DRILLING STRING DESIGNS FOR DEEP DRILLING OPERATIONS

W. R. MALSON Loffland Brothers Company

Before 1950, drilling strings contained few drill collars, and the hole depth was shallow enough so that grade-E drill pipe easily satisfied most requirements for drilling and drill-stem testing. In 1957, when Great Western Drilling Company drilled the Phillips Petroleum Company Montgomery A-1 to 23,400 feet, engineered drilling strings became necessary. Between 1957 and the time the API published RP7G, drilling-string design was a daily necessity for drilling engineers to avoid operational problems and to satisfy contractural requirements. Each engineer designed his drilling strings based on his knowledge and training, and the procedures were based on techniques previously used in the design of casing. In the vacuum created by operational necessity and the lack of API recommended practice we developed a philosophy and two report forms for our use which have worked well. Examples of the use of these report forms and a comparison between our philosophy and the API RP7G recommended approach are presented in this paper.

API Recommended Practices 7G, 7th Edition, April 1976, Section 5.1 states that "The following design criteria must be established:"

- a. Anticipated total depth with this string.
- b. Hole size.
- c. Expected mud weight.
- d. Desired Factor of Safety in tension and/or margin of overpull.
- e. Desired Factor of Safety in collapse.
- f. Length of drill collars, OD, ID, and weight per foot.
- g. Desired drill pipe sizes and inspection class. Section 5.3 reads as follows.

The design of the drill string for static tension loads requires sufficient strength in the topmost joint of drill pipe to support the submerged weight of all the collars, stabilizer, and bit. It is important to note that the tension values shown in the tables are the theoretical values based on minimum areas, wall thickness, and yield strengths. The yield strength as defined in API specifications is the stress at which a certain total deformation has occurred. This deformation includes all of the elastic deformation as well as some plastic (permanent) deformation.

The specific description of the amount of deformation and stress is in API specification 5A Section 4.2.

API RP7G states, "Slip crushing is not a problem if slips and master bushings are maintained." We believe that this statement is essentially true if the drilling rig is equipped with solid master bushings and 16-1/2-inch long slips in good condition.

We design our drilling strings to have 100,000 pounds pull above the minimum yield strength for the class of pipe in service. We use the minimum yield values and the adjusted pipe weight in lb/ft as reported in RP7G. A drilling string designed this way has additional strength not considered because the yield strength of most pipe is closer to the nominal pipe strength, and the remaining wall in most drill pipe exceeds the minimum requirements. The API points out that if pipe is loaded to the minimum yield value, some permanent stretch may occur; the API Recommendation is to limit the design load to 90 percent of the minimum yield or to use a specific factor recommended by the pipe supplier. RP7G reads as follows.

The selection of the proper safety factor and/or margin of overpull is of critical importance and should be approached with caution. Failure to provide an adequate safety factor can result in loss or damage to the drill pipe, while an overly

TABLE I—DRILLING STRING	AND WIRE LINE CAPACITY	PROGNOSIS, SUMMARY OF A	API EXAMPLES 5, 7
-------------------------	------------------------	-------------------------	-------------------

			1	DESCRIPT	ION			MLID WEIGH BUDYANCY	t 10 #/ Factor	(gal. 0.847			HDOK LOA 23495 Accum wit	D WIRE LIN NOM, STR 8 LINES	e safety factor ength <u>1 %"</u> EIP= 1 10 lines 12 lines	1 59800
			THREAD		NOM.		wt/	WEIGHT	WT. 1	N ACCUM	MIN YLD	OVER-	PLUS TRA	v 0.1469	0.1224 0.1062	
NUMBER	LENGTH	OD	TYPE	ID	WT.	GRADE	FT	IN AIR	FLUI	D WT.	STRENGTH	PULL	EQUIP	1,087,815	1.305.555 -	
27	810	6 🖌	4 ½ xH	2 ¥	90	-	90	72900	617	46 61746	938125					
244	7564	4 5	4 ' 5 XH	3 %	16.6	E	17.84	134942	1142	96 176042	260100	84058	107553			
117	3627 12000	4 5	4 5 201	3	16.6	X95	18.19	<u>65975</u> 273817	_ <u>558</u> 2319	<u>81</u> 231923 23	418700	186777	255418	4.26	5.11	
							TRA	veling equi	LPMENT :	LIST	CAP	CITY	н	EIGHT		
							TRA	VELING BLOC	CK	545 H 350 1/300	70		9	9390 5000		
							100			~~~ ~/m	5	sinn		4570		
							SWI	vel Vator links	5	2 3/4 x 108	7	0000	8	\$70		
							ELE	VATORS		4 ½ MGG	49	0000	I	495		
							KEL.	LY		5 ік нех	96	60000	- 	2 <u>180</u> 23495		
							CAL	CULATED OV	ERPULL. 260100	using 907, of m x 0.9 = 234090	inimum tensil #	E YIELD S	TRENGTH			

