Well Stimulation With CO2

By P. F. BEELER Carbonic Chemicals Corporation

INTRODUCTION

Liquid Carbon Dioxide (CO 2) is added to treating fluids to improve results and to eliminate some of the problems associated with the stimulation of oil and gas wells. It especially promotes fast clean up of wells without the need of swabbing (and the danger of lost swabs). When pressure is released at the well head after treatment, the CO2 vaporizes and forces the treating fluids from the formation. The presence of this gaseous CO2 in these fluids reduces the weight of the fluid column so that normal reservoir drive can then unload the fluids from the well. Immediate recovery of 75 - 90% of the stimulation fluids is normal.

 CO_2 also improves well productivity by preventing formation damage from the stimulation fluids and by cleaning up the critical area near the well bore. The use of CO_2 quite often results in the recovery of formation fines, silt, reaction products, and mud or mud filtrate lost during drilling.

Where water is the treating fluid the carbonated solution that is formed has an acidic pH. This prevents the swelling of clays, the precipitation of hydroxides and the precipitation of gyp. The use of expensive acid or calcium chloride solutions for this same purpose is thus eliminated. Because of the solubility of various carbonates in such a solution the permeability of carbonaceous formations is also improved.

In oil treatments the viscosity of the oil is reduced considerably by the addition of CO_2 . This results in lower friction losses and higher injection rates with consequent savings in total hydraulic horsepower requirements.

Since CO_2 is injected in the liquid state, it has the ability to carry propping agents just as water does and there is no special danger of screenout if large volumes of CO_2 are used. Also, it is compatable with all treating fluids (acid, oil or water), and with all additives utilized in simultation treatments. Likewise, CO_2 is compatable with formation fluids.

 CO_2 is pumped by conventional pumping equipment with the addition of a relatively inexpensive supercharging pump. Practically all of the well stimulation service companies are now equipped to handle and pump liquid carbon dioxide.

PHYSICAL PROPERTIES OF CARBON DIOXIDE

At atmospheric temperature and pressure carbon dioxide is a colorless, odorless gas about 1.5 times as heavy as air. For oil field work, CO₂ is liquified and transported in insulated transports at approximately 0° F and 300 psi. In this state it is handled in much the same manner as liquified petroleum gases. Being non-combustible, however, there is no danger of fire or explosion and, in fact, it could be used as an auxiliary fire fighting medium on well stimulation work if desired.

Some of the physical constants of carbon dioxide are as follows:

Molecular symbol CO 2
Molecular weight
Critical temperature
Critical pressure 1051.3 psig
Liquid density at 2°F 63.3 lbs per cu ft
or 8.46 lb per gal

Vapor density at 60° F

and 14.7 psi 0.1163 lb per cu ft Latent heat of liquid at 2°F

and 301.2 psig..... 119.0 BUT per pound

Some of the conversion factors useful in well stimulation work are as follows:

One ton of liquid CO_2 yields 17,198 s.c.f. of gaseous CO_2 .

One barrel of liquid CO₂ (@-10° F) yields 3151 s.c.f. of gaseous CO₂.

One gallon of liquid CO₂ ($@-10^{\circ}$ F) yields 75.0 s.c.f. of gaseous CO₂.

One pound of liquid CO₂ yields 8.59 s.c.f. of gaseous CO₂.

The viscosity of low gravity oils is greatly reduced by the addition of CO₂. Viscosity of high gravity oils is also lowered but to a lesser extent. The viscosity of water however, is only slightly altered by the addition of CO₂. Average viscosity reduction in various gravity crudes at CO₂ saturation is as follows:^{3, 13}

	Vis	cosity - (CP.		
Oil Gravity	7 70)°F		Э°ғ	CO_2
°API	WO/CO ₂	W/CO_2	WO/CO2	w/co	
18	500	22	180	12	700
20	200	12.5	80	7	735
25	40	3.5	23	2.5	800
30	17.5	2.1	10	1.5	870
38	6	1.35	4	.9	1075
45	3	.6	2	.5	1175

The solubility of CO_2 (std. cuft/bbl) at 100° F² 4. in various treating fluids is as follows:

	100 psi	1000 psi	2000 psi	4000 psi
Fresh Water	20	152	174	191
Salt Water				
(100,000 ppm)	13	108	127	139
Salt Water				
(260,000 ppm)	6	53	63	69
Crude Oil 38°				
Gvty. (85°F)	45	1025	1075	1075
Crude Oil 20°				
Gvty. (120° F)	35	415	700	700

For further details on physical properties of CO_2 the reader is invited to consult the references listed.

CHEMICAL PROPERTIES OF CO 2

Carbonic acid is formed when water is saturated with CO_2 . This acid, with a stable pH of 3.3 to 3.7, is relatively non-corrosive and requires no inhibition for well treating applications². Some of the benefits inwell stimulation work from this chemical effect are as follows:

1. The high hydrogen ion concentration of carbonic acid will tend to shrink or floculate clay particles by replacement of basic elements of appreciable atomic weigh with hydrogen, the lightest of all the elements. This control of swelling is especially important in formations containing appreciable amounts of bentonitic

2. Most formations of a classic nature and many carbonate formations contain salts of iron and aluminum. These salts are dissolved during acidization. Should the pH rise to 5 or above during a treatment these iron and aluminum ions would percipitate as gelatinous hydroxides which can effectively block flow channels. 8,9, The low pH of carbonated treating fluids prevents this from happening.

3. Gypsum and anhydrite are dissolved by aqueous treating fluids. If the treating fluid does not remain acidic, insoluble compounds such as calcium sulfate ("gyp") may precipitate thus restricting flow. 10 Here again the presence of CO_2 in the solution helps prevent such a precipitation.

4. Dolomites, limestone, and silicates are soluble in carbonated water to varying extents. Under well treatment conditions 2625 lb of magnesium carbonate will dossolve in 100 bbl of carbonated water. Calcite will dissolve to the extent of 80 pounds per 100 bbl and silicates such as CaSi0₃, SrSi0₃, and BaSi0₃ are soluble in ranges of from 100 to 200 lb per 100 bbl. The removal from the formation of such materials by solution will result in increased permeability of the formation.

ENGINEERING CARBONATED WELL TREATMENTS

By an engineered design in which the many well variables are taken into consideration a treating fluid can be provided with the proper level of carbonation. This quantity of CO₂ is injected simultaneously with the treating fluids and normally remains in the liquid state until after the fluid injection ceases. Heat transfer from the formation then results in vaporization of the CO_2 and on release of the surface pressure the CO_2 vapor expands and imparts a gas lift effect to the well.¹² Rapid, high rate flow back of carbonated treating fluids substantially increases well productivity by taking advantage of the CO₂ gas expansion to provide energy for the formation face clean up.

To simplify the engineering of carbonated well stimulation work the variables involved have been plotted in a series of curves. The use of these curves is discussed below.

