EQUIPMENT FAILURE AND CORROSION CONTROL PROGRAM

Ralph J. Harding III - Jerry L. Tabb Texaco USA

ABSTRACT

This paper discusses the methods currently used by Texaco's Midland Producing Division to monitor and reduce equipment failures and chemical usage. The cost effectiveness of the program is readily apparent having resulted in a 50+ percent reduction in the failure and maintenance cost from the first quarter 1986 to the second quarter 1989.

The items presented in the paper include the methods of reporting, tracking, and reviewing equipment failures and chemical usage. Included in the presentation are examples of surface and subsurface failure reporting forms, equipment failure data base, chemical selection and testing criteria outline, monthly chemical reporting format, quarterly meeting format, and report of special equipment being tested.

INTRODUCTION

During the late 1980's, various groups within the company had successfully utilized a prototype Equipment Failure System (EFS) mainframe program and quarterly meetings to monitor downhole failures. It became readily apparent that use of such a system could result in an improvement throughout the Division. Over the past four years the EFS program and quarterly meetings have been improved and expanded to all the Areas in the Midland Producing Division, resulting in a 50+ percent reduction in downhole failure rates and failure costs from the first quarter 1986 to the second quarter 1989.

The goals of the Equipment Failure Program were threefold: (1) to reduce failures and failure expense, (2) to optimize maintenance repair expense, and (3) to assist in evaluating the chemical program. These goals were accomplished by accurate identification of failure cause, monitoring with the EFS Computer Program and through Quarterly Meetings in the respective Areas.

DISCUSSION

The Equipment Failure System data base is separated into two parts, surface failures and sub-surface failures. Although the sub-surface portion is used by all the Area offices in the Midland Producing Division, the surface failure portion is used only by a few Areas at this time. For purposes of this paper we are going to concentrate mainly on the sub-surface portion.

ACQUISITION AND STORAGE OF FAILURE DATA

The first step in an effective failure control program is the accurate identification of the failure. This is the single most important factor in correcting the problem. In the past many failures were attributed to improper or insufficient chemical treatment when in fact the real problem was a mechanical problem that no amount of additional chemical would eliminate. An example would be corrosion pitting along a rod wear line. This type of failure was often attributed to corrosion and the chemical treatment volume or frequency was increased accordingly. Adding sinker bars, slowing the unit down, or installing a smaller pump are better alternative corrective actions. The corrosion probably would not have occurred if the rod had not scored the tubing, wearing off the inhibitor film.

To assure proper cause identification, many Areas require the Foreman, Engineer, and Chemical Company representative to all examine the failure. If the cause and corrective action is not readily apparent, a piece of the failed equipment is sent to the Texaco Research Lab in Houston for analysis. In addition to requiring all parties to visually inspect the failure, emphasis was placed on correcting the problem before hanging the well back on even if this resulted in one or two days downtime. Foremen also maintain a list of recommended changes to equipment and operating parameters which will be implemented after the next failure for wells that are historically "problem" wells. When a well on the list fails, the Foreman checks with all parties involved to be sure the recommendation for corrective action is still valid.

Once the failure and cause have been identified, the Foreman completes a Sub-Surface or Surface Equipment Failure form (Tables 1 and 1A). Input data for the form includes the lease name, well number, date, depth of failure, failing equipment, well type, location of failure, code for pulling unit and crew, optional comments, and costs including labor, equipment, and maintenance. The forms are sent into the office for review by the Area Corrosion Technician and Field Engineer prior to input into the Equipment Failure System data base.

Data in the EFS data base can be retrieved in a variety of different report formats, both detail lists and summary type. The reports can also be pulled by Division, Area, Sub-Area, lease, or individual well. The most essential reports are the Problem Well Report (Table 2) and Repeat Failure Report (Table 3). The problem well report actually allows the user to define a problem well. Texaco defines a problem well as one that has two or more failures of the same equipment type or four failures of any type in the last 12 months with at least one of those failures occurring in the current quarter. A repeat failure is defined as two or more failures of the same equipment type occurring within six months, with at least one of them occurring in the current quarter. Wells that appear on these reports are carefully analyzed and evaluated to determine the most cost effective action to reduce the failures and associated costs on these wells.

Another report that is useful lists failures by equipment type, location, and cause (Table 4). With this report contractor performance can also be evaluated. For example, all improper makeup (IMU) failures can be reviewed for a given time period to determine if the make-up procedure of a particular pulling unit crew may be responsible for excessive IMU failures. If this happens, the crew will be reminded of Texaco's recommended rod handling procedures. If the problem is not corrected, their services may be terminated.

In addition to the above, the computer also aids in tracking the performance of particular equipment being tested. By using the comment section, the metallurgy or manufacturer of specific test items can be indicated and compared with other products currently being used (Table 5).

REVIEW OF FAILURE DATA

The information stored in the data base is used to generate reports and graphs for the quarterly meetings on both Area and Sub-Area basis (Tables 6 through 13). Most of the meetings are attended by the Division Corrosion Engineer, Area Manager, Senior Engineer, Production Supervisors and Foremen, Field Engineers, and Field Technicians. The cross-section of personnel that attend the meetings help disseminate information, technology, and techniques between Area offices and provide a forum to discuss the benefits and concerns (regarding solutions to problems) by drawing on the experience and knowledge of other personnel in the Area. The purpose of most of the graphs and tables in the report is for historical comparison and thus serves as an indicator of progress compared to previous quarters.