234090 - 176011 = 58079# OVERPULL

conservative choice will result in an unnecessarily heavy and more expensive drill string. The designer should consider the overall drilling conditions in the area, particularly hole drag and the likelihood of becoming stuck. The designer must also consider the risk which is acceptable for the particular well for which the drill string is being designed.

In deep drilling operations this information is considered by the operator, and a minimum overpull is specified in the contract. From an operational standpoint it is very important that the strength of the drilling string be described by overpull available and not by its safety factor. The reason for this precaution is that a driller cannot read a safety factor from his weight indicator.

Included are some design sheets to illustrate the format our company uses to design drill pipe strings

to be used for drilling and for drill stem tests. These sheets are planned to eliminate omissions in logic and to reduce errors in calculations.

Table 1 shows the solution to the example problem 5.7 in API RP7G. The traveling equipment list is about what a rig doing 12,000-foot work would need, and it is included to demonstrate how the form shows the driller what his hook load should be at the top of each weight and grade of drill pipe and to show what the wire-line safety factor should be at total depth. Normally, we use the physical properties of drill pipe which we find in the tables in RP7G. When one encounters pipe which is not in the tables in RP7G, as in the API example, the adjusted weight of the drill pipe must be calculated. At this

TABLE 2-DRILLING STRING AND WIRE LINE CAPACITY PROGNOSIS, COMPARISON TO API EXAMPLE 5, 7

	MUD WEIG	−r 10#	GAL														
	BUDYANCY	FACTOR	0.847										HOOK LOAD	WIRE LI	NE SAFET	FACTOR	
			DE	SCRIPTI	ON								<u>23,495</u>	NOM. STR	ENGTH 1	EIP= <u>159,80</u>	Q
NUMBER	Length	œ	THREAD TYPE	ID	NOM. WT.	GRADE	₩Т/ FT	WEIGHT IN AIR	WT. IN FLUID	ACCUM WT.	min yld Strength	over- Pull	PLUS TRAV EQUIP	0.1469 1.087,815	0.1224 1.305.5	0.1062	-
27	810	6 ≰	4 ½ хн	2 🖌	90	-	91	73710	62432	62432	-	-					
20	620	4 5	4 5 хн	3	20.0	E	22.18	13752	11648	74080	322950	248870	97575				
178	5518	4 %	4,¥₂xH	3 %	16.6	E	18.40	101531	85997	160077	260100	10023	183572				
163	<u> 5053</u> 12000	4 5	4 ½ хн	3	16.6	X95	18.51	<u>93531</u> 282524 x	79221 0.847 = 235	239298 3298	418700	179402	262793	4.14			

calculated overpull using 90% of minimum tensile yield strength, 260,100 x 0.9 = 234,090# 234,090 - 160,093 ~ 73,997# overpull

