neutral point are referred to Reference 1.)

It has been stated previously that the buckling force
must exceed some critical value in order for buckling
to occur. Comparisons of actual values of buckling
force versus critical force shows that the tubing
buckles in all rod pumped wells except those with
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very high operating fluid levels. In most wells with
low operating fluid levels, the buckling force that results
from the large pressure differential across the plunger
is so much greater than the critical force that very
severe buckling results, Where severebuckling occurs,
the tubing corkscrews around the sucker rod string
during upstroke and is in continuous contact with it
over the entire distance between the pump and the
neutral point. At that time the rod string is under
great tension because of the fluid load it is supporting
and, therefore, remains essentially straight in spite
of the side forces exerted upon it by the buckled
tubing, It is only natural that a great deal of rod on
tubing friction should result. Another highly probable
result is accelerated pump wear caused by the buckled
tubing and essentially straight rod string tending to
force the pump plunger to cock in the pump barrel.

Detrimental Effects Of Tubing Buckling

Considering the foregoing, it appears that the follow-
ing statements can be made regarding the detrimental
effects of tubing buckling:

1. Rod on tubing friction below the neutral point
may cause excessive wear. (See Fig. 4 taken
from Reference 3).

2. Rod-on-tubing friction may result in greater
rod loads than anticipated, which increases the
probability of rod failures aswell as necessitating
increased horsepower requirements.

3. Excessive rod loads resulting from rod on tubing
friction results in decreased plunger travel and
apparently low pump volumetric efficiency.
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Fig. 4

4, Tubing buckling may cause external tubing wear
(See Fig. 5) and internal casing wear.
5, Tubing buckling may cause tubing leaks as a
result of repeated flexing.
6. Tubing buckling may reduce pump life, because
gf the cocking tendency of the plunger inthe pump
arrel.

Fig. 5

Data included in the Lubinski-Blenkarn paper* plus
other data in reports from operators who have eliminated
tubing buckling indicate that all of the above statements
are well founded. It is only natural, however, that the
effects of buckling will vary from well to well as
down-hole conditions differ,

Some operators may be inclined to disagree with the
foregoing and also with the statement that tubing
buckles in all wells except those with very high
operating fluid levels, because they have not had
the problems associated with buckled tubing., How-
ever, there is a reasonable explanation for this
apparent discrepancy. The fundamental effect of tubing
buckling is wear, and wear is primarily a function of
abrasion and corrosion. In the absence of sand or
other abrasives in the pumped fluid, and particularly
where corrosion is also not a problem, the rate of
wear may be low enough to be accepted as normal.
It has also been found that in wells in which corrosion
inhibitors are used, wear is generally a relatively
minor problem. This is probably due to the degree
of lubrication and consequent reduction of friction
that results from the use of inhibitors.



SOLVING THE PROBLEM

Prevention Of Buckling

Assuming now that the phenomenon of tubing buckling
is established, the next step is to determine how it
can be prevented. Three important points must be
remembered in order to arrive at the desired solution.
First, tubing buckles during pump upstroke and straight-
ens during pump downstroke; second, buckling occurs
as though an upward column load or force is applied
to the bottom of the tubing string; and third, the
apparent upward buckling force is equal to the pressure
differential across the standing valve (the pressure
above it minus the pressure below it) times the cross
sectional area of the pump plunger.

Also remember that, in the case of the pipe shown in
Fig. 1, although a net pressure force existed that
tended to bend or buckle the pipe further, the pressure
forces acting on the closed ends of the pipe provided
just enough straightening tendency or tension to exactly
balance the buckling tendency. The loss of any part
of that effective end area, as in the case in Fig. 2
where the pipe end closure is affected by pistons,
reduces the tension in the pipe and unbalances the
straightening and buckling tendencies in favor of
buckling.

Now consider again the tubing string ina rod-pumped
well. During pump downstroke when the standing valve
is closed, the fluid load elongates the tubing and
provides just the right amount of tension to keep it
from buckling. If the bottom of the tubing were held
at its downstroke position during pump upstroke, the
precise amount of tension required to prevent buckling
would still be maintained during pump upstroke.

It therefore follows that the proper type of tubing
anchor for the prevention of buckling is one that will
hold the tubing at its most elongated position; in
other words, a tension anchor. This is in direct
conirast to a compression or set down anchor which
permits tubing to contract but not elongate; in which
case the tubing could buckle not only during the up-
stroke of the pump, but during its downstroke as well.

In the light of the increased present day knowledge
of tubing string movements in rod pumped wells, it is
now possible to make a better evaluation of the
various types of tubinganchors available to the industry.
Following are some thoughts in regard to the more

popular types.
COMPRESSION ANCHOR

This type of anchor, which might also be called
a set down anchor, permits the tubing to move upward
but prevents downward motion. Animmediately apparent
advantage of the compression anchor is that it should
be easy to retrieve. It also can be used to support
part of the weight of a long string of tubing, and it
will act as a tubing catcher, should the tubing part
or be dropped during retrieving.