A. Carbonated Fluid Flow Curves

Carbonic Chemicals' Carbonated Fluid Flow Curves are flowing pressure gradients (psi/foot) based on the density of the flowing mixture. Consideration has been given to pressure, temperature, flow rate, depth, fluid characteristics, CO₂ solubility, and flow string cross sectional area. The curves were calculated using data published by Baxendell and Thomas in

the October 1961, issue of the Journal of Petroleum Technology entitled "The Calculation of Pressure Gradients in High-Rate Flowing Wells." These curves present the approximate flowing pressure traverses for given CO₂ - liquid ratios. From this data it can be determined how much CO2 will be required to lift injected fluids from a well bore.

Data Required Before Using Curves

1. Flow string size (select the tubing, casing, or annulus size for the anticipated manner of return flow of the injected fluids): Because only slight differences are encountered, casing curves are valid for any normally encountered annular flow inside the casing. (Example, the 5 1/2 in casing curves will be accurate enough for use in determining CO_2 - liquid ratio requirements for annular flow between 5 1/2 in. casing and 2 1/2 in., 2 in. or smaller tubing).

2. Formation Depth

3. Fluid type: Curves are available for fresh water, saltwater with 100,000 ppm total solids, saltwater with 260,000 ppm total solids and 38° gravity crude oil. Interpolation of curves for the various waters may be utilized to more accurately determine requirements for a salt water of any specific gravity. The fresh water curves can be utilized for the various acids injected. Viscous, low gravity oils vary greatly in CO₂ - liquid ratio requirements and must be handled on an individual basis.

4. Bottom Hole Pressure: Anticipated flowing bottom hole pressure is required. Field usage for gas wells indicates that 80% of static shut in bottom hole pressure can effectively be used for this requirement. It is necessary to preplan for oil well flowing bottom hole pressure. Consideration is given: anticipated formation pressure draw-down at varing flow rates and economic CO₂ requirements at various flowing bottom hole pressures. For desired flow back, a minimum necessity is a productive capacity (after frac) of 150 BFPD at no more than about 50% pressure draw down. Productive capacity is determined by using Darcy's Law and various articles available on prediction of productivity inceases due to fracturing.

Darcy's Law (Radical Flow);

$$Q = \frac{7.07 \text{ k h (Pe - Pw)}}{\text{u ln(re/rw)}}$$

- bbl per day Q =
- k darcies Ξ
- pay thickness ft h =
- u cp.
- \mathbf{re} Ξ
- radius of drainage ft rw radius of well bore - ft
- Pe pressure at radius of drainage - psia Ξ
- Þw pressure at well bore - psia -

EXAMPLE

Data: 1. k 25 md 2. h 5 10 ft 1 cp. (35° Oil W/CO₂ @ 100° F) 3. u = 4. re *∓* 660 ft 5. rw =.25 ft 6. Pe = 2000 psi

Procedure: (For a 50% drawdown in pressure) 1. Θ (before fracture.) (no formation damage) =

$$\frac{(7.07 \times .025 \times 10 \times (2000 - 1000))}{1 \times \ln (660/0.25)}$$

Q = 225 BOPD

2. Using data available for the effect of vertical fractures on well productivity 14 a 1.4 increase in production is predicted (over that assumed for no fracture with no formation damage). This is based on a fracture capacity of 600 md - ft (for 10-20 mesh sand with high over burden pressure 18), and 10% fracture penetration of drainage radius.

1.4 x 225 BOPD _ 315 BOPD

This rate is greater than the minimum 150 BOPD requirement. Use of 50% drawdown is recommended for this case. This results in an anticipated flowing bottom hole pressure of 1000 psi and this figure is used in the carbonated treatment design.

The following examples are given to illustrate the use of the Carbonated Fluid Flow Curves.

EXAMPLE - Gas Well (Figure 1)

Data:

- 1. Flow String Size: 5 1/2 in. OD
- 2. Formation Depth: 7000 ft.
- 3. Fluid Type: Fresh Water (Gelled). 480 bbl frac. Fluid, 180 bbl Flush, or 660 bbl Total Fluid.
- Static Shut in Bottom Hole Pressure: 2000 psig (Use 80% x 2000 psig - 1600 psig for Flowing Bottom Hole Pressure)

Procedure:

- Use Chart titled "Casing Size 5 1/2 in. O.D., Fluid type - Fresh Water"
- 2. On left side of page find 7000 ft (formation depth) and move horizontally to intersection with 1600 psig bottom hole flowing pressure (which is read from top of the page.)
- 3. Determine CO_2 liquid ratio as 450 cu ft bbl (If point falls to right of 300 cu ft bbl curve use 300 as a minimum requirement. If point falls to left of 1500 cu ft bbl curve the use of CO_2 for lifting may not be advisable.
- 4. Multiply total volume of well treating fluid by CO₂ - liquid ratio: 660 bbl (total fluid) x 450 cu ft/bbl - 297,000 std cu ft CO₂ required (or 297,000/17198 - 17.3 tons CO₂)

EXAMPLE - Oil Well (Figure 2)

Data:

- 1. Flow String Size: $2 \frac{1}{2}$ in. ID
- 2. Formation Depth: 3000 ft
- Fluid Type: Lease Crude 35° A.P.I. 240 bbl Frac Fluid, 20 bbl Flush, or 260 bbl Total Fluid.
- 4. Static Shut In Bottom Hole Pressure: 1000 psig (Use of 50% Draw down of formation pressure desirable in this care to obtain a predicted productive capacity (after frac) in excess of 20 bbl per hr) 50% x 1000 = 500 psig Flowing Bottom Hole Pressure

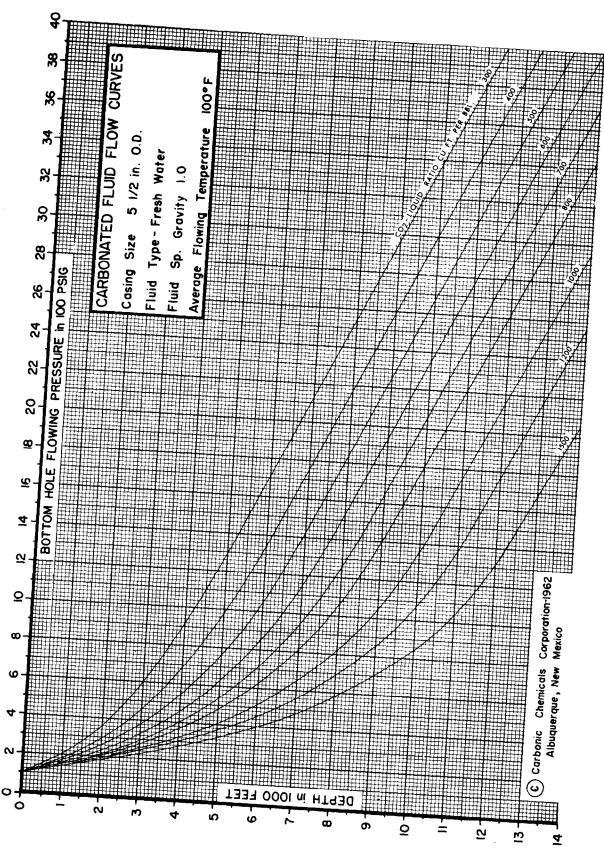
Procedure:

