FIELD STUDY AND STIMULATION APPROACH CONGER (PENN) FIELD STERLING COUNTY, TEXAS BY JIM JOHNSON AND BILL KAMP THE WESTERN COMPANY OF NORTH AMERICA

ABSTRACT

With existing demands for oil and gas at continued higher prices, there has become a greater interest in previously uneconomical reservoirs. The Cisco and Canyon formations in Sterling County, Texas fall into this category. In particular, the Conger (Penn) area has enjoyed rapid and continuous development since 1977. Hydraulic fracturing has been required to stimulate for commercial production. Stimulation practices have been reviewed and a more efficient approach developed to provide maximum productivity at an optimum cost.

INTRODUCTION

The Conger (Penn) Field is located some six (6) miles South and seven (7) miles West of Sterling City, in Sterling County, Texas. (See Figure 1). This encompasses an area of some 58,000 acres. Since completion of the Dorchester Exploration - Conger "19" NO. 1 in December 1974, some 54 gas wells and 105 oil wells have been completed (through December 1979). Oil production began in 1977 with a majority being completed in 1978 and 1979. Through December 1979, a total of 3,331,814 barrels of oil have been produced. Along with oil production 16,604,202 MCF casing head gas has been produced. Gas production through December 1979 was 27,398,333 MCF. With this sort of production potential in the area, future development both infield and outer edge areas should be good.

Principle operators are R. C. Bennett, Blanks Energy Corp., C & K Petroleum, Champlin Petroleum, John L. Cox, Dorchester Exploration, Marathon, Southland Royalty, Texaco, and Wagner & Brown. Wagner & Brown has a majority of wells in the area. Drilling up to this point has been on 160 acre spacing. However, with existing low porosity and permeability in the reservoir, infield drilling may be in order. Production from the Cisco and Canyon varies from well to well depending upon pay development; however, all wells require hydraulic fracturing to stimulate for production at a commercial level. After initial completion, production tests indicate potentials ranging from 10 to 331 BOPD. Water production has varied from a low of 1 BWPD to 150 BWPD. GOR's range from 1142:1 to 35200:1. During the initial stages of development, gelled water or crosslinked gelled water systems were utilized to stimulate for production. Most treatments, however, that were reviewed for this report consisted of fracturing with a refined guar gel crosslinked system. (See Table 1).

The Western Company has had the privilege of participating in the stimulation of ±75% of the completions in the field. This paper concentrates primarily on the stimulation approach being used and also deals with some suggestions for a more efficient fluid recently developed for this type reservoir.

LITHOLOGY AND RESERVOIR CHARACTERISTICS

Oil and gas production in the Conger (Penn) Field is from Cisco and Canyon members of the Pennsylvannia Age. Overall interval from the Cisco through the Canyon is ±1000 feet in thickness. Individually, the Cisco covers an interval of 150 to 200 feet and the Canyon an interval of 150 to 250 feet.

Cisco and Canyon zones in this area consist primarily of fine grained Quartzosic sandstone with interbedded shale and some carbonate stringers. Figures 2,3,4 & 5 show typical gamma ray-acoustic velocity logs of the producing intervals. Table 1 gives the thickness of each zone.

Laboratory analysis have been conducted on several core samples. X-ray diffraction analysis indicates the presence of guartz, feldspar, dolomite, koalinite, chlorite, and mixed layer - illite/montmorillonite. Some siderite is indicated in one of the X-ray analysis test. The rock is described as a feldspathic, fine-grained sandstone with slightly expandable interstitial clay. The siderite is most likely acting as a cementing agent. Scanning Electron Micrographs (Figures 6 thru 10) indicate the presence of siderite, illite, and montmorillonite. These clay minerals tend to be dissolved and dislodged by aqueous solutions, and may cause a problem with fines, which can cause plugging near the well bore. The use of potassium chloride brines and clay stabilizing chemicals should alleviate any associated problems.

The formation has a solubility from 3 to 25 percent in 15% hydrochlorics acid. It also contains from .57 to 2.98% soluble iron in 15% HCl. In a mixture of 5% HCl - .6% HF from 5.7 to 27.5% soluble iron is indicated (Table 2). The presence of iron dictates the need for an iron-chelating agent in the stimulation fluids.

Core analysis data indicates that formation permeabilities range from a low of less than .1 to a high of 0.5 millidarcys. In some isolated instances permeability may be as high as 3-4 md. Porosities thru the pay section will range from 8 to 10 percent. Water saturations vary, depending upon permeability values, from 40 to 50 percent in a producing zone.

RESERVOIR FLUID CHARACTERISTICS

Water production does not appear to be much of a problem in the Conger area. Initial potentials appear to be in a range of one (1) to ten (10) percent. The produced water has moderately high dissolved solids content, 8.0 pounds per gallon, and is slightly corrosive due to its acidic nature. There appears to be little evidence of scaling, but ION concentrations are such that calcium sulfate scale is possible. Table 3 shows a typical water analysis in the field.

The oil phase from reservoir fluid falls in a range of 38 to 42 API Gravity. There are slight paraffin components, however, they have not proven to be a major problem.

Production decline curves were prepared on several wells selected at random. Figures 11 and 12 show typical oil production, and Tables 4, 5, and 6 give monthly production for several gas wells.