A compression anchor by itself will prevent tubing
breathing but will not prevent buckling. In fact, unless
a heavy tailpipe is run below it, it will cause tubing
buckling that is much more severe than in freely
suspended tubing.

Since the anchor is normally set before pumping is
started, the natural tubing elongation caused by in-
creased fluid load, decreased buoyancy and temperature
expansion is prevented. (See Fig. 6). Therefore, the
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set down load on the anchor, or upward load on the
tubing, will be substantially greater when the well is
pumping than when the anchor was first set. During
upstroke, the deflection of the helically buckled tubing
is limited by the essentially straight, heavily loaded
rod string. During downstroke, the tubing cannot
elongate and the fluid load that causes a freely suspended
tubing string to straighten is instead transferred to the
casing through the anchor, with the result that the
tubing remains buckled.

Moreover, since the sucker rods are no longer under
great tension, the deflection or buckling of the tubing
increases, since it is then limited by the relatively
large inside diameter of the casing rather than by the
straightened rod string. The severity of the downstroke
buckling may cause fatigue failures and coupling leaks
as well as tubing and casing wear. The downstroke
buckling also hinders rod fall, causes rod deflection,
reduces plunger travel, and may even cause some of
the rods to be under compression. The effect of the
buckled tubing on the sucker rods increases the
probability of rod fatigue failures and rod wear.

If a compression anchor is run some distance above
the pump as shown in Fig. 7, tubing breathing is
reduced to only that portion of the tubing string below
the anchor, but upstroke buckling would still occur
between the pump and the anchor. Also, thermal
elongation contributes to both upstroke and downstroke
buckling of the tubing above the anchor if it is not run
very high above the pump.
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From the foregoing it is quite evident why past
results of the use of compression anchors have often
been disappointing, even though detrimental tubing
breathing was eliminated.

Anchor Set At Pump Depth

Breathing and buckling will be prevented when a
compression anchor is set at pump depth, provided a
sufficiently heavy tailpipe is run below the pump and
anchor. The tailpipe prestretches the tubing before the
anchor is set, to allow for the elongation that occurs
after pumping is started. The required tailpipe
weight in fluid is approximately equal to the calculated
buckling force plus the thermal elongation force. (The
thermal elongation force is shown as “F,” in Figs. 9,
10 and 11 in the Appendix.) Calculations for an actual
case will show that the tailpipe weight must be much
greater than would probably be imagined. The use
of a tailpipe below the pump and compression anchor
may be impractical, due to insufficient room below the
pump or danger of it becoming sanded in. It must also
be remembered that the tensile load on the tubing is
increased by the amount of the weight of the tailpipe.

HYDRAULIC PISTON ANCHOR

This classification designates anchors in which
the holding force results from tubing pressure acting
on one or more horizontal pistons, which either
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contact the casing directly or force a separate member
or members to contact the casing. The contact surfaces
are generally wickered or otherwise altered toincrease
the holding power of the anchor. The holding power is
always great enough to prevent tubing breathing, and
may be great enough to prevent normal tubing elongation.

If it is great enough to prevent. tubing elongation,
both upstroke and downstroke buckling will occur,
although it will be less severe than for a compression
type anchor used without a tailpipe, since part of the
total normal elongation will take place before sufficient
tubing pressure is developed to set the anchor.

If this type of anchor does not have sufficient holding
power to prevent normal tubing elongation, it would
still hinder it to the extent that the tubing would
not reach its lowermost position of natural elongation,
and at least some buckling would occur. Elongation
would take place in successive jumps whenever the
elongation force overcame the holding force of the
anchor. It would seem that both the casing and the
contact surfaces of the anchor might suffer some damage
as a result of the jumps.

Smooth Contact Surfaces

At least one version of the hydraulic piston type
anchor has smooth contact surfaces, and its holding
power is obtained strictly as a result of friction with
the casing. It probably permits partial elongation, as
described above, with much less possibility of damage
to either the casing or the anchor,

Since its holding power is a function of tubing
pressure, a hydraulic piston anchor type must be run
above the pump. Some type of fluid unloading device
should also be used in conjunction with it, if this
feature is not already incorporated in the anchor, to
insure that it can be released in case the pump should
become sanded in. The additional cost of a separate
fluid unloader should be considered as part of the cost
of the type of anchor. »

Some operators gain improved operating conditions
by setting down the weight of the rods to prestretch
the tubing and then filling the tubing with water to set
the anchor. It appears that this should be a recom-
mended method for setting a hydraulic piston type
anchor, as it would greatly minimize tubing buckling.

CONVENTIONAL TENSION ANCHOR

A tension anchor is the direct opposite of a com-
pression anchor. That is, it will allow tubing to move
downward but it prevents upward motion. The fact
that downward motion only is allowed might be con-
sidered hazardous in regard to retrievability, but
tension anchor manufacturers take this into con-
sideration in anchor design and most, if not all,
provide one or more emergency release methods in
addition to the normal method of releasing to insure
retrievability. The emergency release is normally
effected by shearing some member of predetermined
strength with an appropriate upward pull on the tubing.