TABLE 3-DRILL STEM TE	T, SUMMARY OI	FAPIEXAMPLE 5	, 7
-----------------------	---------------	---------------	-----

			DES	CRIPTI	ON		1	mud weight 10 #/gal buoyancy factor 0.847 pressure gradient 520 psi/1000 ft							(7) LAPSE	COLLAPSE	FACTOR
PIPE TYPE	LENGTH	Depth	HYDROSTATIC PRESSURE	ID	NOM. WT.	GRADE	₩Т/ FT.	WEIGHT IN AIR	WT.IN FLUID	ACCUM WT.	MIN YLD STRENGTH	over- Pull	MIN Y.P	COLL. .APSE	100%	FOR TENSION	OF SAFETY
27 DC 6 ¥ x 2 ¥	810	12000 111190	6240 5819	2.25 2.25	90 90	DC DC	90 90	72900	61746	61746	-						
244 16.6E	7564	11190 3626	5819 1886	3.826 3.826	16.6 16.6	E E	17.84 17.84	134942	114296	61746 176042	260100 260100		23.74 67.68	86 48	7550 7550	6493 3624	1.12 1.92
117 16.6 X 95	3627	3626 0	1896 -	3.826 3.826	16.6 16.6	X95 X95	18.19 18.19	65975	55881	176042 231923	418700 418700		42.04 55.39	72 60	8850 8850	6372 5310	3.38

time, the most accurate method of calculation is through use of the API Specification 5A and the Hughes Tool Company book titled *Length and Weight Added to Drill Pipe by Flashweld Tool Joints*.

Table 2 is an example of a typical drilling-string design where the objective is 100,000-pound overpull and where class 2, grade E pipe and new X95 is used. In this example, we also included 20 lengths of 20-pound grade E, class 2 pipe above the drill collars to be used as transition pipe to reduce fatigue damage in the 16.6-pound grade E pipe.

Table 3, from section 9.11 in RP7G, shows the factors affecting the design of drill pipe strings for

drill stem tests. In the example problem using 5inch outside-diameter drill pipe in 15 lb/gal mud with a design to pull 50,000 pounds to unseat the packer, the maximum depth at which a DST could be run was 8,338 feet. Many knowledgeable people are reluctant to DST any high pressure formation for two main reasons. No one has ever tested the pressure capability of a tool joint, and since a tool joint seals on the shoulders and the shoulders of used tool joints are normally damaged by tool joint pins and spinning chains, the results is a very unreliable pressure vessel. Tubing would be more reliable. However, it is not usually satisfactory for opening DST tools Table 3 shows what would be the result

TABLE 4-DRILLING STRING AND WIRE LINE CAPACITY PROGNOSIS, LINER EXAMPLE

	EXAMPLE OF 7 3/4" OD, 46.1 # LINER SET AT 20,500', TOP OF LINER @ 15,500', MLD WEIGHT 9.2 #/GAL, BLOYANCY FACTOR 0.85% 100,000# OVERPULL, ALL PIPE PREMIUM CLASS, DESCRIPTION													WIRE LIN Nom. Stri 8 Lines 1	NE SAFETY F Ength <u>1 3/8</u> 10 lines 12	ACTOR EIP = <u>192000</u> LINES
			THREAD		NOM.		wт/	SEIGHT	WT. IN	ACCUM	MIN YLD	OVER-	PLUS TRAV	0.1469	0.1224 0	.1062 1.807.909
NUMBER	LENGTH	œ	TYPE	פו	W1.	GRADE	F1	IN AIR	ruuu	M 11	andram		20011	21200.1002		<u></u>
42 294 164	5000 1302 9114 <u>5084</u> 20500	73/4 45 45 45	4 5 xH 4 5 xH 4 5 xH 4 5 xH	3.00 2.75 2.25	46.1 20.0 16.6 20.0	E S135 S135	46.1 22.18 18.54 22.56	230500 28878 168974 <u>114695</u> 543047	198000 24806 145149 98523 x 0.859 = 46	198000 222806 367955 466478 6477	- 322950 468180 581310	- 100144 100225 114832	368598 513828 626958	2.0	2.5	2.8

TRAVELING I	EQUIPMENT	DESCRIPTI	ON		
	ITEM			CAPACITY - TONS	WEIGHT
TRAVELING 1	BLOCK	BETHLEHEM	B-55	600	22030
HDOK		BJ	5500	500	9950
SWIVEL		EMSCO	ப650	471	7220
ELEVATORS		BJ	GG	350	550
LINKS		ม 3	5 x 144	500	1524
KELLY	API	RP7G 5	HEX :	480	4374
					45648