- 1. Use Chart titled "Tubing Size 2 1/2 in. I.D., Fluid Type - Oil (38° A.P.I. Gravity).
- 2. On left side of page find 3000 ft (formation depth) and move horizontally to intersection with 500 psig bottom hole flowing pressure (which is read from top of the page).
- 3. Determine CO₂ liquid ratio as 650 cu ft bbl
- 4. Multiply total volume of well treating fluid by CO₂ liquid ratio: 260 bbl x 650 cu ft/bbl.
 = 169,000 std cu ft CO₂ required (9.8 tons)

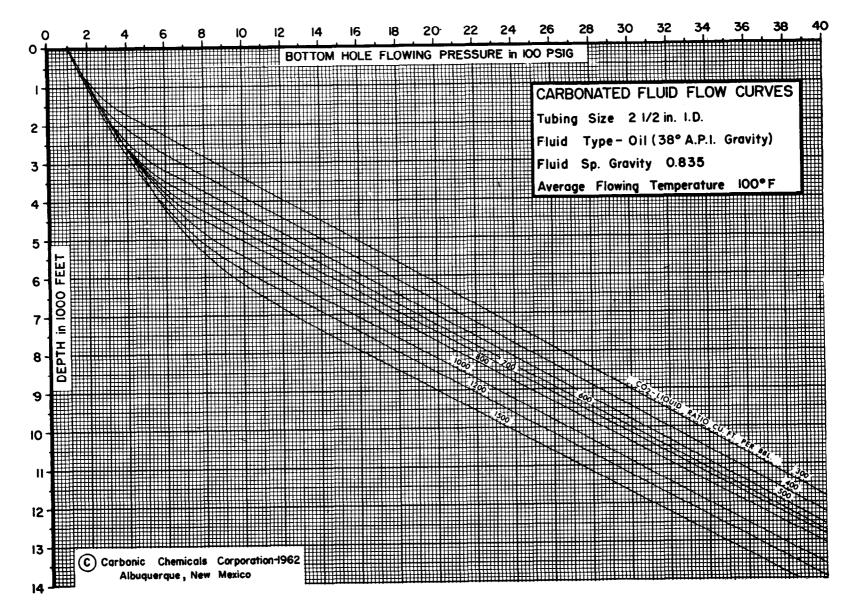
During a well treatment the leading portion of the carbonated treating fluids may become greatly diluted due to its mixing with the formation fluids (particularly treatments using a relatively viscous frac oil in a high gravity oil reservoir). Carbonation in such a mixture may then become diluted to a level below that required to unload all of the resulting mixture. Addition of CO $_2$ in excess of the normal ratio during the early part of such a treatment must be used to overcome this problem.

In this particular case addition of 50% more CO₂ than necessary during the first half of the treatment should yield more desirable results. This would require the addition of 325 std cu ft x 130 bbl = 42,250 std cu ft CO₂ (2.5 tons).

B. Carbonated Fluid Maximum Efficient Return Rate Curves


These curves (Figure 3) give the treating fluid return flow rates necessary for maximum efficiency in recovery of the initial load. They have been calculated to assure turbulent flow in the well bore since under turbulent flow conditions little or no gas slippage occurs and it is possible to more accurately determine the gas requirements for lifting. These rates yield desired clean up near the well bore and provide a sufficient rate to remove formation fines or silt and loose or crushed grains of fracturing material. Lower return flow rates are recommended for oil well treatments, but care must be exercised to prevent the return flow being killed due to excessive gas slippage.

Because of its higher viscosity, oil in a reservoir exhibits much lower mobility than gas. Return flow rates for production from an oil must be controlled to prevent excessive pressure drawdown in the formation. To prevent excessive gas slippage a minimum flow back rate (for all flow string sizes) of 10 barrels fluid per hr is recommended. Oil well flow back rates should be regulated near the predicted productive capacity of the well (at the flowing bottom hole pressure utilized in the carbonated treatment design). Maximum recommended oil well flow back rates


maximum recommended	OIL WELL HOW DACK TALES
(bbl/hr) are as follows:	
Tubing Size ID	Casing Size OD
$1 \ 1/2 \ in_{-} \ - \ 19-20$	$4 \frac{1}{2}$ in - 75-105
2 in 23-26	5 1/2 in 95-130
2 1/2 in 30-35	7 in 115-170

3 in. - 65-75

Carbon dioxide vapor will diffuse through formation fluids over an extended period of time. To insure proper unloading open the treated well for flow back as soon as possible (a shut in period in excess of 8-12 hrs is undesirable).

i

Fig. 2

97

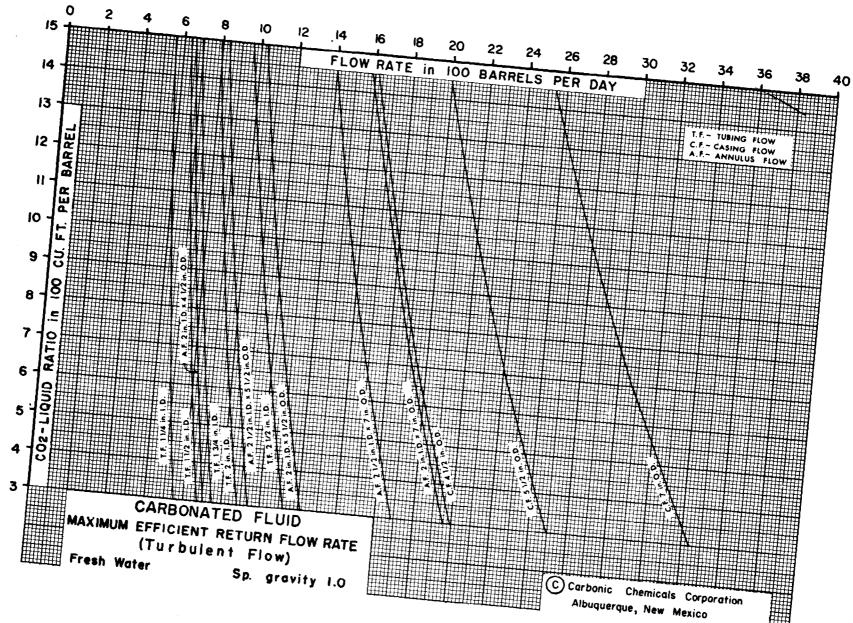


Fig. 3

86

General Design Information

At high flow back rates (as recommended for gas wells), less friction will occur in large tubing or casing. Energy loss in small tubing at greater depths may become severe and limit or eliminate the economic use of CO_2 for lifting. Investigation of requirements for annular or casing flew may result in a more favorable treatment design.