TREATMENT TECHNIQUE

After zone or zones of interest in the Canyon and Cisco are selected and perforated, stimulation programs are generated. A majority of wells in the area are treated using the limited entry technique. Where both Cisco and Canyon zones are encountered, a baffle ring and bomb is used for separating the two zones. By using this technique, both zones can be treated in a single trip to the well. An injection rate of 1.5 to 2 BPM per perforation is normally utilized to provide a differential pressure of 400-500 PSI across perforations. In instances where a baffle ring and bomb is utilized, the lower zone is perforated, acidized, and fractured; in flush, acid is pumped to be spotted across the upper zone; a bomb is run to seat in baffle ring and pressure tested; then, Upper zone is perforated and fractured. Frac volumes are shown in Table 1.

Most of the frac treatments performed in the Conger (Penn) Field consisted of water-base gels, namely cross-linked guar gum systems. Recently a new frac fluid system has been utilized in the general vicinity. This fluid is a cross-linked gelled acid system. Type frac fluid systems selected for use in this area take into consideration:

- 1.) Effective viscosity
- 2.) Sand carrying ability
- 3.) Friction reduction properties
- 4.) Compatibility of the fluid to the formation and reservoir fluids

From core studies, the frac fluid presently being used appeared to be the most applicable for use with minimum incompatibility problems.

TYPICAL TREATMENT PROCEDURE

1.) With acetic acid spotted across lower zone and hole loaded with 2% KCl water, perforate selectively with 15-20 holes.

2.) Break down perforations and establish injection rate.

3.) Frac with $\pm 40,000$ gallons cross-linked gel containing 1 # 20/40 mesh sand per gallon at ± 2 BPM/perforation.

4.) Flush with 2% KCl Water, spotting 1500 gal acid across upper zone to be perforated.

5.) Run bomb to seat in baffle ring and test bomb.

6.) Perforate upper zone.

- 7.) Breakdown perforations and establish injection rate.
- 8.) Frac with ±40,000 gal cross-linked gel containing 1 ppg. 20/40 mesh sand per gallon at ±2 BPM per/perforation.
- 9.) Flush with slick 2% KCl Water.
- 10.) Leave well shut-in overnight, then commence load recovery.

COMPUTER STIMULATION DESIGN

Computer studies were conducted to determine fracture penetrations and productivity increases (J/Jo) that should have been achieved with the various frac volumes utilized. Fracture heights used in computer print out programs were varied from 50 to 200 feet. Proppant concentration remained constant at 2.15 darcy-feet (Figure 13), which is the maximum conductivity that can be achieved with an overburden pressure of 3500 psi. From Figure 13, it is seen that proppant concentration required to achieve a conductivity of 2.15 darcy-feet is ±680 pounds per 1000 feet. Reservoir properties and frac fluid properties used in computer calculations are listed in Tables 7 and 7A.

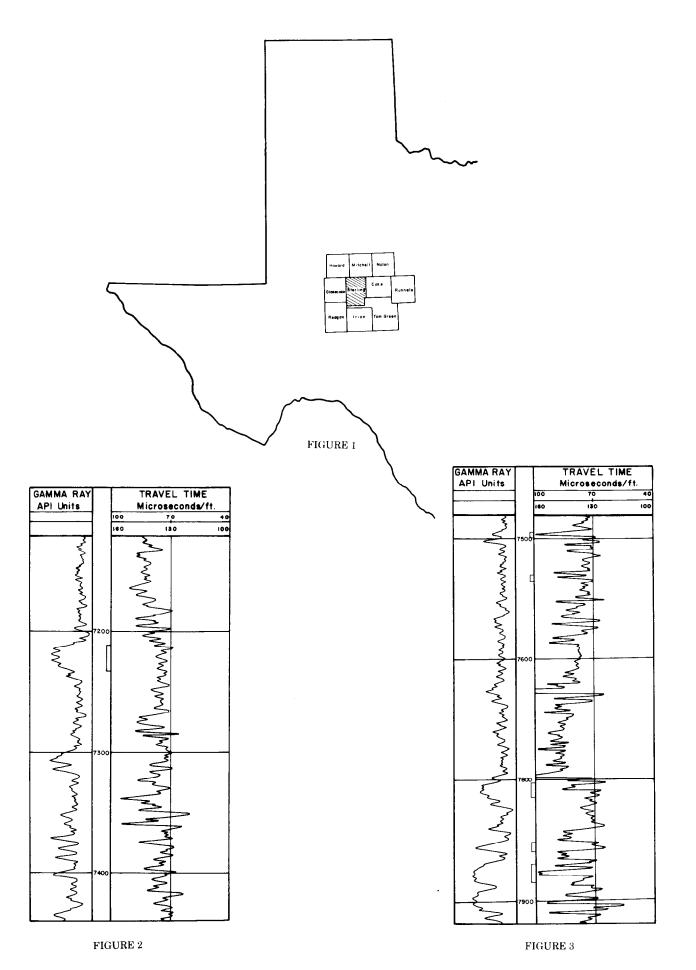
Results from the computer study are presented in Table 8 and plotted in Figures 14, 15 and 16. Figure 17 shows productivity increase contrast as a function of penetration. It can be seen from Figure 17 that L/r_e ratios in excess of .5 provide very little increase in productivity ratio. Frac treatments utilized provided for fracture lengths ranging from 200'to 700'depending upon injection rate and fracture height. From Figure 13 it can be seen that productivity is maximized at a sand concentration of 680 pounds per 1000 feet. The amount of sand to be pumped is calculated as follows:

Sand (lb) = $2 \times 50 \times 680 \times 0.6 \text{ lb/ft}^2 = 40,800 \text{ lbs}$.

