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INTRODUCTION 

This paper contains an expository discussion 
of the basic difference equations used in the 
approximate solution of the differential equa- 
tions describing isothermal laminar flow of 
fluids in a reservoir. The discussion will be 
focused on a particular example in which the 
calculations will be fully illustrated. The in- 
terested reader can find more complete dis- 
cussions in the literature. Although Professor 
Douglas’ survey of methods1 is recommended, 
the bibliography in this author’s book2 may be 
used for additional guidance. 

The Darcy flow of a single phase in a hori- 
zontal (gravity is neglected) linear reservoir 
will be described by the partial differential 
equation 

in which the English-American field unit sys- 
tern3 will be used as shown in Table 1. 

TABLE 1 

Symbol 

k 

Name Units 

permeability 

pressure 

time 

distance 

perms (1 darcy=6.329 perm) 

pounds per square inch 

days 

feet 

viscosity 

density 

porosity 

centipoise 

pounds per cubic foot 

diplensionless 

Equation 1 will be discussed in relation to a 
hypothetical one-dimensional reservoir which 

is 100 feet long. Suppose the porosity to be a 
constant 0.20 and suppose the permeability to 
be 10 millidarcies (= 0.010 darcies). Suppose 
the pores of the reservoir to be filled with a 
homogeneous fluid having a viscosity of 0.3164 
centipoise (roughly water at 95OC). Suppose 
the density of this fluid is described by 

p = 60.0 exp [O.Ol (p - lOOO.O)] . (2) 

The above specifications of viscosity and den- 
sity are not intended to precisely represent 
any liquid. That is, these specifications are 
designed to give definite values for illustration 
instead of genuine representation of a specific 
fluid. 

Discussion of the above reservoir and the 
fluid it contains will begin with the solution of 
a simplified reservoir flow problem in order 
that the results can be used for comparison 
with approximate results obtained by finite 
difference methods. Several methods will be 
compared to a limited extent with an intuitive 
feeling about these difference methods as a goal. 

CLOSED FORM SOLUTION 

The slightly compressible fluid described by 
(2) requires that pressure should be eliminated 
from (l).* Since (2) implies that 

and the chain rule implies that 

(1) can be written as 

(5) 

*Numbers inparentheses refer to appropriate equation. 
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Next, substitute +J = 0.20 and 

l (6) k/p = (6.329) (0.01) / (0.3164) = 2.00 x 10‘ 

to write (5) as 

o.oozg-= 0.200 z!t . 
ax2 

That is, 

(7) 

$= (lOO.O)a2p . 
ax2 (8) 

Density could have been eliminated from (1) 
to produce an equation showing pressure as a 
dependent variable. Density is a more con- 
venient dependent variable in this case. 

t 
P [lb/ft31 

25 50 75 xrftl 

FIGURE 1 

THREE SOLUTIONS OF PROBLEM 

Since every function of the form 

p (x, t) = [A cos (O.l)oL) + B sin (0.1xX) ] e-A2t (9) 

is a solution of (8) where A, B, and x are ar- 
bitrary real constants, a particular solution 
must be specified by a choice of initial and 
boundary conditions. Specifically, suppose that 
density is initially given by 

p (x, 0) = 60.0 + sin (nx/lOO), (10) 

where x = 0.0 represents one end of the reser- 
voir while x = 100.0 represents the other end. 
Adopt the boundary conditions given by 

P(O,t)=p(lOO,t)=60.0, t > 0. (11) 

It can be shown that the initial condition in 

(10) and the boundary conditions in (11) imply 
that 

p (x, t) = 60 + sin (nx/lOO) exp (-n2t/100) (12) 

is the correct unique solution of (8). 
Figure 1 shows the density in terms of 

position for several time levels. The vertical 
scale is exaggerated for purposes of display. 
Observe that the variation in density tends to 
smooth out as a function of time. Specifically, 
density is constant at infinite time. 