As the amount of the gas is increased, total fluid density becomes lighter (thus decreasing pressure at depth). However, increasing the proportion of gas will reach a condition of diminishing returns. A large increase in gas-liquid ratio (above 1500) will only slightly lighten the pressure gradient.

Pressure at the surface is additive to any pressure due to fluid head and friction. A surface flowing pressure of 100 psi was used in constructing the carbonated fluid flow curves. High surface flowing pressures yields less advantageous use of gas expansion and will result in lower lift efficiency.

Special care should also be taken when a well is treated by injection down the tubing and annulus and simultaneously using a common injection manifold. When flushing these jobs care must be taken to see that the CO_2 is not being injected down the tubing only. If this situation occurs it may become impossible to kick off the well due to the relatively large quantities of uncarbonated fluid in the annulus falling back and killing the carbonated tubing flow. When CO₂ injection is down the annulus only during flush the tubing may be found dead when the well is opened. In this case, however, the annular flow back may be sufficient to unload the tubing fluid until its static head is overcome. These problems are best avoided by shutting in the tubing while flushing the annulus and then flushing the tubing separately at the end of the treatment.

RESULTS

Data on 115 productive wells fractured or acidized using CO_2 is included with this paper. Other data is available (but not presented) on treatments of non productive wells and on various specialized applications of CO_2 in well work. From this data a definite trend of increased well potential when using CO_2 is noted.

Increased potential occurs more often when well conditions permit high return flow rates and quick clean up after treatment. It is by this action that crushed sand and formation fines (released from the fracture surfaces) are removed from the well bore thereby allowing reater fracture flow capacity and higher well potentials.¹⁵ In the case of gas wells, field experience using non-carbonated aqueous fluids for stimulation indicates that fluid recovery after fracture treating is usually in the range of 25 to 50% of that injected (with about 1/3 recovery being average). The unrecovered fluids are probably retained in the first 2 or 3 in. of the formation adjacent to the fracture and thus will accupy, at least half the porosity formerly occupied by gas. From published data 19, 22 this additional water saturation can easily reduce effective permeability to 2% or less of its former permeability. The work of Van Poolen¹⁶ indicates that this damage will reduce well productivity to as little, as 1/3 of that expected if no damage had occurred. By the recovering of from 75% to 90% of these aqueous fluids (as is normal in CO₂, treatments) this damage

is neld to a minimum. This undoubtedly is one of the principal reasons for the substantially greater potentials observed in CO₂ stimulated gas wells.

Application of CO_2 has varied from area to area. Discussion follows on experience obtained in the various areas where CO_2 has been utilized extensively.

A. Texas - Oklahoma Panhandle Area

In this area CO_2 has been mainly used in fracture treatments with water or weak HC1 acid solutions as the treating fluid. Its application has provided a means of obtaining better effective permeability to oil or gas in the formation. Also salt leached by the treating water is effectively removed from these formations, 20.21

Morrow Sand

Excellent clean up and increased well potential has resulted from use of CO_2 in treatments of this formation. Almost all wells treated were gas wells. In 63% of the cases where comparison with offset wells could be made, use of CO_2 resulted in substantially increased potential. Prevention of clay and silicate swelling due to the chemical effects of CO_2 in water, along with rapid fluid removal may have been important in obtaining these better results.

Red Cave Sand

Outstanding results have occurred in over 2/3 of the cases where CO₂ has been used in the treatment of this shallow gas sand. Typical of the general use of CO₂ in water for treating gas wells is the following comparison of 3 wells treated with CO₂ and 3 without CO₂. Treatments of the wells without CO₂ were increased in size so that costs for all treatments would be equal.

Well	Natural Formation Productive Capacit mdft.	AOF Potent y After Frac Mcf	ial AOF Mcfper md - ft
		hout CO_2	
A	244.5	7500	30,75
в	190 4	4400	23
Ċ	96	2900	30
		Ave.	27.9
	Wi	th CO ₂	
D	173	7100	41
E	168	6300	37.5
F	40.3 1	1700	42.5
		Ave.	40.3

Wells treated using CO₂ showed an average of 44% increased productivity.

Tonkawa Sand

Results from treatments in this formation (principally oil wells) show better results are obtained on wells with good productive capacity or with high formation mobility (gas wells or high G.O.R. wells).

Well	Field	County State	Depth	Fluid 1000 Gal	General I Type	Freatment Sand 1000#	CO ₂ Tons		Offsets Av. PotMCF	Remarks
j	BROWN DOLO									
1.	Texas-Hugoton	Sherman, Tex.	3009-3216	30	GW	45	$32\frac{1}{2}$	612P	454P	35% Incr.
							. –		Delv. Test)	(Open F. Ga. 21200)
2.	W. Panhandle	Carson, Tex.	2236-2834	12	5 % GA	18	10	2269P	1904P	-
~	-	~ -						3400A		19% Incr. (Pot. before W.O. 870)
3.	W. Panhandle	Carson, Tex.	2679-2779	10	5 % GA	15	10	1833P		
4	W. Panhandle	Gray, Tex.	2507-2568	29	C 100	011/		2800A	11000	(Pot. Before Retreating 746)
4 .	W. Panhandle	Hutchinson, Tex.	2275-2645		GW 5%GA	31½ 30	35 25	15500A 8173P	1132P 7322A	Better than Expected)
4.	W. Lamanaic	Huttimoon, Ita.	2213-2013	20	3 % GH	r 90	63	9000A	1366A	11% Incr. (Pot. before Retreating 5589)
6.	W. Panhandle	Moore, Tex.	2863-3060	30	GW	45	15		2072P	11% Incr. (For. before metreating 5569)
	WIT I WITTWIT				GII	30	10	7500A	20121	Equal to Offsets
7.	W. Panhandle	Carson, Tex.	2519-2801	12	5%GA	18	10		1115P	230% (Current test 1 yr. after frac.)
8.	Texas-Hugoton	Sherman, Tex.	3097-3120		2%GA		111/2		60psi None	Better than Expected
~	HESTER LIME							_		
		D				_				
1.	Mocane-Laverne	Beaver, Okla.	7160-7238	20	15 % G	A	20	7800A	7250A	Equal (Mech. Difficulties)
RI	ED CAVE SAND									
	W. Panhandle	Potter, Tex.	1502-1534	15	GW	15	10	6300A	Ave.	40%
2	W. Panhandle	Potter, Tex.	1480-1534		GW	15	10		Ave. 4760A	40 %
ã.	W. Panhandle	Potter, Tex.	1650-1670		GW	50	10		t.) 1025P(Est.)	
•••	VIII I WALLANDING	- ottor, rom	1000 1000		G	50	10	1700A	.) IV23I (E30.)	Equal to Offsets
4.	W. Panhandle	Hutchinson, Tex.	1846-1902	40	GW	80	171/2	7300A		Equal to Oliscis
5.	W. Panhandle	Hutchinson, Tex.	1830-81	40	ĞŴ	80		12300A		
6.	W. Panhandle	Hutchinson, Tex.	1844-86	40	GW	80	171/2	8000A		
7.	W. Panhandle	Hutchinson, Tex.	1880-1950	40	GW	80		11900A	4310	119% Incr.
8.	W. Panhandle	Hutchinson, Tex.	1921-81	40	GW	80	$17\frac{1}{2}$	8410A		
9.	W. Panhandle	Hutchinson, Tex.	1794-1851	30	GW	60		10600A		
102	W. Panhandle	Hutchinson, Tex.	1522-40	18	GW	27	10	1450A		
								1008P	882P	14% Incr.

