FORMATION SENSITIVITY TO FRAC FLUID- HOW IT EFFECTS PRODUCTION

Curtis Boney and KazeemAdegbola SchlumbergerOilfield Services

ABSTRACT

Dehydration and of the proppant crushing inside the fracture, are the two damage mechanisms mostly recognized as the main contributors to the overall reduction in fractured well productivity. Fracture face damage caused by the fracturing fluid loss through the four fracture faces also creates additional pressure drop that may further reduce the effective wellbore radius. The magnitude of the effect depends on reservoir characteristics, fracture geometry, extent of fluid leakoff into the reservoir, and the viscosity of the fracturing fluid filtrate. A step-by-step approach to predict the fluid loss through the fracture faces during the fracture treatment is explained in this paper. The depth of penetration through the fracture face and the resulting skin values for both the wall building and viscosity controlled leak-off model are determined. This study employs a simple approach that is based on the work of Cinco-Ley & Samaniego that assumes that damage through the fracture face is only caused by fluid saturation changes. The production-forecast simulator used to analyze the effect of various fracture face skin values on oil and gas well productivity agrees with Cinco-Ley and Samaniego study that shows the effect on the effective wellbore radius is negligible when skin value is less or equal to 0.1. In general, the study shows that fracture face damage has a negative effect on productivity only during the wellbore storage and fracture linear flow period. The magnitude of pressure drop increases with increase in reservoir permeability, damage ratio and fracturing fluid leakoff-viscosity.

INTRODUCTION

Hydraulic fracturing technology has been traditionally used by the oil and gas industry to solve a variety of problems related to low oil and gas productivity. These problems ranges from drilling induced near-wellbore damage to extremely low reservoir permeability. Fracture stimulation, if properly designed and executed may eliminate these problems and ultimately increase the effective wellbore radius and effective fracture conductivity to the wellbore.

In most cases, fracture stimulation results in a negative skin value but there are other post-fracture treatment effects that introduce additional pressure drop that may prevent the fractured well from producing up to its true capacity. Some of these effects include gel dehydration, crushing or embedment of proppant inside the fracture, choking the fracture through over flush, and fluid leak-off through the fracture faces.

This paper presents a procedure to compute the fluid leak-off through the four fracture faces, depth of penetration into the formation, and the resulting fracture face skin values for both oil and gas well reservoirs. The effect of fracture face skin on well productivity will also be studied using the production-forecast simulator.

LITERATURE REVIEW

The effects of flow impairments along the face and near wellbore area of the fracture on the transient behavior of finiteconductive vertical fractures were investigated by Cinco-Ley and Samaniego'. Fluid-loss flow impairment along the fracture surface in the reservoir is commonly referred to as fracture face skin effect. Flow impairment caused by reduced conductivity in the fracture near the wellbore is commonly described as a choked fracture. Both of these types of flow impairments in fractured wells result in a lowered productivity than would be obtained if flow impairments were not present.

Fluid-loss damage in the reservoir adjacent to the fracture is illustrated in **Fig. 1**. A choked fracture with a significant fracture conductivity reduction in the vicinity of the wellbore is shown in **Fig. 2**. The effect on the transient behavior of finite-conductivity fractures resulting from fracture damage skin effects is illustrated in **Fig. 3**. The effects on the effective wellbore radius of choked and damaged infinite-conductivity fractures in the pseudoradial regime are compared in **Fig. 4**.

Cinco-Ley and Samaniego-V introduced a relationship for quantifying fracture damage skin effects in terms of the fracture half-length X_{ρ} width of penetration into the reservoir normal to the fracture plane b_{s} and undamaged-to-damaged permeability ratio K/K_{s} as:

$$S_{fs} = \frac{\pi b_s}{2X_f} \left(\frac{K}{K_s} - 1\right) \tag{1}$$

FLUID-LOSS IN THE FRACTURE

Harrington et al presented the following simple, elegant and accurate equation to calculate the total fluid loss into the fracture:

$$V_{s_{t}} = AC_{t} \left(8T\right)^{0.5}$$
(2)

Where:

A is the fracture face area created during injection, (ft^2)

T is the total time of injection, (min) and

C, is the total leakoff or fluid loss coefficient, usually the combined effect of C_{ν} , C_{c} and C_{w} (ft/min0.5) C_{ν} , C_{c} and C_{w} denote leakoff coefficient due to viscosity, compressibility, and wall-building effect respectively.