By way of comparison, fluid characteristics of a new stimulation fluid (CWA-3) cross-linked gelled acid were used in a similar computer design study. As is seen in Figures 14, 15 and 16, and is tabulated in Table 9, fracture penetration is achieved. Fluid characteristics of this product are most compatible with the formation and reservoir fluids, and should prove to be far superior to presently used fluid systems. As is readily seen in Figure 17, at L/r_e of .6 a productivity increase of ±1.5 fold above that obtainable with present fluid systems is indicated.

SUMMARY

In conducting this field study several observations were made and are presented in summary for future benefit.


- Treatment techniques have been refined to the point that all zones are completed selectively, efficiently and economically.
- 2.) Both Cisco and Canyon zones require fracturing to establish satisfactory production rates.
- 3.) Improvements in frac fluid systems could be utilized to increase fracture penetration and hopefully productivity contrast. This is indicated on wells recently treated with the new cross-linked gelled acid system.

NOMENCLATURE

- H Fracture Height, Ft.
- J Productivity index after fracturing
- Jo Productivity index before fracturing
- K Formation permeability to reservoir fluid, md.
- K_f Proppant pack permeability to reservoir fluid, md.
- L Frac Length from wellbore, Ft.
- r_e Propped fracture width, In.
- WK_f Conductivity of the fracture, md./in.

REFERENCES

- 1.) Western Company Stimulation Program Library
- 2.) "Engineered Limited Entry", a Western Company Publication
- 3.) Craft, B.C., and Holden, W.R., and Graves, E.D., Jr.; Well Design Drilling and Production, Prentice Hall, Inc., Englewood Cliffs (1962) 483-533.

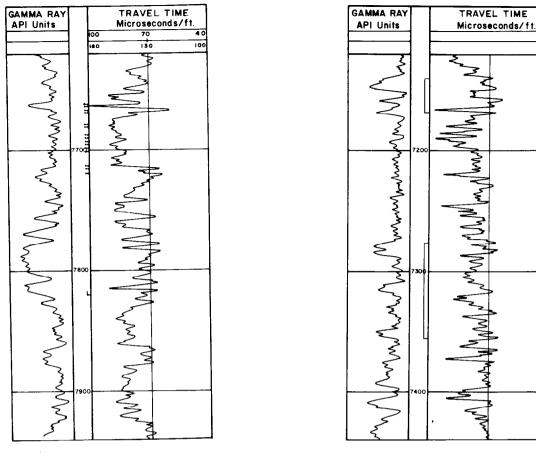


FIGURE 4

FIGURE 5

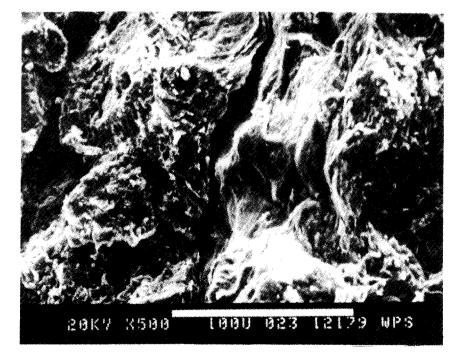


FIGURE 6-A VIEW OF A MICROFRACTURE BETWEEN QUARTZ GRAINS

FIGURE 7–A FAIRLY CLEAN PORE SURROUNDED PREDOMINATELY

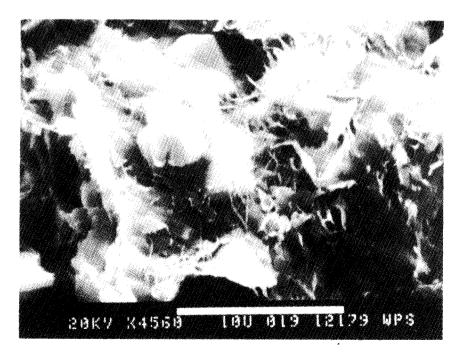


FIGURE 8—A HIGH MAGNIFICATION VIEW OF A LAYER OF ILLITE/MONTMORILLONITE OVERGROWTH ON QUARTZ SHOWING DELICATE, NEEDLE LIKE CLAY PROJECTIONS.

I

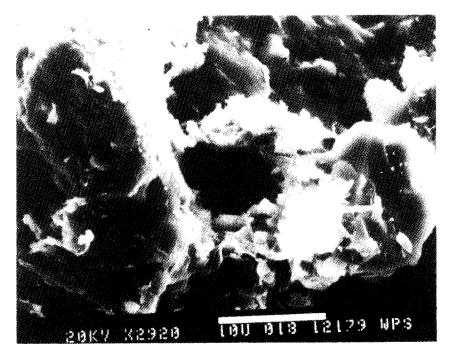


FIGURE 9—A PORE SURROUNDED BY QUARTZ ON LEFT, TOP RIGHT, AND FAR RIGHT. MIXED LAYER CLAY IS LOCATED DIRECTLY AROUND THE PORE OPENING.