Much of the emphasis in the meetings focuses on the Problem Wells. The Problem Well Sheet (Table 14) concentrates attention on wells which have an extraordinary number of failures and expenses. Prior to the meeting a Field Technician is sent to each of the problem wells to gather operating data, shoot fluid levels, and run dynamometer cards. During the meeting the data is reviewed and a plan of action is formulated. This action may be an immediate change or one to be performed at the next failure. Examples of immediate action are slowing the unit down, lengthening the stroke, increasing inhibitor or treatment frequency, etc. Examples of action to be taken at the next failure are: reduce the pump size, install a charger valve, install fiberglass rods, etc.

Other ideas and suggestions which arise from the meeting must be further evaluated before implementing. This requires a cooperative "team effort" between Foremen and Engineers.

The effectiveness of the chemical treating program can also be seen at the quarterly meetings. Where the cause of failures on a particular lease or group of leases is described as corrosion, the chemical program is reviewed by the Foreman and Engineer. Together they can determine whether there is insufficient inhibitor being used, if the treating method is incorrect, if wells are being skipped by the vendor, etc. Naturally, leases being over treated will not be identified by this method.

The meetings also help evaluate the need for training of both Texaco personnel and vendor personnel. Several seminars have resulted from suggestions made in the quarterly failure meetings. Some of the seminar topics included downhole pump schools, paraffin treating schools, tubular and vessel coating seminars, dynamometer card interpretation schools, etc. Pulling unit crews have attended rod and tubing handling seminars.

CHEMICAL TREATMENTS

Chemical treatment must be justified before a program is established. The Midland Producing Division does not encourage chemical treatment for "insurance" purposes. Before a treatment program is established, vendors must first run chemical screening tests as outlined in Company guidelines (Table 15). These requirements help assure that the most cost effective chemical is selected, whether it is a corrosion or scale inhibitor, demulsifier, paraffin solvent, biocide, etc. When obtaining a proposal several vendors are solicited for treating recommendations. The one which is considered most cost effective (quality of service and technical competence included) is then selected for the job. NOTE: The lowest cost chemical proposed is not necessarily the one selected.

REVIEW OF CHEMICAL USAGE

Closely related to the failure program is the Chemical Usage Report that is provided monthly by the vendors. This PC-generated report, required from the vendors by Texaco, allows a quick well-by-well look at the chemical treating program (Table 16). Some of the specific information provided on the report is treatment volume, treatment frequency, flush volume, target and actual ppm rates, coupon data, and date of last failure including whether the failure is corrosion related or not. In most cases an entire lease can be reviewed in a couple of minutes to determine if all treatments are within the set limits. A little additional time spent reviewing the form can identify areas where a reduction in chemical usage may be possible and specific wells may be selected to test the feasibility of reducing treatments. Another valuable aspect of the monthly chemical usage report is that it forces the vendor to optimize his recommended program and keeps him more abreast of production changes.

One Area office in the Midland Producing Division currently holds Quarterly Chemical Usage Meetings which are attended by the Division Corrosion Engineer, Area Manager, Senior Engineer, Production Supervisors and Foremen, Field Engineers, and the respective chemical company representative. In these meetings the chemical treating program on each lease and well is reviewed. The review includes items such as bacteria, oxygen, scale, corrosion, paraffin, emulsions, and surface treating. In several fields the use of chemicals has been totally eliminated as a result of these reviews and subsequent testing. In other locations more effective chemicals or application methods have been found.

REPORT OF SPECIAL EQUIPMENT BEING TESTED

Once each quarter Engineers update a list of non-routine equipment being tested in their Area (Table 17). Examples of items considered reportable are: specific name brands of roller rod guides, special couplings, sand screens, charger valves, coatings, etc. The reports are compiled at the Division level and disseminated back to each Area. In this manner each Area benefits from the experience of the others without spending time and money "re-inventing the wheel."

FUTURE PLANS

Work is currently in progress on a PC version of the EFS data base which will have much more versatility than the existing mainframe version. The PC version will be able to access other data bases, such as production, well status, etc., and generate reports and graphs in a format for presentation at the quarterly meetings. This will result in a significant manpower savings in preparing the quarterly reports.

With the elimination of most of the "repeat failures" and "problem wells," more engineering time will be devoted to the design and metallurgy of specific equipment in order to achieve the most cost effective run times and to reduce power consumption.

Based on the success of the quarterly chemical meeting in the one Area, other Areas in the Division plan to start conducting similar meetings.

SUMMARY

Through the use of a computer data base, team effort, and structured operational procedures, the failure rates and associated costs have been reduced over 50 percent from the first quarter of 1986 through the second quarter of 1989. The Division-wide failure rate is approximately 0.70 failures per **pumping** well per year and the trend is still downward.