DESCRIPTION

				DEUCINI	1100								-	-		COLLAPSE	
P I PE TYPE	LENGTH	DEPTH	HYDROSTA PRESSURE	TIC ID	NOM, WT,	GRADE	ਆ/ ਸ.	WEIGHT IN AIR	WT, IN FLUID	ACCUM WT	min yld Strength	over- Pull	X MIN Y.P	Z COLL APSE	COLLAPSE 100%	CORRECTED FOR TENSION	FACTOR OF SAFETY
7 3/4	5000	20500 15500	9807 7415		46.1 46.1		46.1 46.1	230500	198000	198000	-	-					
4 1⁄2	1302	15500 14198	7415 6792	3.640	20.0	E	22.18	230500 28878	198000 24806	198000 222806	322950 322950	-	61. 69.	354 045	10980 10980	5929 4941	.80 .73
4 1⁄2	9114	14198 5084	6792 2432	3.826	16.6	S135	18.54	168974	14514 9	222806 367955	468180 468180	-	47. 78.	547. 534	5 11990 11990	5695 4077	.34 1.68
4 1/2	. <u>5084</u> 20500	5084	2432	3.640	20.0	S135	22.56	114695	98523	367955 466478	581310 581310	-	63. 80.	352 232	18840 18840	9797	4.03

of attempting a drill stem test using the drilling string design in Table 1.

Assume that a 405-foot interval is being tested and there are 405-feet of drill collars above the packer. The weakest point in this string would be the first joint of 4-1/2-inch outside-diameter drill pipe above the drill collars and the factor of safety in collapse would be 0.764. We would advise against attempting a DST if the factor of safety at any point in the string is below 1. We vary from API recommendations in that we compare accumulated weight to minimum yield strength remaining in the pipe. In example 9.11, the API recommends comparing the tensile load to the average yield strength. The effect on this problem would be that whereas API would estimate 88 percent of the collapse resistance available, we would predict 86 percent.

Table 4 is an example of the type of severe test of drill-pipe dependability encountered in a deep well.

Table 5 shows that when a deep liner is run the importance of filling the drill pipe on the way in the hole should not be ignored.

BIBLIOGRAPHY

- 1. API RP7G, Seventh Edition vil 1976
- 2. API Spec 5A, Thirty-Second Edition, March 1973
- 3. API Spec 5A, Thirty-Third Edition, March 1976
- 4. Length and Weight Added to Drill Pipe by Flashweld Tool Joints, Hughes Tool Company.

- 5. Paul J. Zecchi & Basil J. Scott: The Applications and Limitations of Deep Drill Stem Testing, SPE 3907
- M. T. Parker: Maximum Hook Load Allowed to Prevent Collapse in the Slip Area and Maximum Hook Load Pull to Prevent Stretching of Drill Pipe, Great Western Drilling Co., CB-35, June 1958
- M. T. Parker: Maximum Hook Load to Prevent Collapse in the Slip Area and Maximum Hook Load Pull to Prevent Stretching of Drill Pipe, Great Western Drilling Co., CB-10, November, 1960
- 8. M. T. Parker: Drill Pipe Loading, Great Western Drilling Co., Engineering Bulletin 9.002, 1961

ACKNOWLEDGMENTS

I would like to give special recognition to the following persons who gave me technical advice in the preparation of this paper.

R.D. Cooper, Division Engineer Loffland Brothers Company, Odessa, Texas, W.C. Murphy, Division Engineer Halliburton Services, Dallas, Texas, T.B. Smith, Staff Engineer, Oil Tool Engineering, Hughes Tool Company, Houston, Texas, R.D. Trimble, Jr., Assistant Director American Petroleum Institute, Dallas, Texas, and D.D. Williams, Regional Engineer Hughes Tool Company, Midland, Texas.

EXAMPLE OF 7 3/4'' od, 46.1 liner set 0 20,500', top of liner 0 15,500' MLD WEIGHT 9.2 #/GAL HYDROSTATIC GRADIENT 478.4 PSI/1000 FT.