It might seem that a tension anchor could simply
be set without further thought as soon as the tubing is
run in the well. During the normal course of tubing
elongation the anchor would move down on each down-
stroke and hold on each upstroke to prevent upstroke
breathing and buckling, There is, however, a factor
inherent in the design of conventional tension anchors
that does not make this setting method seem attractive.



All conventional tension anchors require a certain
amount of upward motion to make the slips engage the
casing, and if this motion with its resultant shock
load were allowed to be repeated continuously, damage
to the casing and anchor slippage might result. It
follows then that the correct procedure to follow, in
setting a conventional tension anchor, is to cause the
slips to engage the casing and then prestretch and land
the tubing with sufficient tension to compensate for
those factors which cause elongation after pumping
is started. The method for determining the proper
amount of tension to be applied to the tubing is given
in the Appendix.

The well data required for the determination of the
proper amount of prestretch includes the fluid level
when the anchor is set, the operating fluid level, the
average temperature increase of the tubing string and
the density of the pumped fluid. Since any or all of
these are rarely known accurately, the calculated
prestretch is at best only an approximation of the
actual prestretch that should be applied to the tubing.
In addition, changes in fluid density and decreasing
reservoir pressure during the time the anchor is in
operation are other possible sources of error in
determining the proper amount of prestretch for the
tubing. Therefore, some safety margin of additional
prestretch should be applied at the time the anchor
is set to eliminate the possibility of the previously
mentioned anchor slippage and damage to the casing
that could occur if the anchor were to walk down the
hole.

Tubing Hanger

Another factor to be considered is the type of tubing
hanger involved. Slip type hangers are best suited for
this application; flange hangers or “doughnut” hangers
present somewhat of a problem in hanging tubing
strings with predetermined amounts of tension con-
sidering the necessary overstretching, use of tubing
pup joints and calculations required to arrive at the
desired tension when the tubing is finally landed.

In some cases, the tension required to properly set
a conventional tension type tubing anchor may endanger
the tubing string. It might appear that the procedure
to follow in this case would be to take a safe pull,
land the tubing and let it go at that, This is not true,
however, as the anchor will automatically walk down the
hole during pumping as the tubing elongates. In
addition to the already mentioned undesirable effects
of letting this type of anchor walk down the hole,
when pumping is later stopped, the cooling of the
tubing and draining of its fluid will cause the same
amount of tension in the tubing as there would have
been if it had been prestretched the proper amount
in the beginning. This means that if the indicated
proper amount of tension will endanger the tubing
string, a tension type anchor should not be used.

A further point to remember is that the prestretch
of the tubing should always be applied to the tubing
in inches of stretch, not in pounds of pull according
to the weight indicator, because of probable friction
between the tubing and casing.

Friction, in effect, reduces the amount of tubing
being prestretched so the actual pickup in pounds,
required for a given pickup in inches, may exceed
the calculated pickup in pounds that is required to
prevent buckling. Subsequent vibration of the tubing
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during pumping reduces the friction and also any
extra tension initially applied because of friction.
Therefore, if the pickup to prestretch the tubing is
made in inches, the final resulting tension will be
more nearly correct. Conversion of the calculated
pounds of pull to inches of stretch can be made using
readily available tubing stretch charts.

The major part of the preceding discussion may
seem to dwell primarily on problems associated with
conventional tension type tubing anchors, but it is felt
that its advantages will already be understood at this
point; for indeed, a properly set tension type tubing
anchor will provide the maximum possible benefits
attainable through tubing anchoring. It is intended
that the discussion of possible associated problems
will enable operators to use tension type anchors on
an intelligent and safe basis.

AUTOMATIC TENSION ANCHOR

An automatic tension anchor is similar to a con-
ventional tension anchor in that both permit tubing
elongation but prevent upward movement. The dis-
tinguishing feature of an automatic tension anchor
is that its slips are forced to maintain contact with
the casing and the cone on the anchor at all times,
once the tool is set. (See Fig. 8). Therefore, slip

2N R . Ny

Fig. 8

engagement with the casing takes place the instant
upward movement of the tubing begins. Since upward
movement and resultant impact loading during pumping
cannot take place, it is perfectly safe to allow an
automatic tension anchor to walk down the hole as a
result of the natural elongation of the tubing. In fact,
that is exactly what it is designed to do.

The operation of an automatic tension anchor is
described in the following sentences.

As the tubing elongates on each downstroke, due to
those previously explained forces which occur after
pumping of the well is started, the automatic tension
anchor (which is sometimes called a compensating
anchor) automatically adjusts to the lowermost point
of travel of the bottom of the tubing string and anchors
the tubing in that position. As pumping continues, the
tension at the top of the tubing string during each
upstroke remains unchanged from the preceding down-
stroke. At the time the upstroke of the pump reduces
the fluid weight against the bottom of the tubing, the
anchor automatically assumes this force to maintain
the tension in the tubing necessary to eliminate buckling
and breathing.