RESULTS OF WELL STIMULATION WITH CO2-TEXAS-OKLAHOMA PANHANDLE AREA GAS WELLS

Well	Field	County	State	Depth	Fluid 1000 Gal	Туре	Treatment Sand 1000#	CO ₂ Tons	Well Pot. MCF	Offsets Ave. PotMCF	REMARKS
	TANE SAME	<u></u>									
	D CAVE SAND	WW = 4 - 1 -		1004 180/) 20	GW	30	10	2180		
11.	W. Panhandle	Hutchins	ion, Tex.	1634-1720	J 20	GW	30	10	1233P	822 P	39% Incr.
10	W. Panhandle	Untohing	on Ter	1437-1667	7 30	GW	45	10	5450A	1914P	Equal to Offsets
12.	w. Pannandie	nucuus	011, ICA.	1437-100		un	10	10	2060P		
13.	W. Panhandle	Hutchins	on. Tex.	1695-1781	L 20	GW	40	10	6800A	3425A	98% Incr.
	W. Panhandle	Hutchins		1825-94	15	GW	30	10	2500A		
									1300P (Est.)	1300P (Est.)	Equal to Offsets
15.	W. Panhandle	Moore, J	ſex.	1755-1948	8 20	5%G	A 20	20	5200A		90 M T
									2000P (Est.)	1516 P	32% Incr.
CU	EVELAND SAND										
	N. Mammoth C		Tex.	7393-741	6 15	3%0	A 22	20	12000A	9750A	23% Incr.
	N. Mammoth C			7427-64	15	3%0		21	9000A	5580A	61% Incr.
3	N. Mammoth C	k.Lipscom	b. Tex.	7488-750		3%0		17	6000A	6000A (Approx.) Equal to Offsets
•••											
	ORROW SAND					~~~		05		6925A	433% Incr.
	Hansford, U.M.	Hansford		7244-89	21	GW	21	25. 30	37000A 6800A	2400A	435 % Incr. 183 % Incr.
	Hansford, U.M.	Hansford		7228 6924-77	20 20	GW 3% (20 FA 20	30 20	3316P	1950 P	185 % Incl.
3.	Hansford, U.M.	Hansford	1, Tex.	0924-11	20	3 % C	IA 20	20	10250A	15504	74% Incr.
	Parnell, L.M.	Ochiltree	Тет	9857-996	3 10	2%0	FA 6	131/2	4350A	1-960A	
4.	rarnen, L.M.	Ocimica	C, ICA.	3601-330		~ /0 C				1-9200A	Equal to Expected
5.	Parnell, L.M.	Ochiltree	. Tex.	9826-58	10	5%0	A 3.9	14	3600A	3906A	Equal to Offsets
	Mocane-Laverne	-		6162-99	20	5%0		131⁄2	4250A	3800A	12% Incr.
	Mocane-Laverne			6275-84	20	GW	20	17	4500A	None	Better than Expected
	Richfield	Morton,		5039-512		3%0		191⁄2	8000A	4340A	84% Incr.
	Hansford, L.M.	Hansford		7475-81	20	3%0	A 20	20	1118P	138 P	
			_			.			2400A	00500 4	708% Incr. 139% Incr.
10.	Wamble, U.M.	Ochiltree		8260-86	22	GA	20	20	49500A	20700A	139% Incr. 113% Incr.
11.	So. Turner, U.I	M.Ochiltree	e, Tex.	8980-88	40	IA		20	2100A	984A	

RESULTS OF WELL	STIMULATION	WITH	CO.	TEXAS-OKLAHOMA	PANHANDLE	AREA GAS WELL	LS

.

•

- k - K

Well	Field	County	State	Depth	Fluid, 1000 Gal	Туре	Treatment Sand 1000#	CO ₂ Tons		Offacts Ave. PotMCF	Remarks
	MORROW SAND										
12.	So. Logan	Beaver, (8428-86	30	GC	30	24	4100A	None	Equal to Expected
13. 1	Notla L. M.	Ochiltree	, Tex.	10138-385	15	GA	71/2	32	3500A	1-944A 1-Diag. 15200A	Equal to Expected
		T imesamah	Tom	10564-74	15	GW	15	22	23500A	None	Before—F1000Mcf ¾" Ck
	Wildcat Wildcat	Lipscomb Hansford		7573-83	20	GW	30	20	4500A	None	Better than Expected
		1101131014	.,	.010 00		GIII	•••			••••	
	TONKAWA SAND										
1. 1	Bechtold	Lipscomb		6188	19	GW	7.75GB		22000A	9000A	144% Incr.
2.]	E. Lipscomb	Lipscomb	, Tex.	6698-708	10	GW	20	14Ga	3120 & 471 +57BSWPD		(1"Ck350#)
		RESUL	.TS OF	WELL ST	IMULATI	ON WI	гн со ₂ ок	LAHO	MA AREA	GAS WELLS	
1.	ATOKA SAND N. W. Kinta	Haskell,	Okla.	5824-61	20	SLW	1WH 11.25	20	5713A	5650A	Equal to Offsets
							~~~~~				
1.	MANNING LIME Dover-Hennessey	Kingfishe	er, Okla.	6787-96	15	GW	.62WH 4.37	10½	Ga 1918 %″ Ck-650#	None	Better Than Expected