Carter defined total leakoff C_t for a wall building leakoff model as:

$$C_{t} = \frac{1}{\left(\frac{1}{C_{v}} + \frac{1}{C_{c}} + \frac{1}{C_{w}}\right)}$$
(3)

For viscosity controlled leakoff, C_i is represented by C_{α} as follows:

$$C_{cv} = \frac{2C_c C_v}{C_{v} + \sqrt{C_v^2 + 4C_c^2}}$$
(4)

Where:

$$C_{v} = 0.0148 \sqrt{\frac{K\phi\Delta P}{U_{f}}}$$
(5)

$$C_c = 0.00118\Delta P \sqrt{\frac{K\phi C_f}{U_r}}$$
(6)

 $C_{\rm w}$ is experimentally determined in the lab for a wall building fluid.

Crawford proposed the following modification that yielded better results for total fluid loss into all four-fracture faces,

$$V_{st} = A\left(3C_t T^{0.5}\right) \tag{7}$$

Fluid loss into each face is thus represented as:

$$V_{s} = A \left(0.75 C_{t} T^{0.5} \right)$$
⁽⁸⁾

SOUTHWESTERN PETROLEUM SHORT COURSE-2002

292

Correcting for spurt loss in a wall building controlled leakoff gives:

$$V_s = A \left(0.75 C_t T^{0.5} + Spurt \right) \tag{9}$$

The distance into the reservoir to which the fracturing fluid has penetrated through each face of the fracture (b) is estimated volumetrically for an oil well as:

$$b_s = \frac{V_s}{\phi h X_f \left(S_{oi} - S_{or} \right)} \tag{10}$$

Where **h** is the fracture leakoff height in feet, S_{oi} is the initial oil saturation and S_{or} is the residual oil saturation.

For gas wells,

$$b_s = \frac{V_s}{\phi h X_f \left(S_{gi} - S_{gc} \right)} \tag{11}$$

Where S_{q_i} is the initial gas saturation and S_{q_i} is the critical gas saturation.

<u>S_{FS} COMPUTATION & PRODUCTION-FORECAST FOR VARIOUS DAMAGE RATIOS</u> Algorithms that incorporate Eq. (1) through (11) for fluid loss and fracture face skin computations were used along with the example data detailed below for oil and gas wells respectively. Effect using different leakoff model (wall building and viscosity controlled), half-lengths and reservoir permeabilities were studied. For this study, total injection time of two hours into the reservoir was picked as the reference point for the analysis. This represent average time for most of the hydraulic fracturing jobs. This can be changed depending on job time and time to fracture closure. Production-forecast simulator was used to predict production rates at different time interval for various damage ratios. The simulation was done for different half-lengths, high and low fluid leakoff viscosities and different permeability cases.

RESULTS AND DISCUSSION

Various fracture face skin values computed from the analysis are shown in **Table 1-4**. These values are used as inputs in production-forecast simulator and the results for various damage ratios are graphically shown in Fig. 5 and 6.

The results in general show reduction in flow rate at very early time when skin value is greater than 0.1. Rate reduction is generally seen at high reservoir permeability, short half-length and high fracturing fluid leak-off viscosity. Production rate plots for all the cases show the damage ratios converging after the initial early-time pressure drop. This effect is also noticed at high permeability and high leakoff viscosity well.

CONCLUSIONS

- 1. Fracture face skin is negligible in low permeability oil and gas wells treated with either Viscoelastic Surfactant fluid or Polymer based gel fluid. Hence the effect of fracture face damage on productivity is negligible at low reservoir permeability.
- 2. Fluid loss in extremely high permeability oil and gas wells can induce high fracture face skin, S Effect on productivity can be noticed at early time period when S > 0.1. This is more pronounced when fluid leak off viscosity is high i.e 100cp or greater.
- 3. Fracture face skin has no effect on productivity at late time.
- 4. Findings/Theory of Cinco-Ley and Samaniego study was validated at S > 0.1.
- 5. The results presented in this paper are based on the assumption that damage through the fracture face is only caused by fluid saturation changes only. The additional effect of capillary pressure and surface tension changes need to be looked at separately in an independent study.