This action continues, increasing tension with each
complete pump cycle just sufficiently to overcome the
increasing buckling tendency of the tubing as the
internal pressure becomes greater, until maximum
elongation of the tubing is reached. For the existing
set of well conditions, the tubing is then in precisely
the correct amount of tension to eliminate buckling and
breathing. Further elongation of the tubing, due to
changing well conditions, is automatically compensated
for by a proportionate increase in tension that again
is the minimum amount necessary to eliminate buckling.

An automatic or compensating tension anchor in
operation does not pull tubing down the hole. It has
no motivating force or pulling power of its own, so
a tubing string anchored with an automatic tension
anchor elongates the same amountas a freely suspended
tubing string under the same well conditions, There-
fore, the maximum tensile load imposed on the tubing
during pumping is the same for a tubing string anchored
with an automatic tension anchor as it is for a freely
suspended tubing string. The anchor, however, main-
tains a constant tensile load on the tubing string during
pumping, whereas the load on freely suspended tubing
is reduced during each pump upstroke and increased
during each pump downstroke. That cyclic load change
on freely suspended tubing is a major cause of tubing
coupling leaks.

It is true, however, that the tensile load imposed on
a tubing string anchored in this manner will be greater
than that for freely suspended tubing if pumping is
stopped, due to the thermal contraction of the tubing
when it cools. The amount of the thermal contraction
force is “F,” in Figs. 9, 10 and 11 in the Appendix.
It is to be understood, however, that the maximum
tensile load imposed by an automatic tension anchor
is no more than it would be for a conventional tension
anchor under the same conditions, since thatload would
have to be applied during the setting of the latter type.
In fact, the conventional tension anchor load would
probably be somewhat greater because of the necessity
of applying an extra safety margin of load, for reasons
discussed previously.

Simplicity In Use

The primary advantage of anautomatic tension anchor
over a conventional tension anchor is its simplicity
in use. The procuring of the accurate data required
for conventional tension anchors is not required and
calculations and special tubing landing operations do
not have to be performed.

A reasonable approximation of the possible tubing
tension should be made, however, since automatic
tension anchors generally incorporate some type of
shear member as an emergency release feature, it
would obviously be undesirable to have that shear
member fail due to thermal contraction of the tubing
and release the anchor just because the well is tem-
porarily shut down. Also, it is important to determine
whether or not the tubing string has sufficient strength
for the tensgile load that it may have to support.

There is some feeling that the slips of an automatic
anchor might become inoperative due to plugging of
the teeth of the slips with rust and scale as the anchor
moves progressively downward. It may be true that
a conventional tension anchor should be preferred in
wells with very heavy scale deposits, but extensive
field tests indicate that the slips designed for use

94

on automatic anchors operate successfully under nearly
all conditions.

BENEFICIAL RESULTS
OF PROPER TUBING ANCHORING

In viewing the overall picture, it appears that a
tubing anchor should be considered as essential as
the pump itself in nearly every rod pumped well,
rather than being regarded as an item of accessory
equipment. The possible benefits to be derived through
the elimination of tubing buckling and breathing are
many in number and, though the relative gain varies
over a wide range in individual cases, it appears quite
probable that there would be a resultant profit in
nearly every case.

A significant portion of rod pumped well operating
costs are for well servicing, which is meant here to
include pulling costs, cost of equipment repair and
replacement for such items as rods and rod couplings,
tubing and tubing couplings, pumps, and possibly even
deferment of income resulting from well down time
for servicing. Only a very small reduction in well
servicing frequency is required to return the cost of
a tubing anchor and affect a reduction in operating
costs.

Naturally a reduction in operating costs is reflected
in the form of increased profits, but there are other
attendant results which may also appear in the form
of increased profits. For example, ultimate reservoir
recovery may be increased. It is well known that the
oil recovered from most reservoirs represents only
a relatively small percentage of the total oil in place,
say, of the order of 15 to 40 per cent. Since most
oil reservoirs are produced by rod pumped wells, at
least in the final stages of depletion, reductions in
operating costs of rod pumped wells allow more oil
to be produced from any given reservoir. This is true
because the factor that establishes the end point in
the life of a producing reservoir is its economic limit,
and reduced operating costs lower the economic limit,
which permits the production of additional oil before
operations must be suspended.

CONCLUSIONS

1. The lower portion of freely suspended or improperly
anchored tubing strings buckles and wraps around
the sucker rods during pump upstroke in all rod
pumped wells except those with very high operating
fluid levels.

2. The side thrust caused by buckled tubing is
extremely detrimental, in that it may be respon-
sible for the following:

1) Excessive tubing wear, tubing leaks and tubing
failures.

2) Excessive rod wear, rod loads and rod fail-
ures.

3) Excessive casing wear.

4) Increased input horsepower requirements.

5) Reduction of pump life.

6) Reduction of overall pumping efficiency.