## RESULTS OF WELL STIMULATION WITH CO2 TEXAS-OKLAHOMA PANHANDLE AREA GAS WELLS

102

**}** 

Well	Field	Co. State	Depth	Fluid 1000 gal	General Type	Treatm Sand 1000#	ent CO2 Tons	Well Potential- Mcf.	Offsets Ave. Potential- Mcf.	Remarks
DAKOT	TA SAND									
1. San	n Juan Basin	Rio Arriba, N. I	1. 7540-7738	71.6	SLW	75	40	6144A	4593A	34% Incr.
2. Sai	n Juan Basin	San Juan, N. M	. 6744-6924	65	SLW	40	40	4247A	2544A	67 % Incr.
3. Sai	n Juan Basin	San Juan, N. M	. 6444-6630	69.7	SLW	75	40¾	2625A	None	
4 San	n Juan Basin	San Juan, N. M		86.1	SLW	60	33	2112A		Equal to Offsets
5. Sai	n Juan Basin	San Juan, N. M		115.5	SLW	75	40	4120A	3140A	31% Incr.
	n Juan Basin	San Juan, N. M		96.6	SLW	100	421/2	6636A		Flow Tests-3 CO ₂ Wells
	n Juan Basin	San Juan, N. M		110	SLW	100	36	5004A }		4115 Mef Ave. (3 Other
8. Sai	n Juan Basin	San Juan, N. M	. 6344-6502	74.5	SLW	76	301⁄2	5925A J		(wells-3303 Mef Ave., 25% Incr.)
CHACR	A									
1. Sai	n Juan Basin	Rio Arriba, N. I	<b>A.</b> 3890-3903	34.8	SLW	30	20	1100		Equal to Offsets
PICTU	RE CLIFTS									
1. Sau	n Juan Basin	Rio Arriba, N. I	A. 3276-3300	30.4	SLW	30	91/2	2671A	2254A	18½% Incr.
	n Juan Basin	Rio Arriba, N. I		31.3	SLW	30	91⁄2	5352A	3020A	77% Incr.
MESA	VERDE									
1 Sat	n Juan Basin	San Juan, N. M	4432-4588	62.6	SLW	50	291⁄2	1738A	None	OWWO Redrilled
	n Juan Basin	Rio Arriba, N. I		60.2	SLW	42	40	2214A	None	OWWO Redrilled
		LO—Lease Oil 15% A—Acid RO—Refined Oil GA—Gelled Acid GW—Gelled Wate	r		C e A	WWO- k-Chok Absol	e ute Opei	ll Workover	field Rules)	WH—Walnut Hulls GB—Glass Beads IA—Isop. Alcohol Ga—Gage

### RESULTS OF WELL STIMULATION WITH CO2 FOUR CORNERS AREA GAS WELLS

,

.

۰.

103

.

Well	Field	Co.—State	Depth	Zone	Fluid 1000 gal	General Type	Treatment Sand 1000#	CO ₂ Tons	Well Potential BOPD	Remarks
TONKA	WA SAND									
1.	Feldman	Hemphill, Tex.	7715-7799		10	GO	7.5	18	F122+9%SW	15/64''ck-250#
2. 3.	Feldman	Hemphill, Tex.	7728-7806		30	GW	30	35	F205	34"ek
3.	Feldman	Hemphill, Tex.	7782-7810		30	ĞŴ	30	35	F122+24%SW	1 ³ / ₄ "ck
4.	Bechtold	Lipscomb, Tex.	6188-94		10	GW	20	20	F223	3%"ck-800# Offset F24-+56SW
5.	Frass	Lipscomb, Tex.	6188-98	• 	10	GW	10	181/2	F120+2740Mcf	¹ / ₄ "ck-1300# Offsets 2-F102§151 (High GOR's)
j.	N. Fork	Beaver, Okla.	6060-69		7.5	GW	7.5	13	F905+17SW	2-P26§41 ½''ck-425# Offsets 1-F459 ¾''ck 1-F168 By Heads
7.	Bradford	Lipscomb. Tex.	6586-96		5	GW	10	13	F360+50%SW	1"ck-100 # Offset P-72 + 42% SW
<b>.</b>	Wildcat	Ellis, Okla.	7895-924		30	ĞÖ	30	37	F536	24/64"ck
DES M	OINES		ga de la com	en e			. /			
l <b>.</b>	Farnsworth-Conner	Ochiltree, Tex.	6669-79	1	15	71/2 % A		191/2	P120	Equal to Offsets
	Twin-Des Moines	Hansford, Tex.	6240-58		10	15%A		1372	F117	(Before F30)
s.	Farnsworth-Conner	Ochiltree, Tex.	6580-6824		10	71/2A		20	P114	(Belole F SU)
<b>.</b>	Farnsworth-Conner	Ochiltree, Tex.	6614-6834		9	7½A		18	P112	
	Panhandle	Hutchinson, Tex.	2672-2796	Brown Dolo,	10	GW	30	10	<b>P</b> 25	Equal to Offset Retreatments
	Panhandle	Hutchinson, Tex.	2610-2758	Brown Dolo.	10	GW	20	10	P60	Better than Offset Retreatments
	Perry-Clev.	Lipscomb, Tex.	7318-57	Cleveland	16	GW	20	25	F184+14%SW	1/2"ck (No Offsets)
	Dutcher	Ochiltree, Tex.	7538-7691		20	3% GA	20	141/2	P51	Poor Pay Dev. Offset P63
•	Taloga	Morton, Kans.	4614-22	Morrow Sd.	20	GO	15	18	P360+120SW	Better Than Expected
		RESULTS OF W	ELL STIMU	LATION WITH C	O2 OKL	AHOMA	AREA OIL	WELL	S	
	Dover-Hennessey	Kingfisher, Okla.	5636-42	Cleveland	15	GW	1,9 <b>+1.4W</b> H	1034	F100 (Low GOR)	¼″ck-500# Offsets 1-P50+20SW, 1-F211 (High GOR)
	Dover-Hennessey	Kingfisher, Okla.	6248-55	Oswego Lm.	10	15%A		15	F46	5/16"ck Equal to Better Field Well
<b>.</b>	Dover-Hennessey	Kingfisher, Okla.	6170-79	Red Fork Sd.	15	GO	15	2	F62	3/10° CK Equal to better rield well 3%"ck-375# (No Offsets)
•	S. W. Lacey	Kingfisher, Okla.	7785-964	Meramec Lm.				33	F225	11/64"ck
•	S. W. Wakita	Grant, Okla.	5029-34	Cherokee Sd.	7.5	GO	7.5	63/4	F192	7/32"ck-430# Offsets 1-F192, 1-P:
•	N, Lovell	Logan, Okla,	4969-75	Cottage Grove, Sd	. 10	GO	10	6	F346	12/64"ck-800# (Wildcat)
6.	N, LOVEII	Logan, Okla,	4969-75	Cottage Grove, Sd	. 10	GO	10	6	F346	12/64''ck-800# (Wildcat)