Pressure tends to smooth out as a function 
of time as a consequence of the equation of state 
in (2). Since (12) implies that 

$$=(n/lOO) cos(rx/lOO) exp(-n2t/100), (13) 

then 

g = (n/p) cos(nx/l00) exp (-n2t/100). (14) 

Define the flux v by the equation 

“Z-k ap -- 
P ax 

and use (6) in (14) to obtain 

(15) 

and 

~(0, t) =(-n/300) exp (-rr2t/100), (16) 

v(100, t) = (n/300) exp (-rr2t/100). (17) 

The smoothing of pressure as time increases 
implies a decrease in the total mass of fluid 
in the reservoir. Equations (16) and (17) de- 
scribe this production. For example, (17) states 
that the initial (t = 0) fluid flow rate at the right 
(x = 100) end of the reservoir is equal to 
@r/300) cubic feet per day through each square 
foot of outlet face. 

Although the foregoing discussion of pro- 
duction is not essential to the comparisons to 
be studied later, it is useful in gaining under- 
standing of the mechanisms in the smoothing of 
pressure and density in time. 

Of course, the problem discussed above suf- 
fers from the flaw inherent in examples in that 
a workable example is likely to be so simple 
that the reader is misled by its simplicity. 
Nevertheless, it forms the basis for the ap- 
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proximate solution methods that follow. 

EXPLICIT METHOD 

Choose five equally spaced points in the 
reservoir as illustrated in Fig. 2. Although a 
larger number of these points could have been 
chosen for greater accuracy, five will suffice 
for this illustration. These five points will be 
called nodes. Each node has an associated 
block as schematically illustrated by rectan-’ 
gles in the figure. The cross-section for flow 
is perpendicular to the plane of the figure. The 
appropriate cross-sectional area is irrelevant 
here unless a conversion of production to bar- 
rels is desired. Indeed, the vertical thickness 
of the reservoir is equally irrelevant even 
though it is shown in the figure. 

FIGURE 2 

NODAL ARRANGEMENT 

The x coordinates of the nodes are denoted 
by x0,x1, . . .> xn+l. The value of n is three 
in this case; and this illustrates the fact that 
the formulas below will be written with suf- 
ficient generality that they could be applied to 
other examples if desired. Similarly, let Ax 

denote the spacing between nodes (AX = 25 ft in 
the example). 

The main idea of each finite difference meth- 
od is the estimation of the dependent variable 
( p in this case) at each node and at each time 
in a list of times to, t,, t,, . . . . It is con- 
ventional to set tu to zero, and it is convenient 
t0 suppose t j = jAt for j = 1, 2, . . . . For ex- 
ample, t 1 = At will be 2.5 days in these par- 
ticular illustrations. 

Of course, p (Xi, ti ) is known by means of 
(12) for this example. In any case, let uij de- 
note an estimate Of P(Xi, tj). The explicit 
method is given by the equation 

ui,j+l - ‘i, j = B(Ui-l, j - 2ui, j + ‘i+l, j), (1% 

where 6 is a constant defined by 

e = 100.0 qax)2 = 0.40 (19) 

when At = 2.5 days and AX = 25 feet. 
The explicit method can be described by the 

statement that the space derivative is approxi- 
mated at time t j while the time derivative is 
approximated by a forward difference. Ob- 
serve that (18) refers to three space subscripts 
(i-l, i, i+l) paired with the time subscript j 
while only one term uses the time subscript 
(j+l). That is, for each i, (18) contains only one 
unknown if it is supposed u ii is known for every 
value of the space subscript i. Figure 3 illus- 
trates this configuration. 

At 

FIGURE 3 

EXPLICIT METHOD 

The reader’s first impression may well be 
that (18) is so simple that it should be univer- 
sally applied, and no other methods will be 
needed. Unfortunately, nothing could be further 
from the facts. That is, this deceptively sim- 
ple scheme has a severe limitation. Specifi- 
cally, this scheme fails unless At is quite 
small due to a phenomenon known as instability. 
A detailed discussion of stability is beyond the 
scope of this paper; one must be content with 
the remark that At= 2.5 da is small enough. 