ħ

INOME	NCLATURE
A	= Area of one face of the fracture which is created
	during injection, fl ² [m ²]
A.	= Reservoir drainage area, acres [m ²]
5.	= Wdth of fluid loss through the fracture face in
c.	= Leak-off coefficient far compress bility and
	viscosity of formation fluid, fl/min ⁰⁵ [m/s ⁰⁵]
C	= C. for viscosity controlled leak-off, fl/min ^{os} [m/s ^{os}]
c,	= Commessibility of reservoir fluid, psi/[kPa]
ć,	= Total leak-off coefficient, usually the combined
•	effect of C_{n} C_{n} and C_{m} filmin ⁰⁵ [m/s ⁰⁵]
C	= Leak-off coefficient for fracturing fluid viscosity,
·	fl/min ⁰⁵ [nvs ⁰⁵]
C	= Leak-off coefficient far wall building effect of fluid
	loss additives, ft/min ^{os} [m/s ^{os}]
2	= Reservair net height, ft [m]
2,	= Fracture height, ft [m]
ŕ	= Reservoir permeability, md
K _f	= Fracture permeabilty, md
ť,	= Damaged zone permeability, md
Ps -	= Reservoir bubble point pressure, psi [kPa]
Pr	= Fracturing Pressure, psi [kPa]
P _r	= Reservoir pressure, psi [kPa]
₽⊸₽	= Bottomhole flowing pressure, psi [kPa]
Sp.	= Fracture face skin
S _{er}	= Critical gas saturation
S,	= Initial gas saturation
ĩ.,	= Initial oil saturation
Sar	= Residual oil saturation
<u>ເ</u>	= Water saturation
Γ	= Total injection time, min
J_{f}	= Viscosity of fracturing fluid filtrate, cp [mPa.s]
ワ	= Viscosity of reservoir fluid, cp [mPa s]

- = Fluid loss through one fracture face, ft^3 [m³]
- ¥, ¥, = Total fluid loss through four fracture facer, ft² [m³]
- = Fracture width, in [m] w
- = Fracture half-length, ft [m]
- . Др = Pressure difference from fracture to reservoir, $(P_{f} - P_{r})$, psi [kPa]
- = Reservair Parosity

REFERENCES

- Cinco-Ley, H. and Samaniego-V, F.: "Transient Pressure Analysis: Finite Conductivity Fracture Versus Damaged Fracture 1. Case", SPE 10179 presented at the 56th Annual Fall Technical Conference and Exhibition of the SPE held in San Antonio, TX, Oct. 5-7, 1981.
- 2. Crawford, H.R.: "Propant Scheduling and Calculation of Fluid Lost During Fracturing", SPE 12064 presented at the 58th Annual Technical Conference and Exhibition of the SPE held in San Francisco, CA, Oct. 5-8, 1983.
- 3. Carter, R.D.: "Derivation of the General Equation for Estimating the Extent of the Fractured Area," Appendix I of "Optimum Fluid Characteristics for Fracture Extension," Drilling and Production Practice, G.C. Howard and C.R. Fast, New York, New York, USA American Petroleum Institute (1957), pp 261 to 269.
- 4. Harrington, L.J., Whitsett, N.F., and Hannah, R.R.: "Prediction of the Location and Movement of Fluid Interfaces in a Fracture", presented at the Southwestern Petroleum Short Course, Texas Tech University, Lubbock, April 26-27, 1973.
- Economides, J.M. and Nolte, K.G.: "Reservoir Stimulation", 3rd edition, March 2000, pp 12-21 to 12-25. 5.

ACKNOWLEDGEMENTS

The author wishes to thank Schlumberger for permission to prepare and publish this study. Special thanks are due Jose Rueda and Bilu Cherian for helping out in the development of the algorithms and production forecast simulations.