		LEASE OR PROPERTY NAME		
SUB-SURFACE EQUIPMENT	FPORT	PENWELL UNIT		
TITLE NO.	WELL NO.	RESI	ERVOIR	DATE
96254307	- 1357	s C(
F ROD Sucker Rod POR Polish Rod A HSR Hollow Sucker Rod I HSR Hollow Sucker Rod I GLV Gas Lift Valve PMP Pump, Rod R SPM Subm. Cent. Pump PKR Packer U REG Regulator D ANC Anchor A CSG Casing T RDG Sucker Rod Guide R MND Remedial WR Well Record MNT Maintenance OTH Other (w/Remarks)	FG Flowing Gas FO Flowing Oil GL Gas Lift PO Pumping Oil GI Gas Injection WI Water Injection WS Water Source WD Water Disposal PG Pumping Gas PG Pumping Gas PMP A MTR CBL UC CBL UC CBL CD CD CD CD CD CD CD CD CD CD	Body Upset Pin Coupling Barrel Plunger Pull Tube or Rod Valve Cage Ball & Seat Mandrel Pump (Subm.) Protector (Subm.) Cable (Subm	Corrosion Fatigue Internal Corrosion External Corrosion Embrittlement Tensile Yield Wear Unscrewed Improper Make-up Electrical Scale Sand Mud Paraffin Salt Other (w/Remarks)	DEPTH OF FAILURE 3732 COST OF FAILURE LABDA & EQUIPMENT 1944 MATERIALS 109 COST
P z ROD Sucker Rod R • POR Polish Rod E I HSR Hollow Sucker Rod V TBG Tubing E GLV Gas Lift Valve T M PMP Pump, Rod I T HPM Hydraulic Pump	SPM Subm. Cent. Pump M RMN PKR Packer N VIN REG Regulator N EIN ANC Ancnor N CPA CSG Casing N N RDG Sucker Rod Guide N OTH Other VIN N	Routine Mainten. (UPG) Visual Inspec. HYT Electronic Inspec. STM Cut Paraffin OTH) Upgrade Hydraulic Test Steam Other (w/Remarks)	LABOR & EQUIPMENT 150 MATERIALS 2257
V E B DOR DOR DOR DOR DOR DO DO DOR DO DO DOR DO DO DO DO DO DO DO DO DO DO DO DO DO	SPM Subm. Cent. Pump H RMN PKR Packer REG Regulator ANC Anchor CSG Casing RDG Sucker Rod Guide OTH Other	Routine Mainten. UPG Visual Inspec. HYT Electronic Inspec. STM Cut Paraffin OTH	Upgrade Hydraulic Test Steam Other (w/Remarks)	COST LABOR & EQUIPMENT 150 MATERIALS 500
N A ROD Sucker Rod V POR Polish Rod HSR Hollow Sucker Rod F TBG Tubing D GLV Gas Lift Valve A N FMP Pump, Rod T T HPM Hydraulic Pump	SPM Subm. Cent. Pump PKR Packer REG Regulator ANC Anchor CSG Casing RDG Sucker Rod Guide OTH Other	Routine Mainten. UPG Visual Inspec. HYT Electronic Inspec. STM Cut Paraffin OTH	Upgrade Hydraulic Test Steam Other (w/Remarks)	COST LABOR & EQUIPMENT 35 MATERIALS 1300
REMARKS: Tested tubing. S Add 4-1 1/2" K bars.	Split 4 jts above SN. Add Replaced 40 - 7/8" cplg.	led 9 roller rod gui	.des. Signe	D: ark Male
			P.U.	code:

TABLE 1

. . .

SOUTHWESTERN PETROLEUM SHORT COURSE - 90

-

471

5
N

SOUTHWESTERN PETROLEUM SHORT COURSE - 90

	LEASE OR PROPERTY NAME
JRFACE EQUIPMENT	
ALLURE AND MAINTENANCE REPORT	PENWELL UNIT
TITLE NO. WELL NO.	GROUP DATE MONTH DAT YEAR
6 2 5 4 3 0 7	T B - 1 0 7 2 1 8 9
	LOCATION CAUSE
EQUIPMENTSERVICEFUNFlowline, Injec, LineOILOILSEPSeparatorGASGasHTTHeater-TreaterICondensateKNOKnock-OutWTRWaterLHNLine HeaterAIRAirTNKTankPHYProcess Hydorbh.CHKChokeCHMChemical (Rmks)VALValve (Rmks)GLVGlycol (Rmks)METMeterAMNAmice (Rmks)PIPPiping (Facil., Pits.)ABOAbsorption Oil (RiFILFilterHTOHeating OilDBDDry-Bed DehydratorSTMSteamABSAbsorberRFGRefrigerant (Rmks)GNTContactorTRTTreatingFRCFractionatorSETSettlingSTBStabilizerDSIDesaltingSTLStiliA/PAir/ProcessBLRBoilerS/PSteam/ProcessRGNRegeneratorP/PProcess/ProcessFRHFired HeaterWTIWater InjectionACMAccumulatorGSIGas InjectionFLTFlash TankARIARI In injectionSTTSurge TankLSFLease FacilitiesCNIControl InstrumentELPElectric Power	BDVBody THOInternal Corrosion EXTRmks)CPLCoupling WLDECLExcessive Loading ECPWLDWeld' WLDECPExcessive Preasure ECPNZLNozzle NozzleECHExcessive Heat EMBRmks)TBETube TubeEMBRmks)TBETube TubeEMBBWHBolting/Hardware ShellILBBitstering Improper/No Lub.KS)MDDMud Drum Mud DrumWERWesSand CSCScas Section SCLScaleGSSGas Section GSSSNDSand CARGSSGas Section RCH Cross-Head PSRCARCarbon OTHsPIRPiston Rod ROP Rod PackingOTHpSTPiston Piston RDTBLTBelts SHFSHFShaft PARParaffin CAR CAR CarbonsPIRPiston Rings CYLCYLcylinder/Liners VAVValves (Rmks) BLTBureBLTBelts SHFShaft PARSPPSpark PlugsHum
ENG Engine (Rmks) PMD Pump Drive	RAD Radiator COST
PMP Pump (Rmks) GND Generator Drive CMP Compressor PUD Pumping Unit Drive	SMT Starting Motor Outside Service CLH Clutch
GEN Generator BTD Bost Drive PMU Pumping Unit OTH Other (Rmks)	MAG Magneto ELS Electrical Sys. 1800
BOT Bost OTH Other (Rmks)	CLS Cooling Sys. HYS Hydraulic Sys. LDS Lubelastics Sus
TVPE FXPENSE	FIL Filter (Rmks) 300
	TRC Turbocharger IMP Impeller Materials
(FLR) Failure	GRB Gear Box
MNT Maintenance MJO Maior Overbaul	HDH Hull/Deck/Housing 1000
REMARKS	SIGNED
Tank & Internal Coating 9 years old. Coating is beginni	ig to A 24 1
neel off. Blasted and recoated tank	- v y many
peer off. Brasted and recoaced cank.	
	· · · · · · · · · · · · · · · · · · ·