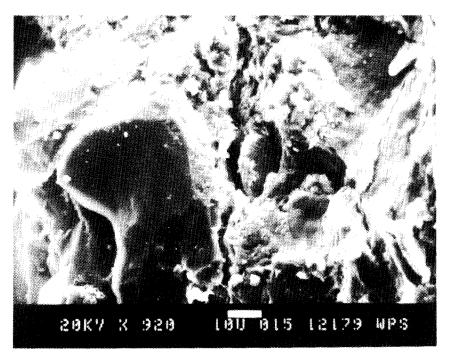
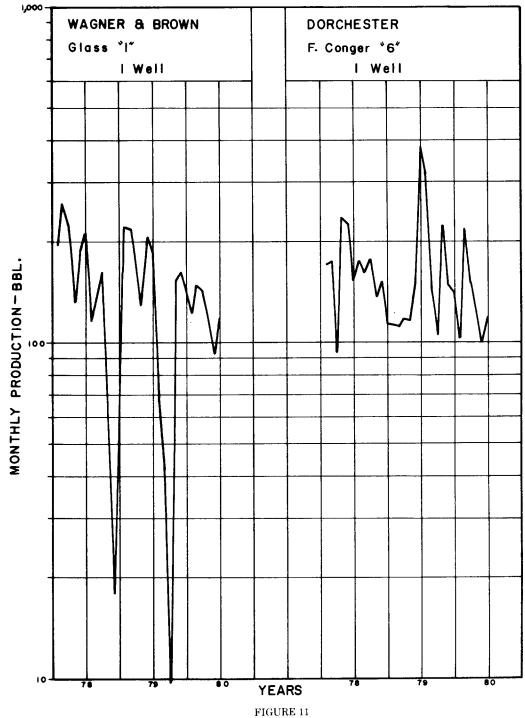
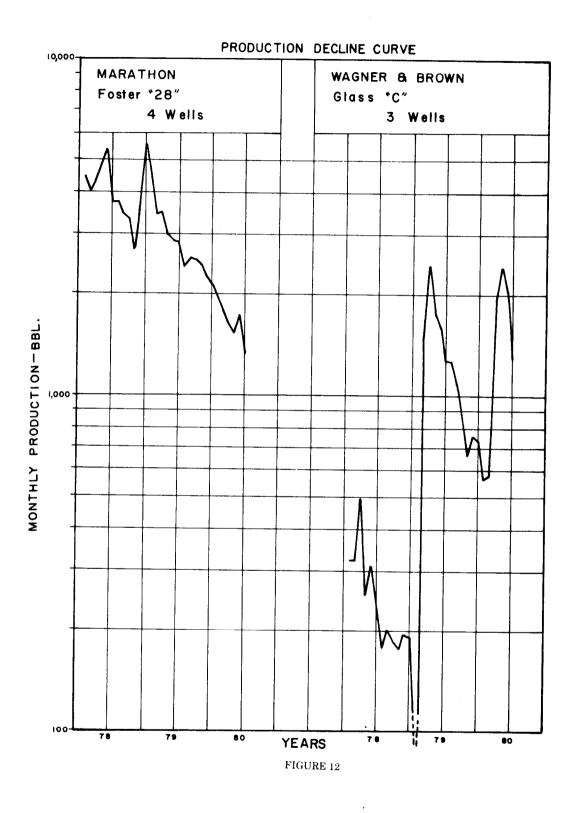
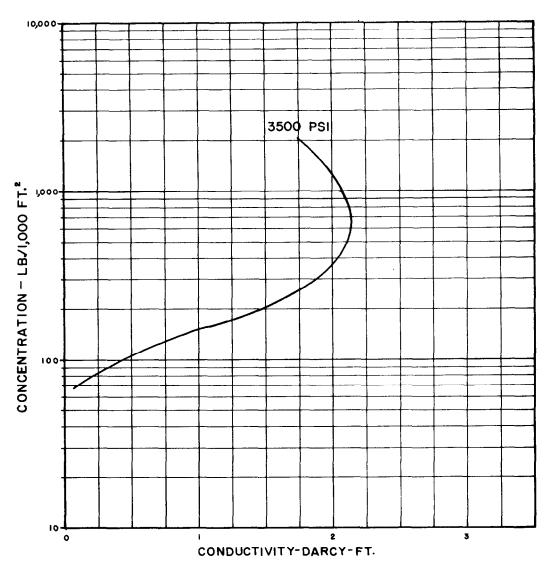
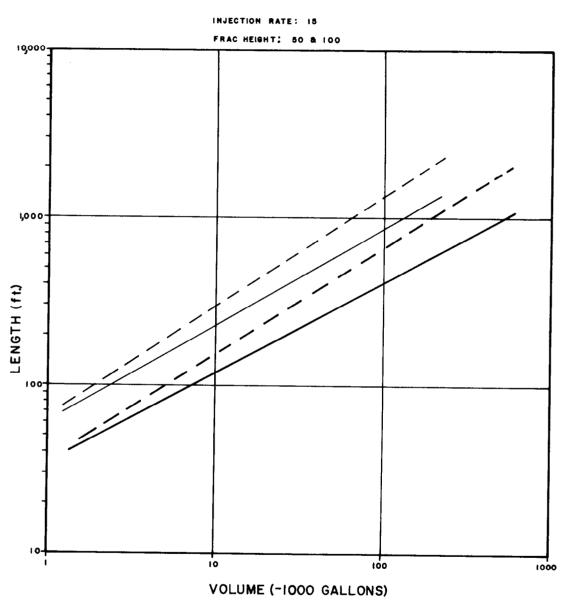