Input Data (Oil well):

MD	8,000 ft
Top Zone	7,000 ft
Net Height, h	65 ft
Fracture Height, <i>h</i> ,	65 ft
Casing	5 ½", 17#/ft, N80
BHST	200 degF
Porosity, \$	0.2
S_{oi}	0.5
S _{or}	0.15
S _w	0.3
C_t	2.89E-06 1/psi
U _r	0.6
Κ	0.01 – 1000md
K,	10 – 90% K
U_{f}	0.5cp and 100cp
$C_{_{11}}$	2E-03 ft/min0.5
Spurt	0.5 gal/100ft^2
X_t	50 - 1000ft
K _t w	200 - 5000md
P_r	3000 psi
P_{f}	5000 psi
P_{b}	1500 psi
"API	35
A_{d}	120 acres
$P_{_{w\ell}}$	1500 psi
Total Injection Time, T	120 mins

Input Data (Gas well):

MD	8,000 ft
Top Zone	7,000 ft
Net Height, h	65 ft
Fracture Height, h,	65 ft
Casing	5 ½", 17#/ft, N80
BHST	200 degF
Porosity, \$	0.2
S_{g}	0.5
S_{gc}	0.05
S	0.3
C_{t}	2.89E-06 1/psi
U _r	0.019
Κ	0.01 – 1000md
K_{s}	10–90% K
U_{t}	0.5cp and 100cp
<i>C</i> "	2E-03 ft/min0.5

Spurt	0.5 gal/100ft^2
X_{t}	50 - 1000ft
K _t w	200 - 5000md
P,	3000 psi
P_{t}	5000 psi
P_{b}	4000 psi
°API	35
A_{d}	120 acres
P_{wt}	1500 psi
Total Injection Time, T	120 mins

Table 1 Fracture Face Skin Analysis for Oil Well With Leakoff Viscosity =0.5cp

<u>Damaqe</u>	10%	30%.	50%	Z0%	90%
K	0.01	0.01	0.01	0.01	0.01
C [°]	0.009	0.007	0.005	0.003	0.001
X'	1.98 E-04	1.98E-04	1.98E-04	1.98 E-04	1.98E-04
b'	1000	1000	1000	1000	1000
Kw	0.393	0.393	0.393	0.393	0.393
C'alculated	200	200	200	200	200
S	0.00001	0.00002	0.00005	0.00012	0.00046
F ^{rs} _{cd}	20.00	20.00	20.00	20.00	20.00
<u>Damaae</u> K C X ^t b ^t Kw C'algulated	10% 10 9 1.55E-03 200 2.302 1000	30% 10 7 1.55E-03 200 2.302 1000	50% 10 5 1.55E-03 200 2.302 1000	Z0% 10 3 1.55E-03 200 2.302 1000	90% 10 1.55E-03 200 2.302 1000
S	0.00017	0.00065	0.00151	0.00351	0.01356
F ^{fs}	0.50	0.50	0.50	0.50	0.50
<u>Damaqe</u> K C C X' b' Kw C'alculated	10% 100 90 1.83 E-03 50 2.696 2000	30% 100 70 1.83E-03 50 2.696 2000	50% 100 50 1.83 E-03 50 2.696 2000	Z0% 100 30 1.83E-03 50 2.696 2000	90% 100 10 1.83E-03 50 2.696 2000
S	0.00078	0.00303	0.00706	0.01647	0.06353
F ^{fs}	0.40	0.40	0.40	0.40	0.40
<u>Damage</u>	10%	30%	50%	Z0%	<u>90%</u>
K	1000	1000	1000	1000	1000
C	900	700	500	300	100
X ¹	1.94E-03	1.94E-03	1.94E-03	1.94E-03	1.94 E-03
b'	20	20	20	20	20
Kw	2.853	2.853	2.853	2.853	2.853
Clabulated	5000	5000	5000	5000	5000
<u>Calculated</u> S	0 00207	0.008	0 01867	0 04357	0 16804