TABLE 1A

DATE RU	N 01/0	3/9	0			SUB~	SURFA	CE EQUIP	PMENT FAILL Ref	IRE PROBLEM	WELL DETAIL LISTING 012	PAGE 9
			D I M I	STRI	ICT 2 ND				AREA 1 ODESSA		SUBAREA2 PENWELL	
PROPERT	Y NUMB	ER	9625	4307	,	PRO	PERTY	NAME: F	PENWELL UNI	т	RESERVOIR CODE: WELL NUME	BER 1357 00
DATE	FA EQP S		LOC	ATA CSE	DEPTH	MA EQP	INT TYP	COST LAB-EQP	COSTS MATRLS	TOTAL COST	REMARKS	
7/07/88	PMP P	0	PLG	WER	3800			480	247	727	CHANGED PUMP. RINGS ON PLUNGER WERE WORN C KU~3	DUT.
11/17/88	TBG P	0	BDY	INT	3820	отн	RMN	2460 550	140	2600 550	TBG LEAK. TAG ^{'BTM} . SHEARED TAC. CO 20' OF W/HYD BLR. REPL TAC & PMP. KU-3	SAND
						ANC PMP	RMN RMN	35 35	392 443	427 478		
12/02/88	POR P	0	BDY	отн	16			464	120	584	CLEAN SMOOTH BREAK W/NO SIGNS OF SEVERE CO SENT SAMPLE FOR ANALYSIS. KU-846	DRROSION.
2/25/89	PMP P	0	BRL	WER	3820	RDG	UPG	702	2600	3302 1955	INST 2 S/O RDG/ROD. CHG 12 1" CLP,HVY WALL PUMP BRL COLLPSD (WEAR) PLG CORROSION, KL	BRASS 1-3
						ROD	RMN		137	137		
4/01/89	TBG P	D	BDY	WER	3732			1944	109	2053	TST TBG. SPLIT 4JASN. INST 9 ADD'L RLR RDG 1-1/2 KBARS. REP 40 7/8 CPLS, PMP & ANC.	G.4 ADD'L Ku-3
						RDG ROD PMP ANC	UPG RMN RMN RMN	150 150 35 100	2257 500 1300 570	2407 650 1335 670		
5/16/89	TBG P	D	отн	отн	3600			1945	109	2054	TSTD TBG W/PMP TRK~LEAKED. EST. FAIL. @360 NEW STRNG OF 2-7/8 TBG. CHG PMP & TAC. KU)O. RAN J-3
						TBG ANC PMP	UPG RMN RMN	400 35	12768 59 2800	13168 94 2800		
									_	35991		
					ì							
					.*'							