3. The detrimental effects of tubing buckling can be
eliminated only by providing tension in the tubing
string to offset the buckling force. Tubing breath-
ing is automatically eliminated when buckling is
prevented,
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. A compression type anchor will not prevent tubing
buckling unless the anchor is set at pump depth
and, in addition, unless a very heavy tail pipe is
run below it,

5. A hydraulic piston type anchor prevents tubing
breathing and will minimize buckling effects par-
ticularly if the rod string is set downto prestretch
the tubing before setting the anchor,

6. Conventional tension type anchors will completely
eliminate both breathing and buckling, provided
the tubing is landed with sufficient tension in it.
Means for determining the proper amount of
tension are given in the Appendix.

7. Automatic tension anchors completely eliminate
both tubing breathing and buckling, and are the
simplest to use because predetermination of proper
tension and special tubing landing operations are
not required.

8. All tension type anchors should have safety fea-
tures to insure retrievability.

9. Tubing strength should always be considered be-
fore using any tension type anchor. Tubing
strength in relation to anchoring tension is dis-
cussed in the Appendix.

10. Significant reductions in operating costs of rod
pumped wells, as well as increased profits, should
be realized through the elimination of tubing
buckling and breathing.
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APPENDIX

Prestretching Tubing To Prevent Buckling

It is explained in the body of the paper that during
pump upstroke, freely suspended tubing buckles as if
it were subjected to an upward column or end load
that is equal to the pressure differential across the
closed standing valve times the plunger cross sectional
area. Since the apparent upward load at the level of
the pump is responsible for the buckling condition,
buckling would not occur if an equal and opposite
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acting force were applied at the level of the pump to
counteract the apparent upward load. The equal and
opposite force would provide a straightening effect by
creating tension in the tubing,

It has been shown that the precise amount of tension
required to prevent buckling exists in freely suspended
tubing at pump level during downstroke. K the tubing
is held at its most extended downstroke position during
pump upstroke, the equal and opposite action force is
developed at pump level during upstroke, and buckling
will not occur,

It follows that if tubing is properly anchored, the
tubing anchor is required to exert a pull on the tubing
only during pump upstroke. In order to arrive at this
condition when using a conventional tension type tubing
anchor, it is necessary to land the tubing with sufficient
prestretch in it to compensate for the elongation of the
tubing string that takes place after pumping is started.
It is important that at least the minimum required
prestretch is applied in landing the tubing to prevent
a conventional tension type anchor from walking down
the hole as elongation occurs. As explainedin the body
of this paper, conventional tension type anchors are
not designed to operate in this manner.

Tubing Pickup Determination

The Lubinski-Blenkarn paper! gives the complete
formula and its derivation for calculating correct
tubing pickup for any given set of conditions. Also
presented in their paper is a graphical solution of
the same formula.

A further simplified method of solution is presented
herein in chart form for 2-3/8 inch, 2-7/8 inch, and
3-1/2 inch O.D. EU or NU API tubing in Figs. 9, 10,
and 11, respectively. In the development of these
charts, a fluid gradient of 0.5 psi/ft. was used since
it represents a salt water gradient and therefore the
probable maximum fluid gradient in any pumping well.
The chart solution then gives a tubing pickup that is
correct only for a well producing 100 per cent salt
water and is slightly greater than required for wells
producing clean oil. However, since insufficient
tension may be quite harmful whereas slightly excess
tension has no detrimental effects, and also since
the required fluid level and fluid gradient data are
rarely known accurately, it would seem that this
method of solution, which tends to provide a margin
of safety, is justifiable.

Basis For Charts

Referring to Figs. 9, 10, and 11, it can be seen that
there is a series of three charts identified as “F,”,
“Fy” and “F;” for each tubing size. “F;” is a chart
of tabulated values for “Operating Fluid Level vs.
Depth of Pump and Tubing Anchor.” (It is assumed
that the tubing anchor will be installed immediately
adjacent to the pump in the tubing string, as this is
the anchor location required for the complete elimination
of tubing buckling and breathing). “F,” is a similar
chart for “Fluid Level at the Time Anchor is Set vs.
Depth of Pump and Tubing Anchor,” while the “F,”
chart gives the pickup required for various values of
“Temperature of Pumped Fluid at the Surface minus
the Mean Yearly Temperature” for the area in which
the well is located. (See “Explanation of Temperature
Effect” later in the Appendix).

The “F” chart values were calculated from that
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TABLES FOR COMPUTING FORCE AGAINST TUBING ANCHOR
(2%" O.D. EU OR NU A.P.l. TUBING)
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TABLES FOR COMPUTING FORCE AGAINST TUBING ANCHOR
(32" O.D. EU OR NU A.P.l. TUBING)
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portion of the complete formula which deals with the
operating fluid level. The “F,” and “F;” charts were
calculated similarly, using the portions of the formula
that take into account the temperature factor and the
fluid level at the time the anchor is set, respectively.