Table 2 Fracture Face Skin Analysis for Oil Well with Leakoff Viscosity = 100cp

<u>Damage</u>	10%	.30%	50%	<u>70%</u>	<u>90%</u>
ĸ	0.01	0.01	0.01	0.01	0.01
κ	0.009	0.007	0.005	0.003	0.001
Ĉ	1.62E-04	1.62E-04	1.62E-04	1.62E-04	1.62E-04
X	1000	1000	1000	1000	1000
<i>ь</i> ′	0.343	0.343	0.343	0.343	0.343
Ќw	200	200	200	200	200
Calculated					
S	0.000005	0.000019	0.000045	0.000105	0.000404
F ^{fs}	20.00	20.00	20.00	20.00	20.00
cd					
<u>Damaae</u>	<u>10%</u>	30%	<u>50%</u>	Z0%	<u>90%</u>
κ	10	10	10	10	10
ĸ	9	7	5	3	1
ດ້	5.13E-03	5.13E-03	5.13E-03	5.13E-03	5.13E-03
X	200	200	200	200	200
<i>b</i> ′	7.336	7.336	7.336	7.336	7.336
Ќw	1000	1000	1000	1000	1000
Calculated					
S	0.000534	0.002058	0.004802	0.011204	0.043214
F	0.50	0.50	0.50	0.50	0.50
Damago	10%	30%	50%	70%	90%
<u>Damaqe</u> K	<u>10%</u>	<u>30%</u> 100	50% 100	70% 100	<u>90%</u> 100
<u>Damaqe</u> K K	10% 100	<u>30%</u> 100 70	50% 100 50	70% 100 30	<u>90%</u> 100 10
<u>Damaqe</u> K K	10% 100 90 1.62E-02	30% 100 70 1.62E-02	50% 100 50 1.62E-02	70% 100 30 1.62E-02	<u>90%</u> 100 10 1.62E-02
<u>Damaqe</u> K K Č	10% 100 90 1.62E-02	<u>30%</u> 100 70 1.62E-02 50	50% 100 50 1.62E-02 50	70% 100 30 1.62E-02 50	<u>90%</u> 100 10 1.62E-02 50
<u>Damaqe</u> K K C [°] X	10% 100 90 1.62E-02 50 22.952	30% 100 70 1.62E-02 50 22.952	50% 100 50 1.62E-02 50 22.952	70% 100 30 1.62E-02 50 22 952	90% 100 1.62E-02 50 22 952
<u>Damaqe</u> K K Č X b	10% 100 90 1.62E-02 50 22.952 2000	30% 100 70 1.62E-02 50 22.952 2000	50% 100 50 1.62E-02 50 22.952 2000	70% 100 30 1.62E-02 50 22.952 2000	90% 100 10 1.62E-02 50 22.952 2000
<u>Damaqe</u> K K Č X t b K W Calculated	10% 100 90 1.62E-02 50 22.952 2000	30% 100 70 1.62E-02 50 22.952 2000	50% 100 50 1.62E-02 50 22.952 2000	20% 100 30 1.62E-02 50 22.952 2000	90% 100 10 1.62E-02 50 22.952 2000
<u>Damage</u> K K Č X b K W <u>Calculated</u> S	10% 100 90 1.62E-02 50 22.952 2000	30% 100 70 1.62E-02 50 22.952 2000 0.025751	50% 100 50 1.62E-02 50 22.952 2000 0.060086	70% 100 30 1.62E-02 50 22.952 2000 0.140201	90% 100 10 1.62E-02 50 22.952 2000 0.540776
Damaqe K K Č X X b K W <u>Calculated</u> S F ^{fs}	10% 100 90 1.62E-02 50 22.952 2000 0.006676 0.40	30% 100 70 1.62E-02 50 22.952 2000 0.025751 0.40	50% 100 50 1.62E-02 50 22.952 2000 0.060086 0.40	20% 100 30 1.62E-02 50 22.952 2000 0.140201 0.40	<u>90%</u> 100 10 1.62E-02 50 22.952 2000 0.540776 0.40
Damaqe K K Č Š X b K W Calculated S F cd	10% 100 90 1.62E-02 50 22.952 2000 0.006676 0.40	30% 100 70 1.62E-02 50 22.952 2000 0.025751 0.40	50% 100 50 1.62E-02 50 22.952 2000 0.060086 0.40	70% 100 30 1.62E-02 50 22.952 2000 0.140201 0.40	<u>90%</u> 100 10 1.62E-02 50 22.952 2000 0.540776 0.40
Damage K K Č X b K W <u>Calculated</u> S F cd Damase	10% 100 90 1.62E-02 50 22.952 2000 0.006676 0.40	30% 100 70 1.62E-02 50 22.952 2000 0.025751 0.40 30%	50% 100 50 1.62E-02 50 22.952 2000 0.060086 0.40 50%	20% 100 30 1.62E-02 50 22.952 2000 0.140201 0.40	90% 100 10 1.62E-02 50 22.952 2000 0.540776 0.40 90%
Damage K K Č X t b b K w <u>Calculated</u> S F cd Damase K	10% 100 90 1.62E-02 50 22.952 2000 0.006676 0.40 10% 1000	30% 100 70 1.62E-02 50 22.952 2000 0.025751 0.40 <u>30%</u> 1000	50% 100 50 1.62E-02 50 22.952 2000 0.060086 0.40 50% 1000	20% 100 30 1.62E-02 50 22.952 2000 0.140201 0.40 20% 1000	90% 100 10 1.62E-02 50 22.952 2000 0.540776 0.40 90% 1000
Damage K K Č Ž Š Š K W <u>Calculated</u> S F cd Damase K	10% 100 90 1.62E-02 50 22.952 2000 0.006676 0.40 10% 1000 900	30% 100 70 1.62E-02 50 22.952 2000 0.025751 0.40 30% 1000 700	50% 100 50 1.62E-02 50 22.952 2000 0.060086 0.40 50% 1000 500	20% 100 30 1.62E-02 50 22.952 2000 0.140201 0.40 70% 1000 300	90% 100 10 1.62E-02 50 22.952 2000 0.540776 0.40 90% 1000 100