WELLS WITH FAILURES EQUAL TO OR GREATER THAN: 2 - ROD: OR 2 - TBG: OR 2 - PMP: OR 2 - HPM: OR 2 - SPM: OR 4 - TOTAL

TABLE 2

SOUTHWESTERN PETROLEUM SHORT COURSE - 90

473

YEAR ENDING: 6/30/89

90-01-03 14:56:12

DIVISION	: 6 MIDLA : 2 MIDLA	ND ND				AI SI	REA:	1 EA: 2	ODESSA PENWELL COST			
WELL	DATE	EQU	FAI SVC	LURE LOC	CSE	DEPTH	M. EQP	AINT TYP	LABOR EQUIP	COST MATRLS	TOTAL COST	CONTROL REMARKS
PROPERTY	962541	25 E	CTOR	FEE	UNIT	11		RESE	RVOIR CO	DE:		
9	042489	TBG	P 0	CLP	WER	12000			3206	236	3442	2JT OF 1-1/4 10RD IJ SPLIT IN CPL AREA DUE TO WEA FROM RUNNING TBG. KU-3
9	051389	TBG	PO	CLP	WER	12000	НРМ	RMN	2972	986 118	986 3090	19 DS TBG UP'S & PINS (SEV WER-COULD NOT MAKE UP) NEW
							ТВG НРМ	UPG RMN	700	46238 986	46938 986	
ROPERTY	962543	07 P	ENWE	LL UN	IT			RESE	RVDIR CC	DE:		
1357	040189	TBG	PO	BOY	WER	3732			1944	109	2053	TST TBG. SPLIT 4JASN. INST 9 ADD'L RLR RDG.4 ADD' 1-1/2 KBARS. REP 40 7/8 CPLS, PMP & ANC. KU-3
							RDG	UPG	150	2257	2407	
							ROD	RMN	150	500	650	
							PMP	RMN	35	1300	1335	
1357	051689	TBG	P0	отн	отн	3600	ANC	KWN	1945	109	2054	45 DS TSTD TBG W/PMP TRK-LEAKED. EST. FAIL. @3600. RAP NEW STRNG OF 2-7/8 TBG. CHG PMP & TAC. KU-3
							TBG	UPG	400	12768	13168	
							ANC	RMN	35	59	94	
							PMP	RMN		2800	2800	
2314	042189	TBG	P0	BDY	WER	3555			2490	981	3471	TBG SPLIT 9 JASN, ROD WEAR. BUSTED BJT TSTG. RAN ADD'L KBARS & 8 ADD'L RLR RDG. REP. PMP. KU-14
							ANC	RMN	35	570	605	
							ROD	UPG		692	692	
							RDG	DMN	35	1466	1460	
2314	061889	TBG	PO	BDY	WER	3447	r mr	remote the second se	1524	115	1639	58 DS REPL TBG STRG. RAN 4 ADD'L KBARS & 8 ADD'L RLR RDG. KU-14
							TBG	RMN	300	13594	13894	
							RDG	UPG		1498	1498	
							PMP	RMN	35	63	98	
							KUD	UPG		097	092	
4248	042189	РМР	PO	BS	WER	4264			510	41	551	CHANGED PUMP. KU~6
4248	050689	РМР	PŌ	отн	отн	4278			924	41	965	15 DS PUMP CHANGE. INSTALLED 6 - 1-1/2" K-BARS. NO REASON FOR FAILURE. KU-14
							RÓD	UPG		1038	1038	

SUB-ARE	A REPE	AT FAILU	IRE TOTAL	"S *
c	OUNT	CLE	СМ	TOTAL
ROD TBG NEXT FI	3 N	6441	342	6783

TABLE 3

 η

474

PAGE

1

EFSB23 - DET. DIVISION: 6 DISTRICT: 2	AIL/SUM MIDLAND MIDLAND	MARY	FOR	EQU		AREA SUB-	DDAS A: 2 MII -AREA: (DLAND D		
DATE RANGE # R WELL C PNNNNCCSS	0101018 DATE	9 - EQP	1231 SVC	89 : LOC	#2 0 CSE	00000 DEPTH	- 00000 COST LABOR EQUIP	00 #3 COST MATERLS	000000 - TOTAL	- 000000 REMARKS
11	081889	ROD	 РО	CLP	IMU	24	286	41	327	PONY ROD WAS PARTED; FISHED AND RETURNED TO PROD. (K.U. #4)
28	041089	ROD	PO	CLP	IMU	850	507	18	525	OLD HAMMER MARKS ON CPL. KU 41
63	073189	ROD	PO	CLP	IMU	200	477	18	495	(K.U. #16)
79	033189	ROD	PO	CLP	IMU	900	382	13	395	FISH & HANG ON KU 38
98	031889	кор	PO	CLP ROD	IMU VIN	1500	1623 0	29 180	1652 180	STRIPPING JOB, REPLACED 6 RODS, KU 31
98	061589	ROD	PO	CLP	IMU	1400	382	39	421	FISH & HANG ON. KU 34
469	060589	ROD	PO	CLP	IMU	500	412	38	450	KU 34
534	050389	ROD	Р0	CLP	1 MU	50	380	18	398	CLP APPREARD TO BE RECONDITIONED W/OLD HAMMER MKS PD 156
546	050489	ROD	PO	CLP	IMU	300	382	18	400	κυ 4
								TA	BIE4	