The calculation of the pickup that corrects for
casing gas pressure during pumping was neglected
in the preparation of these charts since, in actual
practice, the value of that term is so small, in relation
to the other terms, that it is insignificant,

Use Of Charts

To arrive at the required pickup in pounds to be
applied to the tubing, the three forces “F,”, “F,”
and “F;” are picked from the charts for the size
tubing involved.  Then “F,” and “F,” are added
together, and from that total “F;” is subtracted. This
gives- the total force or pickup required, which may be
designated as “F,”. Expressed as a formula, the
combination of “F, », “F,” and “F,” becomes:

F‘---F"*‘FS-FQ

The following example illustrates the procedure to be
followed in using the charts.

Tubing Size ~ - = = = == = =~ = = = = = - 2-3/8 OD EU

Depth of Pump and Tubing Anchor - - - - 6,000 feet

Fluid Level at Time Anchor is Set - - - 4,000 feet

Operating Fluid Level - = ~ = = = = - - - 6,000 feet

Fluid Temperature at Surface - - - - - - - - 100°F

Mean Yearly Temperature for Area in

which well is located - = = = - - - - - - - - 60°F

From Fig. 9 for 2-3/8 inch O.D. EU or NU Tubing:

F, = 9,300 pounds

F, = 5,400 pounds

F, = 1,560 pounds

F, = F, + F, - F,

= 9,300 pounds + 5,400 pounds - 1,560 pounds

= 13,140 pounds pickup to be applied

In the case of an automatic or compensating tubing
anchor, the same F, or total force as calculated above
will exist after pumping is stopped and the fluid in the
tubing drains to equalization with the annulus fluidlevel.

Selection Of Proper Shear Strength Emergency Release

It is mentioned in this paper that tension type tubing
anchors are generally equipped with some emergency
release feature; usually some member that will shear
when a predetermined amount of pull is taken against
the anchor. The shear members are provided in
several strengths for each anchor. Obviously, the
strength of the shear member must be greater than F,
calculated above, or it will fail and release the anchor
the first time pumping is stopped. The tubing anchor
manufacturer’s recommended safety margin should be
allowed between the calculated F, and the strength of
the shear member to provide for well data inaccuracies
and manufacturing tolerances of the shear member.
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Required Tubing Strength For Tension Type Anchors

After the required tubing pickup and strength of
shear member for an anchor is established, it is
absolutely essential to find out whether the tensile
strength of the tubing upon which the anchor will be
run is adequate for the particular situation in question.

Minimum Hook Load For Emergency Release

The minimum hook load (weight indicator reading) to
cause an emergency release shear member to fail is
the sum of the weight of the tubing string plus the force
required to part the shear member. Since the fluid
level may be very near the bottom of the tubing string
in some wells, it is always safest to use the weight
of the tubing s&tring in air; that is, disregard buoyancy
in the calculations. For example: With a 6,000 foot
string of 2-7/8 inch O.D. external upset tubing (which
weighs approximately 6.50 pounds per foot in air) and
a 30,000 pound shear member in the tubing anchor,
the minimum hook load to part the shear member would
then be 6,000 feet x 6.5 pounds per foot or 39,000
pounds of tubing plus 30,000 pounds to part the shear
member for a total hook load of 69,000 pounds to
affect an emergency release of the anchor,

Maximum Hook Load For Emergency Release

The foregoing method of calculation for the hook
load to part the shear member is applicable for the
majority of cases wherein the standing valve, which
retains the fluid in the tubing, and the sucker rod string
are retrieved during routine well pulling. However,
under certain conditions the hook load to partthe shear
member may be appreciably greater. If the sucker
rods are pulled but the standing valve cannot be
retrieved, a fluid load would esist in the tubing which
would also have to be supported in parting the shear
member. Further, if the sucker rod stringis parted in
one of the top rods and cannot be fished out because
of a sanded up pump plunger, then the weight of the
rods would also have to be supported in order to part
the shear member. The sum total to these loads
represents the worst possible condition that could be
encountered in relation to tubing tensile strength.

To summarize, the maximum possible hook load or
load on the top joint of the tubing string in parting a
shear member in any type of tension tubing anchor
would consist of:

Weight of the tubing string in air

plus, force to part the shear member
plus, weight of sucker rod string in air
plus, weight of the fluid inside the tubing

TOTAL

The values to be used for these four factors can be
determined as follows:

Weight Of Tubing String In Air
Multiply the weight per foot of tubing in air by the
total length in feet.

Force To Part Shear Member

The strength of the shear member is recommended
by the tubing anchor manufacturer and is based upon
the maximum force that will exist against the anchor.
(See “F,” under previous section “Use of Charts”).
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Weight Of Sucker Rod String In Air

Reference to the attached Fig. 12 provides a con-
venient means of determining the weight of the rod
string.

Weight Of The Fluid Ingside The Tubing
The weight of the fluid in the tubing can be found
by referring to the attached Figs. 13 and 14, (Fluid
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Fig. 13

is assumed to be salt water since many wells produce
high percentages of that fluid.) Fig.13gives the weight
of salt water that is contained in up to 12,000 feet of
2-3/8 inch, 2-7/8 inch and 3-1/2 inch O.D. API tubing.
This chart is labeled “Gross Fluid Weight” since it
shows the total weight of fluid the tubing could contain,
However, part of that fluid will be displaced by the

sucker rods. Since the weight of the rod string will
have already been determined, Fig. 14 was prepared
to show the weight of fluid that is displaced by the
pounds of steel in the rod string. Therefore, the
“Weight of Fluid Inside the Tubing” used in the
calculation of the hook load to part the shear member
is gross fluid weight from Fig. 13 minus the fluid
displaced by sucker rods from Fig. 14.