FIGURE 10-A VIEW OF A PARTIALLY FILLED MICROFRACTURE


PRODUCTION DECLINE CURVE

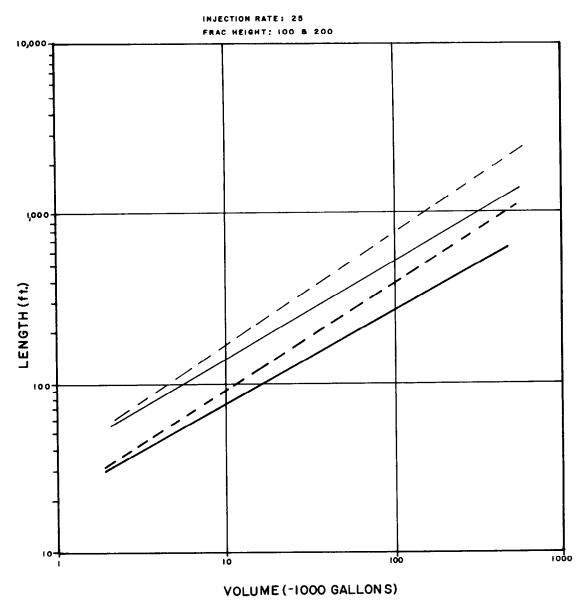

20-40 MESH SAND CONDUCTIVITY

FIGURE 13

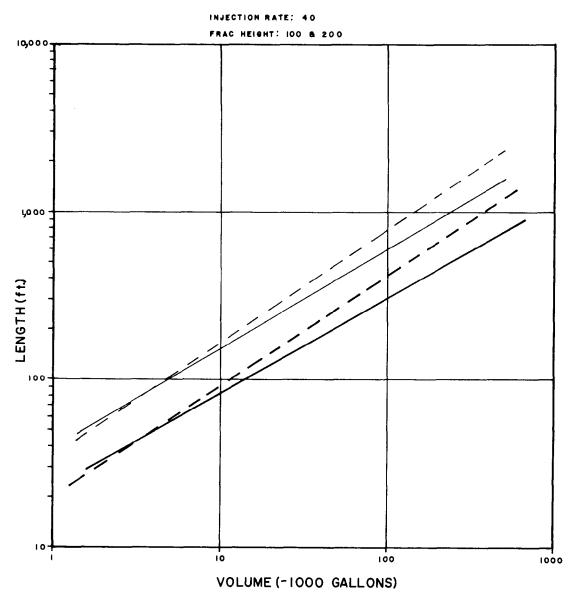

VOLUME VERSUS PENETRATION

FIGURE 14

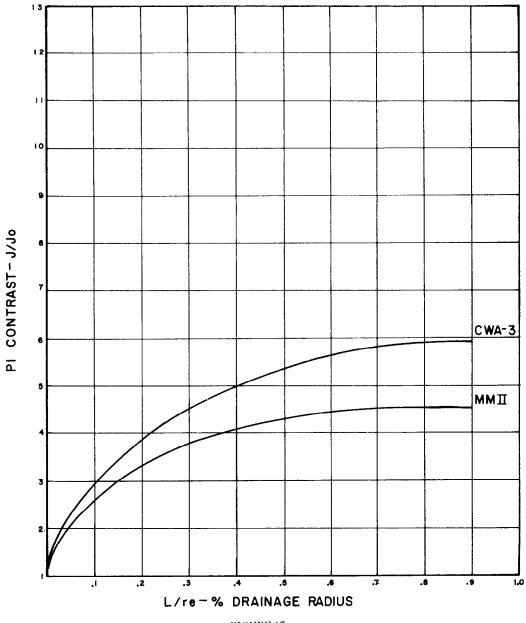

VOLUME VERSUS PENETRATION

FIGURE 15

VOLUME VERSUS PENETRATION

FIGURE 16

PI CONTRAST VS PENETRATION

FIGURE 17

TREATMENT DATA

Conger Penn Area TABLE 1

 <i>r</i> 1	101	.r.	1	

WELL NAME	FORMATION	'nD	PENFORATED INTERVALS	TREAT. VOLLMES & TYPE	IFF	FT. ³ /bbl.	FRAC GRADIENT
Conger 2-36	Canyon/ Cisco	8000	7884-7996 (14) 7546-7624 (9)	110,000 gal. MMII 2,500 gal. 15% DS-30	50 BOPD + Trace	23,180-1	.64 .59
Conger 3-36	Canyon/ Cisco		7096-7514 (17) 7976-8110 7546-7639	80,000 gal. MMIII 1,500 gal. 15% DS-30	Water 80 BOPD +150 BW	31,500-1	.61 .64
Conger 4-36		8211	7062-7297 8037-8159 (11)	140,000 gal. MMII	35 BOPD	20,000-1	.65
Flint "A" 30-2	Cisco Canyon/	8000	7612-7836 (11) 7796-7939 (11) 7578-7726 (15)	2,000 gal. 15% DS-30 70,000 gal. MMII	+2 BW 65 BOPD	13,077-1	.66 .70
Foster 1-14	Cisco Canyon/ Cisco	72 7 6	7578-7726 (15) 6847-7182 (18) 6402-6668 (11)	1,500 gal. 15% DS-30 65,000 gal. MMII 2,000 gal. 15% DS-30	+2 BW 35,200-1 MCFGPD	35,200-1	.64 .63 .65
Glass "A"	Canyon/	8370	614B-6207 (11) 8123-8279 (11)	85,000 gal. MMII	151 BOPD	3268-1	.63
3-13 Glass "A"	Cisco Canyon/	8210	7772-7966 (20) 8063-8154 (11)	1,000 gal. 15% DS-30 85,000 gal. MMII	250 BOPD	3100-1	.61 .64
4-13 Glass "B"	Cisco Canyon/	8213	7795-7907 (15) 7713-7766 (11) 7923-8194 (15)	2,000 gal. 15% DS-30	+ 5 BW	2414 1	.62 150 ⁰ F .65
3-22 Glass "B"	Cisco Canyon/	8294	7670-7790 (15) 8030-8085 (11)	65,000 gal. MMII 2,000 gal. 15% DS-30 80,000 gal. MMII	290 BOPD 192 BOPD	2414-1 2714-1	150 ⁰ F .65 .61 .64
4-22 Glass "C"	Cisco Cisco	8275	7722-7773 (13) 7984-8142 (15)	2,000 gal. 15% DS-30 74,000 gal. MMII	+20 BW 174 BOPD	6184-1	.62 .65
2-4 Glass "C" 3-4	Canyon/	8200	7596-7796 (22) 7998-8170 (15) 7627-7828 (16)	1,500 gal. 15% DS~30 80,000 gal. MMIII 2,000 gal. IS% DC 20	+1 BW 120 BOPD	4250-1	.61 .65
5-4 Glass "J" 2-26	Cisco Canyon/ Cisco	8400	7627-7828 (16) 8167-8348 (18) 7883-8046 (15)	2,000 gal. 15% DS~30 70,000 gal. MMII 1,500 gal. 15% DS-30	+ TR WTR 75 BOPD +2 BW	3253-1	.62 .66 .64
Glass "K" 24	Cisco	8179	8048-8147 (15) 7795-7882 (11)	92,000 gal. MMII 1,000 gal. 15% DS-30	331 BOPD +1 BW	1764-1	.64 .62
Hildebrand 26-4	Cisco	8207	7666-7740 (13) 7538-7631 (13) 7226-7302 (11)	75,000 gal. MMII	186 BOPD	2468-1	.60 153 ⁰ F .62
Hildebrand	Cisco	8200	7236-7302 (11) 8059-8143 (11) 7303-7650 (9)	500 gal. 15% DS-30 85,000 gal. MMII 2,000 gal. 15% DS-30	+ 1 BW 75 BOPD +2 BW	5667-1	.60 .63 .60