DATE RUN 01/03/90				SUB-S	SURF	ACE EQUIP	MENT FAIL RE	URE PROBLEM Port no 969	I WELL DETAIL LISTING 0012			PAG	E	21		
			D M	ISTRI IDLAN	ICT 2 ND				AREA 1 ODESSA		SUBAREA2 Penwell					
PROPERT	Y NU	MBER	962	54307	7	PROP	PERTY	NAME: P	ENWELL UN	т	RESERVOIR CODE	: WELL	NUMBER	3313	00	
DATE	EQP	FAIL SVC	URE (LOC	DATA CSE	DEPTH	MA I EQP	NT TYP	COST LAB-EQP	COSTS MATRLS	TOTAL COST	REMARKS					
12/12/88	TBG	P0	BDY	WER	2790			3402	66	3468	TSTD TBG. SPLIT(WEAR W/ CLP, RAN 4 NEW 1-1/2" K	MUDERATE CORR)R -BARS, NEW PMP	EP 35-3 & ANC.	3/4 KU-3		
						TBG	RMN		198	198						
						PMP	RMN	35	1081	1116						
						ANC	RMN	35	135	170						
						ROD	UPG		1155	1155						
5/24/89	TBG	PO	BDY	WER	3500			2572	80	2652	RAN NEW STRNG OF 2-3/8 All CPLGS W/RODCOTE CPL	J55 TBG. RAN 11 GS(WR). REP PMP	RLR RC 8 ANC.	DG,REP KU14		
						TBG	UPG	400	9720	10120						
						ROD	UPG		2394	2394						
						PMP	RMN	35	484	519						
				,		ANC	RMN	35	232	267						
										22059						
					æ1					-2059	• 11					

WELLS WITH FAILURES EQUAL TO OR GREATER THAN: 2 - ROD; OR 2 - TBG; OR 2 - PMP; OR 2 - HPM; OR 2 - SPM; OR 4 - TOTAL YEAR ENDING: 6/30/89

TABLE 5

475

.

477

TABLE 10

ODESSA AREA QUARTERLY SUB-SURFACE EQUIPMENT FAILURE SUMMARY

FA	I	LU	RES
	_		

		2	ND QUA	RTER 1989	/ :	IST QUARTE	R 1989		
	 NU	MBE	R	FAILUR	E (COST \$	\$	PER	FAILURE
Rods	27	/	36	26635	/	50739	98	36 /	1409
Tubing	57	1	53	136566	1	130474	239	6 /	2462
Pump	73	1	77	141571	1	141255	193	19 /	1834
ESP	1	1	2	4601	1	18028	460)1 /	9014
Other	5	1	3	15009	1	4219	300)2 /	1406
Inj/SWD	0	1	2	0	1	5337		0 /	2669
Total	163	1	173	324382	1	350052	199	90 /	2023
% Change	-68	;		-7%			-	-28	

ROUTINE MAINTENANCE

2ND QUARTER 1989 / 1ST QUARTER 1989

			~								
		NO.		FAILUR	E	COST \$	S PER FAILURE				
Rods	21	/	32	39082	/	69820	1861	/	2182		
Tubing	41	1	43	215949	1	214784	5267	1	4995		
Pump	68	1	77	38908	1	58836	572	1	764		
ESP	0	1	3	0	1	10523	0	1	3508		
Other	59	1	75	62582	1	69901	1061	1	932		
Inj/SWD	0	1	1	0	1	960	0	1	960		
Total	189	1	231	356521	7	424824	1886	1	1839		
% Change	-18%	:		-16%			39	ī			

REPEAT FAILURES

		2NI	QUARTER	1989	/	1ST QUARTER	1989			
	NU	MBER		FAILU	RE	COST \$	\$	PER	FA	ILURE
Rods	2	1	5	1043		7796		522		1559
Tubing	3		3	6783	1	5442	2	261	1	1814
Pump	4	1	8	7841	1	14999	19	960	1	1875
ESP	0	1	0	0	1	0		0	1	0
Other	0	1	0	0	1	0		0	1	ō
Inj/SWD	0	1	0	0	1	0		0	1	0
Total	9	/	16	15667	1	28237	1.	741	1	1765
% Change	-448			-45%				-1%		

TABLE 11

SOUTHWESTERN PETROLEUM SHORT COURSE - 90

¥.

ODESSA AREA SUBAREA SUMMARY

SUBSURFACE FAILURES BY EQUIPMENT TYPE

2ND QUARTER 1989 / 1ST QUARTER 1989

SU	BAREA	ROD	S	TUBII	NG	PUMPS	*	OTHER	**	TOTAL			
An Co Ft	dector ncho Stktn	7 / 7 / 1 /	4 6 2	12 / 8 / 5 /	4 10 8	11 / 12 / 8 /	11 13 8	0 / 1 / 0 /	0 3 1	30 / 28 / 14 /	19 32 19		
Ke	rmit	2 /	5 12	2 /	2	14 /	14 12	0/	2	18 / 21 /	23 30		
Pe	nwell	4 /	7	26 /	23	18 /	19	4 /	1	52 /	50		
Tc	tal	27 /	36	57 /	53	73 /	77	6 /	7	163 /	173		
*	Change	-25%		88		-5%		-14%		-6%			

COST PER FAILURE

(Excluding Preventive Maintenance)

2ND QUARTER 1989 / 1ST QUARTER 1989

SUBAREA	RODS	TUBING	PUMPS *	OTHER **	TOTAL	
Andector	721 /2831	2275 / 2265	2104 / 1845	0/0	5099 / 6941	
Concho	1054 /1017	2089 / 2359	2138 / 1781	2830 / 6113	8111 /11269	
Ft.Stktn	658 / 589	2084 / 2568	2403 / 2137	0 / 638	5145 / 5932	
Kermit	832 / 661	2501 / 3255	1317 / 1375	0 / 5401	4649 /10692	
Orla	1088 /1693	3849 / 3116	1981 / 2195	1684 / 0	8601 / 7004	
Penwell	1342 /1217	2375 / 2264	1961 / 1849	8099 /13642	13777 /18972	
Average	986 /1409	2396 / 2462	1939 / 1834	3268 / 3941	1990 / 2023	
% Change	-30%	-38	61	~17%	-28	

