CRUDE OIL SWEETENING WITH A NOVEL AND SELECTIVE ALKANOLAMINE

Bruce M. Jennings, III - National-Oilwell William P. Marx - Presidio Oil Company Mark L. Mitchell - National-Oilwell

INTRODUCTION

Hydrogen sulfide gas is present in much of the crude oil and natural gas production throughout the world. This creates quite a problem for today's producers, in that the hydrogen sulfide is both poisonous and very corrosive. In the past, the need to reduce hydrogen sulfide (H_2S) by "sweetening" was born more of necessity than environmental good intentions. The high toxicity of H_2S simply made it imperative. It is only in recent years that scientists have discovered that these gases also contribute to acid rain and the destruction of our irreplaceable ozone layer.

Now, with the addition of these serious environmental implications, the issue of sweetening produced oil, gas, and water containing H_2S has taken on an even greater importance. Unfortunately, addressing this environmental responsibility is further complicated by old gas sweetening techniques that have traditionally forced you to accept certain compromises in efficiency, cost of production, and even the quality of your end product. Many of these methods of H_2S removal involve the use of heavy metals and known carcinogens that result in a waste product which is hazardous to man and the environment, as well as having the requirement of being disposed of at an EPA approved disposal site. In addition, these methods are known to be non-selective in their removal of H_2S , also combining with large quantities of carbon dioxide, compromising the quality of your finished product. Essentially, wasting product by removing carbon dioxide from your production rather than simply getting the H_2S out.

CHEMISTRY

A new patented alkanolamine product has been developed that selectively reacts with hydrogen sulfide in produced gas, oil, and water that may contain any amount of carbon dioxide. The method is comprised of, in part, the use of products known as triazines. A representative of this class of compounds is the 1,3,5 tri-(2 hydroxyethyl)-hexahydro-S-triazine. On a molar basis, one mole of this triazine will react with four moles of H_2S to form dithiazine and bis-dithiazine products. These reaction products are completely water soluble and have been classed by the EPA as non-hazardous.

FEATURES AND CHARACTERISTICS

The following list highlights some of the features and characteristics of a triazine:

- The triazine product is a liquid.
- The reaction between the triazine and the H_2S is virtually instantaneous.
- The triazine product reacts selectively with H_2S . It does not react with CO_2 .

- The reaction product is a liquid. No solids are formed.
- The reaction product is an excellent water soluble corrosion inhibitor and may be used in a variety of ways. Corrosion data is presented in Table I(A), I(B), II(A), and II(B).
- When viewed as a waste material, the liquid reaction product is non-hazardous and low in toxicity. A hazardous waste analysis of a typical sample of reaction product is found in Table III. Toxicity studies are summarized in Table IV.

TRIAZINE PRODUCT - APPLICATION TECHNOLOGY

In order to successfully apply the example triazine product, it is necessary to provide a place or places in a system that will permit intimate contact between the triazine and H_2S . The following four factors are responsible for the product management versatility associated with the triazine technology:

- 1. The triazine product is a liquid.
- 2. The triazine reacts selectively with H_2S to form stable reaction products.
- 3. The triazine/ H_2S reaction products are water soluble.
- 4. The triazine/H₂S reaction products are excellent corrosion inhibitors.

This triazine product is currently being applied to crude oil produced from wells in the Plaza and Wabek fields in Mountrail County, North Dakota. The H₂S concentration in these wells varies from a high of 1,195 ppm to a low of 507 ppm. With an average concentration of 850 ppm, the necessary quantities of triazine are being added to remove 500 ppm from the crude oil stream. The triazine product is being applied through a specially designed quill that introduces the product into the middle of the pipeline containing the crude oil. This injection point is immediately upstream of the specially designed static mixing system, thus providing intimate contact of the triazine with the H₂S in solution in the produced crude. Mixing of this product is a very critical point in the successful application and removal of H₂S, thus the engineering calculations must be done with precision and careful attention to detail. The net result of this project is that over 200,000 barrels of produced crude oil have been sweetened to pipeline specifications and thus a premium price has been realized by the producer. In addition, the lower H₂S levels in the produced crude oil open up new markets for possible sale of the produced oil.

CONCLUSIONS

The triazine product may be used in a variety of ways, often with existing or slightly modified equipment. The absence of produced solids allows for continuous operations, thereby eliminating expensive downtime. The H_2S reaction product is non-hazardous and is an excellent water soluble corrosion inhibitor.

Although there are no chemical limits with respect to the maximum amount of H_2S that may be removed from gas or hydrocarbon liquids by the triazine product, economic and/or environmental considerations will dictate its selection.