			7660-7758 (17) 7786-7928 (10)				.61 .62
Hildebrand 30-2 Hildebrand	Cisco Cisco	7979 7953	7396-7555 (18) 7039-7226 (11) 7729-7857 (16)	85,000 gal. MMII 1,000 gal. 15% DS-30	169 BOPD	3095-1	.61 .60
32-20 Hildebrand	Canyon/	7800	7444-7515 (11) 7882-8095	65,000 gal. MM 500 gal. 15% DS-30 100,000 gal. MMII	124 BOPD + TR WTR 195 BOPD	2331-1 4718-1	.63 .61 .63
35-12 Hildebrand	Cisco Canyon/	8225	7559-7719 8049-8106	2,000 gal. 15% DS-30 110,000 gal. MMII	+ 2 BW 115 BOPD	7583-1	.62 .63
37-18	Cisco	01.75	7616-7846 7350-7417	4,000 gal. 15% DS-30	+ 40 BW		.62
Hildebrand 41-7	Canyon/ Cisco	8175	7940-8051 (11) 7026-7246 (11) 7502-7710 (15)	98,000 gal. MMIII 2,000 gal. 15% DS-30	20 BOPD + 77 BW	2625-1	.65 .61 .63
Margaret 2-13	Canyon/ Cisco	8200	7800-7895 (11) 7075-7258 (11)	80,000 gal. MMII 2,000 gal. 15% DS-30	10 BOPD + 20 BW		.63 .60
RAE 5-30	Cisco	8125	7424-7579 (16) 7492-7720 (14) 7890-8038 (11)	72,000 gal. MMII 1,000 gal. 15% DS-30	176 BOPD	10,000-1 3625-1	.61 .62 .64
RAE "C" 1-3	Cisco	8061	7974-8061 (11) 7538-7738 (19)	90,000 gal. 15% DS-30 1,500 gal. 15% DS-30	253 BOPD	1870-1	.63 .61
Reynolds 1-11	Canyon∕ Cisco	7889	7680-7088 (15) 7394-7590 (14) 7045 7174 (16)	100,000 MM II 2,000 gal. 15% DS-30	70 BOPD + 20 BW	1142-1	.62 .61 .59
Westbrook 3-8	Canyon/ Cisco	8100	7045-7174 (16) 7938-7986 (11) 7459-7616 (13)	80,000 gal. MM II 2,000 gal. 15% DS-30	10 BORD + 26 BW	24,200-1	.64 .62
Sterling N	Canyon/	8208	7221-7258 (11) 7940-8194 (58)	36,000 gal. CWA,			.60 .78
Fee #1	Cisco		76957817	58,000 # 20-40 Sand 30,000 gal. CWA, 45,000 # 20-40 Sand			.72
Cope #3	Canyon	8451	8008-8187 (33)	80,000 gal. CWA, 247,800 # 20-40 Sand			. 70
Соре #4	L.Canyon U.Cisco	8454	8161-8233 (30) 8000-8101 (30)	80,000 gal. CWA , 212,000 # 20-40 Sand 80,000 gal. CWA,	158 BOPD 1036 MCF		.73 .72
			0000 0101 (30)	$240,000 \ \# \ 20-40 \ \text{Sand}$			•

ł

ł

ł

 X-RAY DIFFRACTION

<u> </u>	L					1	Mine	eral	Per	cent	age	s							
Sample Identification	Quartz	Feldspar	Calcite	Dolomite	Siderite	Anhydrite	Gypsum	Pyrite	Barite	Kaolinite	Illite	Chlorite	Montmorillonite	Mixed Layer Illite/Mont.	Mixed Layer Chlorite/Mont.	Total	15% HCl Solubility (%)	15% HCL Soluble Iron Content (%)	
7628 ft	81	4		5	6					tr		1		3		100	10.4	2.98	
7644 ft	88	7			1							1		3		100	4.0	D.57	
7659 ft	81	4		1	10					1				3		100	17.0	p.67	
7681 ft	86	7			2					tr		1		4		100	4.6	1.15	

Comments: All four samples are feldspathic, fine-grained sandstones, with slightly expandable interstitial clay. The siderite is most likely acting as a commenting agent.