^с н. т.				1
	2ND QUARTER 1989	1ST QUARTER 1989	4TH QUARTER 1988	3RD QUARTER 1988
TOTAL TREATED PRODUCTION				
Oil, Bbl Water ,Bbl	866,865 7,414,175	855,751 7,129,687	937,348 8,153,103	982,600 8,597,016
Fluid, Bbl % Change in Total Fluid	8,281,040 4%	7,985,438 -12%	9,090,451 -5%	9,579,616
Water/Óil Ratio Gas Well Gas, MMCF	8.55 5,352	8.33 6,145	8.70 5,061	8.75 7,206
TREATING COST *				
Oil Wells, \$ Gas Wells, \$	310,808 46,045	305,687 32,043	310,721 51,681	292,952 39,020
Total, \$	356,853	337,730	362,402	331,972
AVERAGE COST PER				
Bbl Oil, \$	0.359	0.357	0.331	0.298
MMCF \$ (Gas wells only)	0.038	0.038	0.034	0.031
Month, \$	118,951	112,577	120,801	5.41 110,657

CHEMICAL TREATING COST ODESSA AREA 2ND QUARTER 1989

Remarks: (See individual subarea pages)

* Rod Pumps

** Includes PM's, INJ, SWD

* Includes surface & sub-surface

1

TABLE 12*

1

TABLE 13

MIDLAND DIVISION ODESSA AREA PROBLEM WELL SUMMARY 200 0140TER 1080

PENWELL SUB-AREA												2ND C	UARTE	r 1989									
				PMP												(PREV	/ 12 +	105./0	URREN	T QTR)	PROB	
	PR	RODUCT	ION	DISP	PMP			PUMP	POC	PMP	TBG	ROD	SKR	SN	FLUID					•••••	•	WELL	PROBLEMS AND
LEASE	BOPD	BWPD	MCFD	100%	EFF	SPM	LOS	TIME	Y/N	SIZE	SIZE	DES	BAR	DEPTH	LEVEL	ROD	TBG	PMP	OTH	TOT	COST	QTRS	RECOMMENDATIONS
*****	****	****	****	****	***	****	***	****	***	****	*****	***	***	*****	****	***	, ** * ''∟	***	***	***	*****	****	
W. E. CONNELL NCT-1 WELL NO. 40	10	86	5.7	231	41	7.0	126	24	N	1.50	2.875	76	-	7970	•	0/0	0/0	2/1	0/0	2/1	1701	2	Pump Wear (10 month run).
W. E. CONNELL NCT-2 WELL NO. 162	45	68	7.9	136	83	7.0	128	20	N	1.25	2.875	86	-	9699	-	0/0	1/0	5/2	0/0	6/2	28637	4	Pump problems. Slowed unit down.
ECTOR FEE UNIT WELL NO. 4	17	221	31.0	408	58	9.6	119	24	N	1.75	2.875	86	16 1.62	6534	3969	4/1	0/0	4/0	0/0	8/1	16679	4	Pump wear. Slowed unit down. Excess rod load. Review for FG
ECTOR FEE UNIT II WELL NO. 5	77	178	90.6		UN	IIDRAUL	.1C		И					12000		0/0	0/0	0/0	3/1	3/1	19929	1	FES.
ECTOR FEE UNIT II WELL NO. 6	76	256	125.5		UN	IIDRAUL	.1C		N					12018		0/0	0/0	0/0	2/1	2/1	10360	1	Corrosion. Review corrosion program.
ECTOR FEE UNIT II WELL NO. 9	34	161	77.7		UN	IDRAUL	.1C		N					12059		0/0	2/2	0/0	0/0	2/2	55442	1	Replaced tbg string.
PENWELL UNIT WELL NO. 1357	101	148	·64.9	304	82	7.0	144	15.5	Y	2.00	2.875	87	10 1.5	3856	3856	0/0	3/2	2/0	1/0	6/2	35991	2	Wear. Ran additional K-bars. Replaced tbg string.
PENWELL UNIT WELL NO. 1362	24	174	21.9	181	110	7.4	144	15.5	Y	1.50	2.875	76	6 1.5	3862	3862	2/0	3/0	2/1	0/0	6/1	36352	4	PMP wear. Clean out w/bailer on next failure.
PENWELL UNIT WELL NO. 1364	63	14	49.6	87	88	7.5	144	7.4	Y	1.50	2.875	76	8 1.5	3831	3831	0/0	2/1	0/0	0/0	2/1	23160	1	Tbg wear. New tbg string. Slowed unit down.
PENWELL UNIT WELL NO. 1367	16	337	8.8	392	90	7.0	144	20	Y	2.00	2.875	87	6 1.5	3831	3831	0/0	3/1	0/0	0/0	3/1	31686	2	Tbg corrosion and wear. New tbg string.
					, ¶ -1						г	ABL	E 14					. 1					

•••

1.7.84

480

SOUTHWESTERN PETROLEUM SHORT COURSE - 90

MIDLAND DIVISION GUIDELINES FOR CHEMICAL PROPOSALS

- General Testing Considerations I.
 - A. Compatibility TestB. Comparison TestC. Timing

.