RESULTS OF WELL STIMULATION WITH CO2 TEXAS-OKLAHOMA PANHANDLE AREA OIL WELLS

						eneral Tro			Well	
Vell	Field	Co. State	Depth	Zone	Fluid 1000 gal	Туре	Sand 1000#	CO ₂ Tons	Potential BOPD	Remarks
	Parker-Canyon	Andrews, Tex.	9303-12	Canyon Reef	10	15 % A		15	F201-275#	Later F306-+87SW-200#
2.	Nena Lucia	Nolan, Tex.	7089-97	Strawn Reef	30	15% GA	20	551/2	F726-400#	24/64"ck (Before-treated w/6500 gal acid P33BO+10BAWPD
	Magnolia Sealy	Ward, Texas	2740-846	Yates	20	GW	30	171⁄2	F90+40SW	Before P2 to 5 BOPD, Offset-F25BOPD
•	N. Ackerly-Dean	Dawson, Tex.	8483-642	Dean	30	RO	3.25 4.25 V	19	F231	Offset Pot Ave 150BOPD
	Wasson-WA.	Yoakum, Tex.	8250-403	Wichita-Albany	7 23	15% GA	1.00 1	19	F856-150#	21/64"ck Offset Pot Ave F280BOPD
	Tubbs	Crane, Tex.	6493-526	Devonian	10	LO	10	20	F119-720#	8/64″ck
	N. Andrews	Andrews, Tex.	10485-523	Devonian	2.5	15%A	••	<b>16</b>	F224-100#	¹ /2" ck
. :	N. Andrews	Andrews, Tex.	10392-402	Devonian	50	15%A	35	57	P158+29%SW	,2 02
. 1	Emma-Strawn	Andrews, Tex.	9094-199	Strawn	10	15%A		16	F114-40#	1″c <b>k</b>
. 1	Britt-Sprab.	Dawson, Tex.	7397-415	Spraberry	20	RO	40	211/2	P165+30%SW	
	N. Robertson	Gaines, Tex.	7025-180	Clearfork				21	P155-19%SW	
	Smyer	Hockley, Tex.	5808-940	Clearfork	15	15%A		19	P113	
. 1	Smyer	Hockley, Tex.	5830-958	Clearfork	10	15%A		15	P22+20%SW	
.	Smyer	Hockley, Tex.	5810-960	Clearfork	_ <b>10</b>	LO	15	181/2	P105-+4% SW	
<b>.</b> 1	Univ, Waddell	Crane, Tex.	7540-672	Penn.	15	150 4	+.5V	Н		
	S. Ward	Ward, Tex.	2382-503	Penn Grandfall	15 s 10	15%A GW	20	37 17	P85+6%SW P21+12%SW	
N	ANDRES					~	~~		1 41 - 12 / 0 11	
	Parker-S. A.	Andrews, Tex.	4594-619		5	15%A		9	P100	
	Parker-S.A.	Andrews, Tex.	4613-65		20	LO	27	28	F142	
	Parker-S.A.	Andrews, Tex.	4665-93		20	LO	27	31	P32 + 418W	
	Parker-S.A.	Andrews, Tex.	1000 00		20	LO	27	28	$P78 \pm 12SW$	
	Parker-S.A.	Andrews, Tex.	4610-58		20	LO	27	28	P97	
	Martin S.A.	Andrews, Tex.	4267-99		3	RO	6	5	F96	
	Harper S.A.	Ector, Tex.	4100		21	GW	14	15	P198	
	Parker S.A.	Andrews, Tex.	4648-68		20	LO	27	28	F170	48/64"ck
	Martin S.A.	Andrews, Tex.	4276-93		3	RO	6	7	P41+17SW	Had Emulsion Block Before (Swabbed Dr
US	SELMAN									
	fidland Farms	Andrews, Tex.	11915-65		50	15%GA	371/2	104	F297-600#	
	Iidland Farms	Andrews, Tex.	11870-923	. •	50	15%GA	371/2	94	F348-500 <i>#</i>	20/64''ck
	Iidland Farms	Andrews, Tex.	11850-95		50	15%GA	371/2	991⁄2		Test F483 BOPD
	Lidland Farms	Andrews, Tex.	11905-50		50	15%GA	371⁄2	118	F328-250#	20/64''ck
. N	Vildcat	Ector, Tex.			5	15%		12		
<u>,</u> .					50	15%GA	$37\frac{1}{2}$	1191/2		Test F771+179BAW-24 hr 700#
RA	YBURG									
	Parker-Grayburg	Andrews, Tex.	4524-84		31	LO	46	38	F110-100#	
. 1	Parker-Grayburg	Andrews, Tex.	4512-80		30	LO	45	38	F217-60#	
	Parker-Grayburg	Andrews, Tex.	4511-80		30	LO	45	38	P145	
	Midland Farms	Andrews, Tex.			30	LÕ	45	37	P448SW	Later Test P88 with no SW
. 1	McElroy	Upton, Tex.	3092-146		25	RO	50	27	P55	
	AWARE									
	El Mar	Loving, Tex.	4490-4500		2	RO		31/2	F70-420#	Rework-Before F20-BOPD
	El Mar	Loving, Tex.	4500		2	RO		31/2	F115-560#	Rework-Before F20-25 BOPD
	El Mar	Loving, Tex.	4500		2	RO		31/2	F70-400#	Rework-Before F20-25 BOPD
	El Mar	Loving, Tex.	4500		22	RO		31/2	F82-600#	<b>Rework-Before F20-25 BOPD</b>
. 1	El Mar	Loving, Tex.	4490-501		2	RO		31/2	F63-600#	Rework-Before Dead

, *t* 

RESULTS OF WELL STIMULATION WITH CO₂ W. TEXAS OIL WELLS

۱ ۱

_

**k** 1

Well	Field	Co. State	Depth	Zone	G Fluid 1000 gal		Freatment Sand 1000#	CO ₂ Tons	Well Potential BOPD	Remarks
1.	Pearl-Queen	Lea, N. M.	4950-62	Queens	30	RO	90	14	<b>P</b> 220	
2.	Vaccum-Abo	Lea, N. M.	8692-902	Abo	20	15%A		30	F296	20/64''ck
3.	Vaccum · Abo	Lea, N. M.	8586-850	Abo	10	15%A		15	F288	22/64″ck
4.	Vacuum-Abo	Lea, N. M.	8600	Abo	20	15%A		20	150	Rework-Before 77BOPD
5.	Vaccum Yeso	Lea, N. M.	6419-705	Yeso-Paddock	20	LO	40	151/2	F105	10/64"ck GOR 1850
6.	Vaccum Devonian	Lea, N. M.	12070-105	Devonian	2	15%A		10	F172-200#	26/64"ck GOR 4780
7.	Wildcat	Chaves, N. M.	2068-122	San Andres	30	GW	14	141⁄2	F38	1"ck (Area undeveloped because all previous wells uncommercial.)
8.	Milnesand	Roosevelt, N. M.	4601-23	San Andres	15	LO	30	121/2	F48	1/2"ck
9.	Undesignated	Chaves, N. M.	3156	San Andres	10	LO	10	12 1/2	P22+10SW	Equal to Offset Wells
10.	Double X	Lea, N. M.	4904	Delaware	3	LO	7.5	41/2	F86	Other wells in field pump
11.	Double X	Lea, N. M.	4900	Delaware	1	LO	1	31/2	P44	
12.	Double X	Lea, N. M.	4920	Delaware	2	LO	2	10	P20	Offset P9BOPD
		RESULTS	OF WELI		N WITH	I CO. :	S. E. NEW		CO GAS WELLS	
1.	Wildcat	Eddy, N. M.	7375-7538	Cisco	30	15% A		201⁄2	15,00 <b>0Mcf</b>	Offset 12,848 Mcf 1½″ck

١

## RESULTS OF WELL STIMULATION WITH CO₂ S. E. NEW MEXICO OIL WELLS

-

----

In general almost all gas wells have been good applications for the use of  $CO_2$  in stimulation treatments. Results of treating the Brown Dolomite in the old Panhandle Gas Field have varied. Increased formation permeability has resulted from the dissolving action of carbonated water on dolomite. However, low formation pressure (50 - 100 psi @ 2500 - 3000) in much of the field precludes the use of  $CO_2$  for effective fracturing fluid removal.