WATER ANALYSIS FROM THE WESTERN COMPANY SERVICE LABORATORY

Density	1.064 @ 73 ⁰ F				
РН	5.5				
Iron	Good Trace				
Sodium & Potassium	32930 ppm				
Calcium	3000 ppm				
Magnesium	632 ppm				
Chloride	56400 ppm				
Hydrogen Sulfide	None				
Bicarbonate	451				
Sulfate	1710				

Resistivity = 0.116 ohm-meters @ $73^{\circ}F$. The Stiff-Davis Equation indicates this water to have a stability index of -0.75. A positive index indicates a tendency toward calcium carbonate deposition.

The calculated minimum saturation value for calcium sulfate 30.015 MEQ/L analysis indicates this water contains 35.568 MEQ/L. Therefore, calcium sulfate deposition is indicated.

l

Conger (Penn) Field Sterling County, Texas

Operator:	Stolz, Wagner & Brown
Well:	Hildebrand 904 L
TD:	8084
Upper Perf:	7551
Lower Perf:	7672

PRODUCTION HISTORY

YEAR	ANNUAL/MONTH	GAS/MCF	COND/BBLS.
75	JAN	0	0
75	FEB	0	0
75	MAR	0	0
75	APR	0	0
75	MAY	0	0
75	JUN	0	0
75	JUL	9073	198
75	AUG	19136	456
75	SEP	1486	36
75	OCT	27240	587
75	NOV	21497	530
75	DEC	21172	371
75	ANNUAL	99604	2178
76	JAN	18989	304
76	FEB	13212	245
76	MAR	13737	272
76	APR	2029	40
76	MAY	19270	364
76	JUN	15577	284
76	JUL	14026	261
76	AUG	12166	211
76	SEP	12505	53
76	OCT	5483	24
76	NOV	11664	51
76	DEC	7219	30
76	ANNUAL	145877	2139
7 7	JAN	4068	18
77	FEB	3931	44
7 7	MAR	4862	57
77	APR	4421	51
77	MAY	5406	59
7 7	JUN	5406	106
77	JUL	4941	69
77	AJG	6544	56
77	SEP	5621	45
77	CCT	5352	50
77	NOV	5207	27
77	DEC	4917	70
77	ANNUAL	60676	652

Conger (Penn) Field Sterling County, Texas

Operator:	Stolz, Wagner & Brown
Well:	Hildebrand 1018
TD:	8244
Upper Perf:	7695
Lower Perf:	8109

PRODUCTION HISTORY

YEAR	ANNUAL/MONTH	GAS/MCF	COND/BBLS.
75	JAN	0	0
75	FEB	0 0	0
75	MAR	0	0
75	APR	0	0
75	MAY	0	0
75	JUN	0	0
75	JUL	8064	418
75	AUG	6270	355
75	SEP	4561	256
75	OCT	4126	21.0
75	NOV	648	38
75	DEC	4840	183
75	ANNUAL	28509	1460
76	JAN	2074	36
76	FEB	5277	162
76	MAR	6022	196
76	APR	5897	194
76	MAY	6289	196
76	JUN	5085	152
76	JUL	6360	195
76	AUG	5588	160
76	SEP	6216	272
76	OCT	2694	120
76	NOV	3926	176
76	DEC	3885	164
76	ANNUAL	59313	2023
77	JAN	2920	134
77	FEB	2172	204
77	MAR	2040	19
77	APR	1925	173
77	MAY	959	124
77	JUN	2570	246
77	JUL	2372	204
77	AUG	2155	187
77 77	SEP	1692	188
77 77	OCT	1565	155
77 77	NOV	2081 1660	208 193
77 77	DEC	24111	2035
11	ANNUAL	24111	2030

PRODUCTION DATA

Conger (Penn) Field

Sterling County, Texas

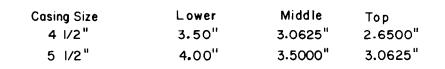
Operator:	Stoltz, Wagner & Brown
Well:	Hildebrand 7
TD:	8092
Upper Perf:	7461
Lower Perf:	7826

PRODUCTION HISTORY

YEAR	ANNUAL/MONTH	GAS/MCF	COND/BBLS.
75	ANNUAL	144190	3616
76	JAN	23730	218
76	FEB	20680	171
76	MAR	18845	166
76	APR	17386	154
76	MAY	17476	147
76	JUN	18369	148
76	JUL	17867	148
76	AUG	16847	131
76	SEP	17429	55
76	OCT	92 73	30
76	NOV	15402	49
76	DEC	16593	51
76	ANNUAL	209897	1468
77	JAN	16076	53
77	FEB	13279	116
77	MAR	13874	127
77	APR	14494	137
77	MAY	15086	136
77	JUN	13991	140
77	JUL	13198	130
77	AUG	14907	106
77	SEP	13140	85
77	OCT	8537	65
77	NOV	639	3
77	DEC	13473	159
77	ANNUAL	150694	1257
78	JAN	12749	158
78	FEB	12519	139
78	MAR	13812	110
78	APR	11493	. 69
78	MAY	11109	151
78	ANNUAL	61682	627