The following example will serve to illustrate the
preceding discussion:

Given:
a) 7400 feet of 2-7/8 inch O.D. EU tubing
b) Pump located at bottom of tubing string
c) 30,000 pound shear member
d) 7400’ sucker rod string made of: 1300’ of 1” rods
1500’ of 7/8” rods
4600’ of 3/4” rods

Weight of tubing string (7400°x6.5#/ft. 48,100#
plus, force to part shear member (given) 30,0004
plus, weight of sucker rod string

(See example, Fig. 12) 14,400#
plus, weight of fluid in tubing (S8ee examples,
Figs. 13 & 14; 17,300# minus 2,130#) 15,170#

Maximum Possible Hook Load
For Emergency Release = 107,670#

To be absolutely safe, it thenfollows that the strength
of the top portion of the tubing string should be in
excess of 107,670 pounds.

Should the strength of that portion of the tubing string
in this case be less than 107,670 pounds, it does not
necessarily mean that it would be unsafe to run a tension
type tubing anchor which has a 30,000 pound shear
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member in it. Many pumping wells in which it is
desired to install a tension type tubing anchor will
have a well established production history, or if not
in that particular well, the operating history of nearby
wells producing from the same pay zone may suffice.

H the rods and standing valve are always retrievable,
the hook load to affect emergency release that must be
considered in relation to the tubing strength is merely
the sum of the weight of the tubing string plus the
force to part the shear member, or 78,100 pounds in
this example, If the rods can always be retrieved,
but occasionally difficulty is encountered in retrieving
the standing valve, then possibly the fluid load should
be added; and the strength of the tubing would have to
be in excess of 93,270 pounds (48,100 pounds for tubing
plus 30,000 pounds for the shear member plus 15,170
pounds of fluid). This is pointed out to {llustrate that
a certain amount of personal judgement must be used
in working out tubing anchor installations rather than
relying solely on formulas and charts.

If the tubing string in this example were 2-7/8 inch
O.D. EU N-80 tubing in good condition, which has a
listed minimum yield strength of 144,960 pounds, then
it would be perfectly safe to run the tubing anchor with
the 30,000 pound shear member in it since there would
be a calculated minimum margin of safety of 37,290
pounds (tubing strength of 144,960 pounds minus cal-
culated maximum hook load of 107,670 pounds), How-
ever, if the tubing string in this case were 2-7/8 inch
0.D. EU J-55 tubing which has a listed minimum
yield strength of only 99,660 pounds, in order to be
able to pull the full 107,670 pound hook load to part the
shear member, an upper portion of the J-55 tubing
string would have to be replaced with N-80 tubing.

Amount Of Higher Grade Tubing Required

In order to be able to better understand the method
of determining just how much J-55 tubing would have
to be replaced with N-80 tubing, the forces involved
in determining the maximum hook load to part the
shear member of the anchor should again be reviewed.
Those forces are the weight of the sucker rod string
(assuming that a rod in the top part of the string fails
and the string cannot be fished out), the weight of the
fluid in the tubing (if the rods cannot be fished out,
the standing valve cannot be retrieved fo drain the
tubing), the force to part the shear member and the
weight of the string of tubing.

Since the combined weights of the parted rod string
and the fluid load are supported on the bottom of the
tubing string, these two forces can be assumed to be
weights hanging on the bottom of the tubing string.
Similarly, the force to part the shear member can
also be considered as a weight hanging on the bottom
of the tubing string.

Therefore, the tensile load on the tubing one joint
up from the anchor at the moment the shear member
parts is the sum of the rod load, the fluid load, the
shear member load, and the weight of the one joint of
tubing. In the example given for illustration purposes
this would be 59,765 pounds (14,400 pounds of rods,
plus 15,120 pounds of fluid, plus 30,000 pounds to
part the shear member, plus 195 pounds for one joint
of tubing). In comsidering various points higher up in
the tubing string, it is seen thatthe tensile load exerted
at the moment the shear member parts, increases from
the 59,765 pound value one joint up from the tubing
anchor to the 107,670 pound value for the top joint
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of tubing at the rate of 6.5 pounds per foot.

It follows, therefore, that at some point up the tubing
string from the anchor, a tensile load of 99,660
pounds would exist at the moment the shear member
parts, and from that point on up to the top of the tubing
string the tensile load would be in excess of the
tubing strength. It is this upper portion of the J-55
tubing string that would have to be replaced with N-80
tubing. The minimum amount that must be replaced
is equal to 107,670 pounds (the maximum hook load to
be imposed) minus 99,660 pounds (the tubing strength)
or 8,010 pounds of tubing. In terms of length it would
be, in this case, 8,010 pounds divided by 6.5 pounds
per foot or 1232 feet of N-80 required for the top
portion of the tubing string. Thisagainis the minimum
amount of N-80 required.