Since is given at the ends of the reservoir, 

+J j and untl j. are chosen to agree with this data. 
ALSO, ui 0. 16 chosen in agreement with the 
initial conditions. Thus, set i = 1 in (18) to 
obtain 

ul,j+l = BUC), j +(1-2fI)ul,j+~“2,j- (20) 

Similarly, 

~ U2,j+l=BUl,j+(1-2’)U2,j+BU3,j, 
(21) 
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and 

U3, j+l =e U2, j + (l-WU3, j +e u4, j* (22) 

Write (20) through (22) in matrix form as 

which is abbreviated as 

,~+l)-AuCi)+b(j) . (24) 

That is, the list of values of u at the later time 

tj+l = tj + At is given by addition of a boundary 
condition vector b6) to the product of a propa- 
gation matrix A and the vector u(i) listing 
values of u at the earler time t :. Observe that 

in this special case. Equations (24) and (25) will 
be useful in later sections for comparison. 

The explicit or forward difference method 
consists of repeated application of (20) through 
(22) until some desired number of time steps 
have been taken. The results of two time steps 
are shown in Table 2. The first number in each 
little box is the correct density as given by 
(12) while the second number is the approxi- 
mation given by use of (20) through (22) or by 
(23). 

TABLE 2 

I I 60.707 61 .OOO 

I 

60.707 
0.0 

t I 60.707 60.552 1 1 60.781 61 .OOO I 60.707 60.552 

I 2.5 I 

The two numbers in each little box in Table 
2 differ for several reasons. Specifically, 
some round-off appears (the lower right number 
should perhaps be 60.414 or 60.416); the 
truncation error (error due to use of finite 
differences for derivatives) has some effect; 
propagated error (error in earlier steps caus- 
ing error in the current step) may have some 
effect; and, finally, the author may have 
blundered in the calculations. 

If no blunder appears in Table 2, then the 
major source of error is the truncation error. 
The values in the table may seem to be in very 
close agreement at first glance. However, since 
it is known that each answer is very close to 
60.0, the purpose of the calculation is to deter- 
mine deviation from this value. Table 3 pre- 
sents the results in terms of those deviations. 

TABLE 3 

X 

r4 t 
25.0 50.0 

I 
75.0 

I 

.707 1 .ooo .707 
0.0 

.707 1 .ooo .707 

.552 .781 .552 
2.5 

.541 .766 .541 

.432 ,610 .432 
5.0 

.415 .585 .415 

Table 3 does not seem to indicate the com- 
putations to be as accurate as those indicated 
in Table 2. If not satisfied, redo the work with 
AX reduced, say with x = 12.5 ft. However, if 
AX is halved, At will have to be one-fourth as 
large as before for stability4. That is, one 
would need to use (0,0.625,1.25,1.875,2.5,. . ., 
5.0) as a list of times in calculation of an- 
swers for comparison with those in Table 2 
and Table 3. Observe that the number of un- 
knowns at each step ,would be 7 = 8-1. Although 
the calculation is omitted here, the above 
discussion gives some notion of the work the 
calculation would involve. The concept of sta- 
bility implies that propagated error does not 
play a disastrous role relative to local trunca- 
tion error if the restriction on At is followed. 
Distaste for such restrictions is a prime moti- 
vation for the use of implicit methods. 
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IMPLICIT METHOD 

The implicit method is described by the 
statement that the space derivative is approxi- 
mated at time tj+l while the time derivative is 
approximated by a backward difference. Spe 
c&ally, modify (18) to obtain 

u. * 
1, J+l ?,J . =‘(“i-1,jtl ‘*‘i,j+l “i+l,j+l) 3 (26) 

where 8 is given by (19) just as before. Write 
(26) in the form 

-"i-l jtl , ' (I+*8 hi j+l -eui+l j+l =ui,j * (27) , , 

Observe that (27) contains three unknowns 

t[dal 

0 
AX 

(x. l+lrtj+l) 

I At 

FIGURE 4 

IMPLICIT METHOD 

while (18) contains only one unknown. A com- 
parison of Pig. 3 and Pig. 4 illustrates this 
distinction between the two methods. 

The example (see Pig. 2) takes the form 

Now consider (28) with 8 again equal to 0.4 
based on a At of 2.5 days. The first step in the 
construction of a table similar to Table 2 in- 
volves the solution of the matrix equation 

That is, 

1.89, 1 - o.h2, 1 = 84.7 07 

-o*4”l,l + l.8~2,1 - 0.4~3,1 = 61.000 (30) 

- o.h2, 1 + 1.8u3, 1 = 84.707 

It is interesting to note that the notation 

A= (i’” ;20 “r,.); (31) 

allows (28) to be written as 

which has the same abstract form as (24) if 

60 8 
&)=A 0 

0 

. 