Corrosion Inhibitors II.

- A. Failure AnalysisB. Polymer Breakthrough Analysis (If Applicable)

- B. Folymer Breakthrough Analys
 C. Wheel Tests
 D. Emulsion Tendency Tests
 E. Supporting Operational Data
- III. Scale Inhibitors
- IV. Residence Time Distribution
- v. Demulsifiers
- VI. Water Clarifiers (Reverse Demulsifiers)
- VII. Biocides
 - A. Bacteria Counts B. Time Kill Studies
- VII. Parffin Chemicals
- IX. Scale Removal Chemicals
- Combination Products x.
- System Monitoring XI.

· .

TABLE 15

ĩ

Texaco Inc. Monthly Chemical Usage Report June 1989

Vendor · Any Chemical Company Sales Engineer · Mr. Corrosion Texaco Engineer · Mr. Engineer

*****************			**=======							******			***====			**********	*******	
Lease/Well	Chemical	Chemical	Chemical	\$Truck	Treatment	Chemical	Flush	Total	Target	Actual	F	roduct	ion	Month	y Cost	Coupon	Iron	Last
Name	Name	Туре	Cost ,	or	Freq.	Usage	(Bbls)	Cost	ppm	ppm	BOPD	8WPD	MCFPD	Per	Per	MPY	Count	Failure
			(\$/gal)	Contin.	(stops/mo)	(gal/mo)		(\$/mo.)			<u>"</u> 1 1			BÖ	8F	(Cur/Prev)		(date/*)
			========================			***********		**********	*******		******	******		3222221	=======		******	***********
ANYLEASE UNIT																		
Ratt No. 1	ponn		\$ 8 70	CONT	5	25		\$210.75	60	22	200	700	400	\$ 0_04	\$0.01			
Batt No 2	0700		#0.17 #0.75	AC NEEDED	,	20		\$2/7.50	60	2	1800	8600	2000	*0.04	\$0.00			
BALL NO 2	EN4000	ENTIRETON	\$0.23 \$11 8/	CONT	19	121		\$1 477 44	60	0	1000	0000	2000	\$0.03	\$0.00			
	L14000	ENOLSION	\$11.04	CONT	10	121		¥1,452.04	00	,				40.03	40.00			
1287	COR 1000	Corrosion	\$11.00	\$0.82	4	4	2	\$67.96	50	49	35	29	6	\$0.06	\$0.03			12-01-88*
	B3000	Biodisper	\$9.50			2			20	24								
1356	COR2000	Corrosion	\$9.00	\$0.82	4	12	2	\$167.92	50	53	39	137	22	\$0.14	\$0.03	6.7/8.2	10	11-28-88
	B3000	Biodisper	\$9.50			6			20	27								
1357	COR 1000	Corrosion	\$11.00	CONT	2.49	18.675		\$224.66	60	59	101	148	6	\$0.07	\$0.03			10-9-88*
1358	COR2000	Corrosion	\$9.00	\$0.82	4	8	2	\$117.92	50	46	26	109	14	\$0,15	\$0.03			7-16-88
	P1100	Paraffin	\$6.00		•	4	-		20	23								
						·												
1362	COR1000	Corrosion	\$11.00	CONT	1.76	13.2		\$158.80	60	59	33	143	28	\$0.16	\$0.03	.90/.95		11-09-88
										0								
1363	COR2000	Corrosion	\$9.00	\$0.82	4	8	2	\$117.92	50	59	14	92	143	\$0.28	\$0.04		5	9-22-88
	P1100	Paraffin	\$6.00			4			20	30								
1364	COR 1000	Corrosion	\$11.00	\$0.82	4	4	2	\$67.96	50	40	72	7	11	\$0.03	\$0.03	10.36/12.0		3-3-89
	B3000	Biodisper	\$9.50			2			20	20								

1365

SI

.

* Indicates A Corrosion Related Failure

TABLE 16

EFS - EQUIPMENT EVALUATION

Installation Type Roller Rod Guides Installation Date 4/89
Reason for Installation Reduce Rod/Tbg Wear
Installed Where <u>Test Lease Well No. 3</u>
Supplier Name/Contact XYZ Corp./Mr. Salesman Phone No. 987-6543
Approximate Equipment Cost <u>7/8" x 2 7/8" \$175</u>
Texaco Contact Mr. Foreman Phone No. 123-4567
1) Quarterly Performance Comments: There were 6 roller rod guides
installed in Well No. 3 due to excessive Rod/Tbg wear. There has not been
a failure for 2 months.
2) Quarterly Performance Comments: <u>Well No. 3 has gone 5 months</u>
without a Rod/Tbg failure. Prior to installing the roller rod guides the
well had a Rod/Tbg failure every 45 days.
3) Quarterly Performance Comments: Well No. 3 had a pump failure
7 months after the roller rod guides were installed. The rods and tubing
were inspected and showed no signs of wear, however, the wheels on the
guides were worn and new wheel kits were installed.
4) Quarterly Performance Comments:

TABLE 17

7

÷