Under these conditions the top joint of J-55 tubing
would have a 99,660 pound tensile load at the moment
the shear member parts and, consequently, no margin
of safety. If a 10,000 pound margin of safety is
desired (89,660 pound tensile load on the top joint
of J-55 tubing at the moment the shear member parts),
then the same method just outlined for determining
the required amount of N-80 tubing is used, except
that the calculations would be 107,670 minus 89,660
or 18,010 pounds which is equivalent to 2771 feet of
N-80 required. (Refer to Fig. 16 for an example
of this type of problem.)

NOTE: A margin of ‘safety should always be allowed
for additional hook load that may be required
to part the shear member because of tubing
friction in deviated well bores.

This detailed explanation has been given in an attempt
to develop a complete understanding of the forces
involved and how they apply to the tubing string. Once
the situation is completely understood, the method
outlined above can be applied to any tubing string
encountered, regardless of the various sizes and
grades of tubing of which it is composed. Figs. 15,
16, and 17 provide a simple graphical means of
determining the proper amount of EU N-80 tubing
to be used for the top portions of 2-3/8 inch, 2-7/8
inch and 3-1/2 inch OD EU grade J-55 tubing strings
when the calculated hook load to affect emergency
release of a tubing anchor exceeds the strength of the
tubing in question. These charts were developed in
accordance with the foregoing discussion.

Explanation Of Temperature Effect

Generally speaking, down hole temperature increases
rather uniformly with depth at any given location,
although the rate of temperature increase with depth
varies considerably from area to area. Fortunately,
for the purpose of properly setting a tubing anchor, a
knowledge of down hole temperatures is not necessary.
Only the temperature of the pumped fluid at the well
head, and the mean or average yearly temperature for
the area in which the well is locatedare required. Both
are readily obtainable if not already known.

Reference to Fig. 18 will clarify the reasoning for
the preceding statements. (It must be understood that
the temperature values shown in Fig, 18 are for
illustrative purposes only. Letters or other identifying
symbols are generally preferred to numerical values,
but they sometimes confuse those not accustomed to
that type of illustration.)
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The down hole temperature at the depth of the anchor
is shown to be 180°F, and the line connecting that
point with the 60°F surface temperature simulates the
plot of a temperature survey of a well when it is not
being produced; in other words, it represents the
static temperature gradient. The deviation from the
static temperature gradient at the very top portion
of the hole, as shown by the dashed lines to 40°F and
to 80°F, represents the influence of seasonal tem -
perature changes, which are effective for only a few
feet below the surface and are, therefore, of negligible
importance. The 60°F temperature is the mean yearly
temperature for the area in which the well is located.

Before pumping is started, the temperature of the
tubing at any depth is assumed to be the same as the
temperature of the formation at that depth; hence, the
formation static temperature gradient is also the static
temperature gradient of the tubing. Although the
raising of the temperature of the tubing from surface
temperature to formation temperature when it is runin
the well causes some elongation, it has no bearing on
the problem of anchoring the tubing since that elongation
undoubtedly will have occurred before the anchor is
set. When the well is producing, the relatively hot
fluid being lifted raises the temperature of the tubing
string and causes elongation after the tubing anchor is
set, This is the thermal elongation which must be
considered in order to set a tubing anchor properly.

Again referring to Fig. 18, if the well were produced
at an infinitely low rate, it can be assumed that the

WELL HEAD

MEAN
j&«——— YEARLY
TEMPERATURE

TEMPERATURE OF
j¢———— PUMPED FLUID AT ———i}

aT

fluid would lose all of its heat to the surrounding
formations on its way up and wouldarrive at the surface
at 60°F, so the temperature of the tubing string
would not be changed. On the other extreme, if the
well were produced at an infinitely high rate, the
fluid would arrive at the surface at essentially bottom
hole temperature, as shown by the 180°F constant
temperature line from anchor depth to surface, and
the tubing would undergo a maximum increase in
temperature. Actually the tubing temperature gradient
in a producing well would be somewhere between the
two extremes, as depicted by the line which shows the
fluid arriving at the surface at a temperature of 120°F,

In this example then, the temperature of the top
joint of tubing increases from 60°F to 120°F when the
well is put on production. Thattemperature increase is
shown as AT in Fig. 1. The temperature of each
succeeding lower joint of tubing increasesby progress-
ively lesser amounts until, at the bottom of the string,
there is no increase in temperature. Therefore, since
the temperature increase over the length of the tubing
string gradually diminishes from a maximum of 60°F at
the top to no increase at the bottom, the average
temperature increase of the entire tubing string is
one-half of 60°F or 30°F. Simply stated, the average
temperature increase of the entire tubing string is
one-half the difference between the temperature of the
pumped fluid at the well head and the mean yearly
temperature for the area in which the well is located.
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