60 e 

(33) 

Now, evaluate the estimates. Observe that (30) 
is such that U~,J is clearly the same as 
ug,l . That is, substituting u1,1 for u3,1 and 
vice versa simply puts the third equation first 
and vice versa without altering the set of 
equations. Thus, solve 

1 .8ul, 1 - o.‘h2, 1 = 84.707 

-0.8~1, l+l.8~2,1 =61.000 
(34) 

Prom (34), u3 1 = u1 1 = 60.573 and u2 1= 60.811. 
These results’ are then inserted in (28) to ac- 
complish a second time step. The results are 
summarized in Table 4 and Table 5 for com- 
parison with Table 2 and Table 3, respectively. 

CRANK-NICOISON METHOD 

A comparison of Table 3 and Table 5 leads 
to several observations. First, it appears that 
the explicit method worked rather better than 
the implicit method in this example. Although 
this is true in the example, it is not true in 
general. Indeed, the above two methods should 
give roughly the same accuracy (of course, 
stability requirements must be adhered to in 
the explicit case). On the other hand, observe 
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TABLE 4 

c 
60.707 61 .OOO 

0.0 
60.707 61 .OOO 

60.552 60.781 

2.5 

60.573 60.811 

60.432 60.610 
5.0 

60.464 60.655 

TABLE 5 

- 

75.0 

60.707 

60.707 
60.552 

60.573 

60.432 

60.464 

0 

2.5 

5.0 

.707 

.552 

.573 .811 .573 

.432 .610 .432 

.464 .655 .464 

1 .ooo 

.781 .552 

that the tables seem to show that the correct 
answers lie between the answers obtained by 
the above two methods. Moreover, the latter 
observation is valid in the general case. 

The Crank-Nicolson method can be described 
as the “arithmetic mean” of the implicit meth- 
od and the explicit method. That is, add (18) to 
(26) and divide by 2.0 to obtain 

u. . I,J+l"i,j =("i-l,j+l~2ui,j+l+uitl,jt~~e~2 

(35) 
+ C”&l, j-*'i, j+'i+l, j) e/2 3 

where 8 is given by (19). Figure 5 illustrates 
the nodal configuration in this case. The re- 
sults of (35) for this example are shown in 
Table 6 and Table 7. 

The Crank-Nicolson method can be stated 
in the form given by (24) if A and b6) are 

properly defined. Let AE denote the matrix 
given in (23) and let A, be based on (28) and I 

-e 0 

it28 -e (36) 

-e 1+2 

Write (23) and (28) respectively as 

60 e 
u(i+l) = A&i) 0 0 60 e 

and 

(37) 

uCi+l> = A~‘UO) + Ai’ (38) 

Formally average these expressions to obtain 

uCitl) = ‘i(AE t Ai’) t +$,(I + Ai’) t3’) 

t [da1 

0 
AX - AX l (Xi+l'tj+l) 

a AX * AX 
w 0 -x[ftl 

FIGURE 5 

CRANK-NICOLSON METHOD 

and (24) applies with the obvious identification 
of A and b(i). Observe that (39) could have been 
obtained directly from (35). 

REMARKS 

The above discussion is necessarily quite 
sketchy. It is hoped that it is of some benefit 
as an introduction. 

It is unfortunate that the subject of stability 
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TABLE 6 

c 

1 60.557 1 60.788 1 60.557 
1 60.432 1 60.610 1 60.432 

I 5.0 
60.440 60.620 60.440 

could not be discussed in more detail. Chapters 
1 and 6 of this author’s book2 expand this 
example in some detail. 

It should be noted that the propagation 
matrices of the respective finite difference 
methods determine the question of stability or 
instability in each case. Both the implicit and 
the Crank-Nicolson method are always stable. 
This means that they are more reliable than 
the explicit method in most cases. 

TABLE 7 

.707 1 .ooo .707 

0.0 
.707 1 .ooo .707 
.552 .781 .552 
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