RESERVOIR PROPERTIES	
Bottom Hole Pressure	1250 psi
Bottom Hole Temperature	155 ⁰ F
Formation Porosity	10%
Formation Permeability	.5
Rock Young's Modulus	5.5E to 6
Well Depth	8100'
Reservoir Fluid Viscosity	.02
Frac Gradient	.65
Drainage Radius	1320'
Formation Permeability to frac fluid	.06
Frac Heights Considered	50, 100, 200

TABLE 7A


FRAC FLUID PROPERTIES AT BOTTEM HOLE CONDITIONS Cross-Linked Gel 1.0 cp Fluid Leak-off Viscosity .l cc Spurt Loss N' .52 к' .015 Fluid Leak-off Coefficient C III .0039 FT/SQR (min) 1.02 Specific Gravity 1.00 BTU/lb_f Specific Heat Cross-Linked Gelled Weak Acid . Fluid Leak-off Viscosity 1.0 cp .1 cc Spurt Loss Ν' .53 .11 K' .1 cc Spurt Loss Fluid Leak-off Coefficient C III .0017 FT/SQR (min) 1.1 Specific Gravity 1.00 BTU/lbf Specific Heat

INJ RATE	FRAC HEIGHT	FRAC VOLUME	FRAC LENGTH	FRAC WIDTH	4re	PI CONSTRAST	J/Jo
BPM	FT	GAL	FT	IN			
15	50	10,000 20,000 30,000 40,000 50,000 60,000	228 340 430 500 575 640	.155 .176 .192 .202 .210 .218	.17 .26 .33 .38 .44 .48	.68 .68 .68 .68 .68 .68	2.91 3.46 3.82 4.0 4.19 4.28
	100	10,000 20,000 30,000 40,000 50,000 60,000	119 174 216 250 285 311	.136 .161 .172 .177 .182 .190	.09 .13 .16 .19 .22 .24	.68 .68 .68 .68 .68 .68	2.37 2.82 3.0 3.09 3.37 3.46
25	100	10,000 20,000 30,000 40,000 50,000 60,000	138 205 255 300 340 378	.155 .183 .194 .207 .217 .223	.10 .16 .19 .23 .26 .29	.68 .68 .68 .68 .68 .68	2.68 3.0 3.09 3.37 3.46 3.59
	200	10,000 20,000 30,000 40,000 50,000 60,000	74 108 134 158 178 197	.152 .161 .166 .175 .183 .199	.06 .08 .10 .12 .13 .15	.68 .68 .68 .68 .68 .68	2.0 2.3 2.68 2.80 2.82 2.95
40	100	10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000	153 230 295 350 400 441 490 530	.179 .207 .225 .237 .248 .255 .263 .270	.12 .17 .22 .27 .30 .33 .37 .40	.68 .68 .68 .68 .68 .68 .68 .68	2.80 2.91 3.37 3.48 3.64 3.82 3.90 4.14
	200	10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000	82 121 153 181 205 227 249 269	.150 .167 .180 .191 .199 .206 .212 .217	.06 .09 .12 .14 .16 .17 .19 .20	.68 .68 .68 .68 .68 .68 .68 .68	2.0 2.37 2.80 2.85 3.0 3.05 3.09 3.32

COMPUTER DESIGN, CROSS-LINKED GEL, MINI-MAX II

COMPUTER DESIGN, CWA-3

INJ RATE	FRAC HEIGHT	FRAC VOLUME	FRAC LENGTH	FRAC WIDTH	4/re	PI CONTRAST x 10 ⁴	J/Jo
BPM	FT	GAL	FT	IN			
15	50	10,000 20,000 30,000 40,000 50,000	295 463 600 730 845	.302 .344 .380 .405 .425	.22 .35 .45 .55	1.2 1.2 1.2 1.2 1.2	3.64 4.55 5.14 5.51 5.73
	100	60,000 10,000 20,000 30,000 40,000 50,000 60,000	950 154 240 311 380 425 480	.441 .265 .305 .338 .396 .377 .392	.72 .12 .18 .24 .29 .32 .36	1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	5.82 2.91 3.41 3.82 4.05 4.32 4.55
25	100	10,000 20,000 30,000 40,000 50,000 60,000	160 255 335 400 465 530	.296 .347 .380 .405 .424 .443	.12 .19 .25 .30 .35 .40	1.2 1.2 1.2 1.2 1.2 1.2 1.2	2.91 3.42 3.82 4.18 4.55 4.91
	200	10,000 20,000 30,000 40,000 50,000 60,000	87 135 175 210 240 270	.281 .311 .340 .360 .379 .394	.07 .10 .13 .16 .18 .20	1.2 1.2 1.2 1.2 1.2 1.2 1.2	2.18 2.78 3.0 3.19 3.41 3.55
40	100	10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000	170 270 365 430 500 540 625 680	.337 .394 .436 .460 .484 .496 .520 .535	.13 .20 .28 .33 .38 .41 .47 .52	1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	3.0 3.55 4.01 4.33 4.73 4.95 5.19 5.46
	200	10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000	90 144 190 225 260 295 330 360	.281 .314 .351 .371 .389 .407 .422 .434	.07 .11 .14 .17 .20 .22 .25 .27	1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	2.18 2.80 3.1 3.2 3.55 3.64 3.82 3.96

CAST IRON CASING RING & BOMB