Damage K K C C X b K K K Calculated S F c c Damase K K K C	10% 100 90 1.62E-02 50 22.952 2000 0.006676 0.40 10% 1000 900 5.13E-02	30% 100 70 1.62E-02 50 22.952 2000 0.025751 0.40 30% 1000 700 5.13E-02	50% 100 50 1.62E-02 50 22.952 2000 0.060086 0.40 50% 1000 500 5.13E-02	20% 100 30 1.62E-02 50 22.952 2000 0.140201 0.40 70% 1000 300 5.13E-02	90% 100 10 1.62E-02 50 22.952 2000 0.540776 0.40 90% 1000 100 5.13E-02
Damage K K C X ' b K K Calculated S F cd Damase K K C X	10% 100 90 1.62E-02 50 22.952 2000 0.006676 0.40 10% 1000 900 5.13E-02 20	30% 100 70 1.62E-02 50 22.952 2000 0.025751 0.40 30% 1000 700 5.13E-02 20	50% 100 50 1.62E-02 50 22.952 2000 0.060086 0.40 50% 1000 500 5.13E-02 20	20% 100 30 1.62E-02 50 22.952 2000 0.140201 0.40 20% 1000 300 5.13E-02 20	90% 100 10 1.62E-02 50 22.952 2000 0.540776 0.40 90% 1000 100 5.13E-02 20
Damage K K C S K K Calculated S F cd Damase K K C X y b	10% 100 90 1.62E-02 50 22.952 2000 0.006676 0.40 10% 1000 900 5.13E-02 20 72.333	30% 100 70 1.62E-02 50 22.952 2000 0.025751 0.40 30% 1000 700 5.13E-02 20 72.333	50% 100 50 1.62E-02 50 22.952 2000 0.060086 0.40 50% 1000 500 5.13E-02 20 72.333	20% 100 30 1.62E-02 50 22.952 2000 0.140201 0.40 20% 1000 300 5.13E-02 20 72.333	90% 100 10 1.62E-02 50 22.952 2000 0.540776 0.40 90% 1000 100 5.13E-02 20 72.333
Damage K K C S K K Calculated S F cd Damase K K C X ' b K K K K K K K K K K K K K	10% 100 90 1.62E-02 50 22.952 2000 0.006676 0.40 10% 1000 900 5.13E-02 20 72.333 5000	30% 100 70 1.62E-02 50 22.952 2000 0.025751 0.40 30% 1000 700 5.13E-02 20 72.333 5000	50% 100 50 1.62E-02 50 22.952 2000 0.060086 0.40 50% 1000 500 5.13E-02 20 72.333 5000	20% 100 30 1.62E-02 50 22.952 2000 0.140201 0.40 20% 1000 300 5.13E-02 20 72.333 5000	90% 100 10 1.62E-02 50 22.952 2000 0.540776 0.40 90% 1000 100 5.13E-02 20 72.333 5000
Damage K K C S S C C C C C C C C C C C C C	10% 100 90 1.62E-02 50 22.952 2000 0.006676 0.40 10% 1000 900 5.13E-02 20 72.333 5000	30% 100 70 1.62E-02 50 22.952 2000 0.025751 0.40 30% 1000 700 5.13E-02 20 72.333 5000	50% 100 50 1.62E-02 50 22.952 2000 0.060086 0.40 50% 1000 500 5.13E-02 20 72.333 5000	20% 100 30 1.62E-02 50 22.952 2000 0.140201 0.40 70% 1000 300 5.13E-02 20 72.333 5000	90% 100 1.62E-02 50 22.952 2000 0.540776 0.40 90% 1000 100 5.13E-02 20 72.333 5000
Damage K K C C X b K K C C C C C C C C C C C C C	10% 100 90 1.62E-02 50 22.952 2000 0.006676 0.40 10% 1000 900 5.13E-02 20 72.333 5000 0.052600	30% 100 70 1.62E-02 50 22.952 2000 0.025751 0.40 30% 1000 700 5.13E-02 20 72.333 5000 0.202886	50% 100 50 1.62E-02 50 22.952 2000 0.060086 0.40 50% 1000 500 5.13E-02 20 72.333 5000 0.473402	70% 100 30 1.62E-02 50 22.952 2000 0.140201 0.40 70% 1000 300 5.13E-02 20 72.333 5000 1.104604	90% 100 10 1.62E-02 50 22.952 2000 0.540776 0.40 90% 1000 100 5.13E-02 20 72.333 5000 4.260614
Damage K K C C X b K K C Calculated S F cd Damase K K C Z X b K K C C Z C C C C C C C C C C C C C	10% 100 90 1.62E-02 50 22.952 2000 0.006676 0.40 10% 1000 900 5.13E-02 20 72.333 5000 0.052600 0.25	30% 100 70 1.62E-02 50 22.952 2000 0.025751 0.40 30% 1000 700 5.13E-02 20 72.333 5000 0.202886 0.25	50% 100 50 1.62E-02 50 22.952 2000 0.060086 0.40 50% 1000 500 5.13E-02 20 72.333 5000 0.473402 0.25	20% 100 30 1.62E-02 50 22.952 2000 0.140201 0.40 70% 1000 300 5.13E-02 20 72.333 5000 1.104604 0.25	90% 100 10 1.62E-02 50 22.952 2000 0.540776 0.40 90% 1000 100 5.13E-02 20 72.333 5000 4.260614 0.25