#### West Texas

**Other Formations** 

In this area  $CO_2$  has been mainly used in oil well fracturing treatments with oils or 15% HCl acid as the treating fluid. Addition of  $CO_2$  in viscous treating oils used in this area has resulted in higher injection rates, due to viscosity reduction, with little adverse effect in sand carrying ability. Best results have generally occurred in deeper wells (below 6500 ft with high bottom hole pressure). Shallower wells with above average GOR's and good natural productive capacity have also responded well to treatments using  $CO_2$ . In this area  $CO_2$  is used principally for rapid cleanup along with elimination or reduction of swabbing expense.

Treatments in the deep, high pressure Fusselman Lime have been particularly successful. Potentials of these wells have been significantly greater than those of comparable wells treated without  $CO_2$ . The use of  $CO_2$  has resulted in better removal of the spent acid and in more effective all - around clean up. Also, the shorter clean up time involved has allowed these wells to be placed on production many days sooner.

#### OTHER AREAS

Results obtained from numerous treatments in Central Oklahoma, Southeast New Mexico, and the Four Corners areas, are similar to those obtained in the areas already discussed. Thus it is apparent from wide regional usage that  $CO_2$  has extensive application in well stimulation work.

#### **ECONOMICS**

Elimination of 2 days swabbing expense will usually pay for the total additional expense incurred in using CO₂ in an average stimulation treatment. If a drilling rig is being used for completion the CO₂ expense can be offset by the elimination of as little as one day's rig time.

In some cases the cost of the  $CO_2$  for water fracture treatments can be saved by eliminating the weak HC1 acid solutions used for the prevention of formation damage.

Additions of  $CO_2$  to a viscous frac oil reduces friction losses and thus lowers the hydraulic horsepower requirements for injection. For an average treatment down 5 1/2 in. OD casing at a 30 bbl per minute rate these savings will be more than half of the direct cost of the CO₂ used.

The primary economic consideration, however, is the increased well productivity that can be obtained by using  $CO_2$ . As indicated above these increases can be obtained for little or no additional cash outlay. In the long run they amount to a substantial increase in income to the operator.

#### CONCLUSIONS

Results of work done to data indicate that the following benefits can usually be obtained when carbon dioxide is correctly used in well stimulation work:

1. Rapid and effective removal of treating fluids from the formation.

2. Better well potentials than with other stimulation techniques at little or no additional cost.

The best applications for  $CO_2$  appear to be in the stimulation of gas wells and in the stimulation of those oil wells which have relatively high bottom hole pressure or good productive capacity.

There are 2 principal reasons for the increased potentials of carbon dioxide treated wells. The first is the practically complete removal of treating fluids and other flow restricting materials from the fracture surfaces. The second is the prevention of damage to the formation by the treating fluids during and after the stimulation treatment.

#### REFERENCES

- Sweigert, Weber, and Allen, "Thermodynamic properties of Gases"; <u>Ind. Eng. Chem.</u> (February 1946) 185.
- Elton L. Quinn and Charles L. Jones. <u>Carbon</u> <u>Dioxide</u>, Reinhold Publishing Corp. (1936), 34-129.
- Beeson and Ortloff. "A Laboratory Investigation of the Water-Driven Carbon Dioxide Process for Oil Recovery", <u>Transactions</u> AIME, 216, (1958), 388.
- Dodds, Stutzman, and Sollami. "Carbon Dioxide Solubility in Water;" <u>Chem. and Eng. Data Series</u>, Vol. 1, No. 1 (1956), 92.
- 5) Bernard and Holbrook. "Effect of Some Chemical Agents on the Permeability of Cores Containing Clay," <u>Producers Monthly</u> (March, 1960).
- Paul Torrey. "Preparation of Water for Injection into Oil Reservoirs," <u>Transactions Reprint Series</u> <u>#2</u> AIME, p. 28.
- 7) John C. Calhoun, <u>Fundamentals of Reservoir Eng-</u> ineering, University of Oklahoma Press, 1956. p. 88.
- Henry Dreyfus. "Manufacture of Oxygenated Organic Compounds." U. S. Patent 1,916,041 - 1933.
   Forrest C. Reed. "Process of Producing Com-
- 9) Forrest C. Reed. "Process of Producing Compounds Containing Carbon, Hydrogen, and Oxygen", U.S. Patent 1,959,219 - 1934.
- 10) Alderman and Woodward, "Prevention of Secondary Deposition from Water Flood Brines," API Mid Continent District, Spring Meeting, April 10-12, 1957. Paper 851-31-A.
- L. W. Holm. "Carbon Dioxide Solvent Flooding for Increased Oil Recovery," AIME Fall Meeting, October 5-8, 1958. Paper 1100-G.
- W. B. Bleakley. "CO₂ A new Shot In The Arm for Acid, Frac Jobs," <u>Oil and Gas Journal</u>, (October 8, 1962).
- 13) C. Beal. "The Viscosity of Air, Water, Natural Gas, Crude Oil and its Associated Gases at Oil Field Temperatures and Pressures," <u>Transactions</u> AIME 165, (1946), p. 94.
- 14) McGuire and Sikora, "The Effect of Vertical Fractures on Well Productivity," <u>Journal of Pet-</u><u>roleum Technology</u>, (October 1960), p. 72.
- 15) Van Poollen, Tinsley, and Saunders, "Hydraulic Fracturing: Fracture Flow Capacity vs. Well

Productivity," AIME Fall Meeting, October 1957, Paper 890-G.

- 16) H. K. Van Poolen. "Productivity vs. Permeability Damage in Hydraulic Produced Fractures," Drilling and Production Practice API, (1957), 103.
- 17) Hendrickson, Hurst, and Wieland, "Engineered Guide for Planning Acidizing Treatments Based on Specific Reservoir Characteristics," Journal of Petroleum Technology, (February 1960), 16.
  18) Huitt, McGlothlin and McDonald, "The Propping
- 18) Huitt, McGlothlin and McDonald, "The Propping of Fractures in Formations in which Propping Sand Crushes," <u>Drilling and Production Practice</u> API, (1959), 120.
- T. A. Bertness. "Observation of Water Damage to Oil Productivity." <u>Drilling and Production Practice</u> API, (1953).
- 20) Hurst, Rollins, and Stewart, "Fresh Water Fracturing can cut Treatment Costs," World Oil, (July 1958), 117.
- J. A. Harmon. "The Chemistry of Fresh-Water Fracturing", <u>Drilling and Production Practice</u> API, (1957), 50.
- 22) Bruce and Welge, "The Restored-State Method for Determination of Oil in Place and Connate Water," <u>Drilling and Production Practice</u> API, (1947), 166.