.

TABLE 3	
Fracture Face Skin Analysis For Gas Well With Leakoff \	/iscosity = 0.5cp

<u>Darnaue</u>	<u>10%</u>	30%	<u>50%</u>	<u>70%</u>	<u>90%</u>
К	0.01	0.01	0.01	0.01	0.01
К	0.009	0.007	0.005	0.003	0.001
Ć	6.64E-04	6.64E-04	6.64E-04	6.64E-04	6.64E-04
x	1000	1000	1000	1000	1000
b [′]	0.816	0.816	0.816	0.816	0.816
Ќw	200	200	200	200	200
Calculated					
S	0.000012	0.000046	0.000107	0.000249	0.000961
F	20.00	20.00	20.00	20.00	20.00
<u>Darnaue</u>	<u>10%</u>	<u>30%</u>	<u>50%</u>	<u>70%</u>	<u>90%</u>
К	10	10	10	10	10
К	9	7	5	3	1
ດ້	1.88E-03	1.88E-03	1.88E-03	1.88E-03	1.88E-03
X	200	200	200	200	200
b	2.149	2.149	2.149	2.149	2.149
Ќw	1000	1000	1000	1000	1000
<u><i>Calculated</i></u>					
S	0.000156	0.000603	0.001406	0.003282	0.012658
F	0.50	0.50	0.50	0.50	0.50
<u>Damage</u>	10%	30%	50%	<u>70%</u>	<u>90%</u>
К	100	100	100	100	100
К	90	70	50	30	10
Ċ	1.96E-03	1.96E-03	1.96E-03	1.96E-03	1.96E-03
x	50	50	50	50	50
<i>b</i> ′	2.237	2.237	2.237	2.237	2.237
Ќw	2000	2000	2000	2000	2000
<i>calculated</i>					
S _.	0.000651	0.002510	0.005856	0.013664	0.052705
F	0.40	0.40	0.40	0.40	0.40
<u>Ďarnaue</u>	<u>10%</u>	30%	<u>50%</u>	<u>70%</u>	90%
К	1000	1000	1000	1000	1000
К	900	700	500	300	100
Ċ	1.99E-03	1.99E-03	1.99E-03	1.99E-03	1.99E-03
x'	20	20	20	20	20
b [′]	2.266	2.266	2.266	2.266	2.266
Kw	5000	5000	5000	5000	5000
, <u>Calculated</u>					
S	0.001648	0.006357	0.014833	0.034609	0.133493
F	0.25	0.25	0.25	0.25	0.25
cd					

Damaqe K K C ^s X ^t b' K ^k w <u>C'alculated</u> S F ^{fs} cd	10% 0.01 0.009 2.64E-04 1000 0.379 200 0.000006 20.00	30% 0.01 0.007 2.64E-04 1000 0.379 200 0.000021 20.00	50% 0.01 0.005 2.64E-04 1000 0.379 200 0.000050 20.00	70% 0.01 0.003 2.64E-04 1000 0.379 200 0.000116 20.00	90% 0.01 0.001 2.64E-04 1000 0.379 200 0.000446 20.00
Damaqe K K C S k w <u>C'alculated</u> S S cd	10% 9 8.36E-03 200 9.244 1000 0.000672 0.50	30% 10 7 8.36E-03 200 9.244 1000 0.002593 0.50	50% 10 5 8.36E-03 200 9.244 1000 0.006050 0.50	Z0% 10 3 8.36E-03 200 9.244 1000 0.014116 0.50	90% 10 1 8.36E-03 200 9.244 1000 0.054449 0.50
Damaqe K K C ^c X ^t b' K W <u>C'alculated</u> S S s _{cd}	10% 100 90 2.64E-02 50 29.039 2000 0.008447 0.40	30% 100 70 2.64E-02 50 29.039 2000 0.032580 0.40	50% 100 50 2.64E-02 50 29.039 2000 0.076021 0.40	Z0% 100 30 2.64 E -02 50 29.039 2000 0.177382 0.40	<u>90%</u> 100 10 2.64E-02 50 29.039 2000 0.684187 0.40
Damage K K C X' b' Kw <u>C'alculated</u> S F ^{ts}	10% 1000 900 8.36E-02 20 91.636 5000 0.066637 0.25	30% 1000 700 8.36E-02 20 91.636 5000 0.257030 0.25	50% 1000 500 8.36E-02 20 91.636 5000 0.599736 0.25	20% 1000 300 8.36E-02 20 91.636 5000 1.399384 0.25	90% 1000 8.36E-02 20 91.636 5000 5.397623 0.25

 Table 4

 Fracture Face Skin Analysis For Gas Well With Leakoff Viscosity = 100cp

Figure 1 - Fracture Face Skin Effect Damage Flow Impairment

k

k

Figure 2 - Choked-fracture Flow Impairment

Figure 3 - Damaged Fracture Pressure Response

Figure 4 - Effect of Damaged Fractures on Effective Wellbore Radius

Figure 5 - Early Time Production Forecast for Various Damage Ratios in Oil Well

100 md Gas Case, Leakoff Viscosity = 0 5 cp, Xf = 50 ft

10 md Gas Case, Leak-off Viscosity = 100 cp, Xf = 200 ft

. KsiK = 100%

-KsiK = 90%

KsiK = 70%

- KsiK = 50%

-- Ks/K = 30%

- Ks/K = 10%

2

Time (davs)

10000 t (MMs f 8000 tnRt 6000 S_{1s}: 0.000006 0 000446 Pro 4000 2000 0 05 15 1

0.01 md Gas Case, Leak-off Viscosity = 100 cp, Xf = 1000 ft

Figure 6 - Early Time Production Forecast for Various Damage Ratios in Gas Well