BIBLIOGRAPHY

- 1. Petroleum Extension Service, The University of Texas, Training Manual "Field Handling of Natural Gas," 3rd Edition 1972.
- 2. Blake, R. J., "How Acid-Gas Processes Compare," The Oil and Gas Journal, January 9, 1967, pp. 105-108.
- 3. Dillon, Edward T., "Composition and Method for Sweetening Natural Gas," U.S. Patent Number 4,978,512.
- 4. Goar, B. G., "Today's Gas Treating Processes," paper presented at the NGPA Permian Basin Regional Meeting, Odessa, Texas May 4, 1972.
- Dillon, Edward T., "Gas Sweetening With a Novel and Selective Alkanolamine," paper presented at the GPA Annual Convention - May, 1990.
- 6. Patton, Dr. Charles C., "Applied Water Technology," 1st Edition 1986.

Table I (A)	Table I (B)	
Wheel Test Data	Wheel Test Data	
Spent Triazine Product Removed from a Contact Tower	Spent Triazine Product Removed from a Contact Tower	
- Polk County, Texas	- Polk County, Texas	
Sample Date: August 2, 1990	Sample Date: August 2, 1990	
<u>TEST CONDITIONS</u> :	<u>TEST CONDITIONS:</u>	
Type Test - Continuous Treatment	Type Test - Continuous Treatment	
Acid Gas - Saturated Carbon Dioxide	Acid Gas - Saturated Carbon Dioxide	
Test Temperature - 150° F	+ 500 ppm H2S	
Liquid Volume - 180 ml	Test Temperature - 150° F	
Liquid Composition -	Liquid Volume - 180 ml	
90% NACE Recommended Brine	Liquid Composition -	
10% Depolarized Kerosene	90% NACE Recommended Brine	
Exposure Time - 24 Hours	10% Depolarized Kerosene	
Type Coupon - Sandblasted Mild Steel Shimstock	Exposure Time - 24 Hours	
<u>PROCEDURE</u> :	Type Coupon - Sandblasted Mild Steel Shimstock	
Each Test Cell was charged with 180 ml of	<u>PROCEDURE:</u>	
test liquid and a weighed coupon was inserted.	Each Test Cell was charged with 180 ml of	
Each cell was then sparged with CO2 to	test liquid and a weighed coupon was inserted.	
saturation.	The cell was then saturated with Co2, after	
TEST RESULTS:	which 500 ppm H2S was added.	
Itest Resourts: ppm Spent Triazine Product % Protection 12.5 70.3 25.0 77.0 37.5 81.8 50.0 82.5	TEST RESULTS: Protection ppm Spent Triazine Product % Protection 12.5 17.8 25.0 37.0 37.5 57.8 50.0 69.9	
75.0 85.2	75.0 78.9	
200.0 92.0	200.0 81.6	

Table II (A) Wheel Test Data

Table II (B) Wheel Test Data

Spent Triazine Product Removed from a Contact Tower Limestone County, Texas Spent Triazine Product Removed from a Contact Tower Sample Date: September 14, 1990 Limestone County, Texas Sample Date: September 14, 1990 TEST CONDITIONS: Type Test - Continuous Acid Gas - Saturated CO2 + 100 ppm H2S TEST CONDITIONS: Type Test - Partioning, Continuous Treatment Acid Gas - Carbon Dioxide Test Temperature - 150° F Test Temperature - 150° F Exposure Time - 24 Hours Type Coupon - Sandblasted Mild Steel Shimstock Liquid Volume - 180 ml Liquid Composition -100% NACE Recommended Brine Exposure Time - 24 Hours Type Coupon - Sandblasted Mild Steel Shimstock PROCEDURE: An 80% depolarized kerosene/20% NACE recommended brine mixture was purged overnight with PROCEDURE: CO2. The mixture was charged with 50 ppm Each test cell was charged with 180 ml of spent Triazine product and was mixed by test liquid and weighed coupon was inserted. Each cell was then sparged with CO2 to shaking the sample 50 times. After standing for one hour, the aqueous layer was drained saturation followed by the addition of 100 into a test cell containing a weighed coupon. DDM H2S The cell was rotated on a wheel for 24 hours at 150° F. An untreated sample provided the blank. TEST RESULTS: The blank lost 55.8 mg and the protected ppm Spent Triazine Product coupon lost 2.5 mg. The % protection is $\frac{55.8 - 2.5}{55.8}$ x 100 = 95.5%

Table III
Hazardous Waste Analysis of Typical
Spent Triazine Product

PARAMETER	RESULTS	LIMIT
Ignitability Flash Point [°] F	>212	140 Minimum
Corrosivity pH Corrosion rate	7.08 Non-corrosive	>2 or <12.5 Maximum 0.25 in./yr. Maximum
Reactivity Sulfide Cyanide	Non-reactive Non-reactive	Maximum Allowable 500 ppm 250 ppm

CONCENTRATION, PPM

Max

		Max.
EP Toxicity	Actual	Allowable
Arsenic	ND	5.0
Barium	4.5	100.0
Cadmium	ND	1.0
Chromium	ND	5.0
Lead	ND	5.0
Mercury	ND	0.2
Selenium	ND	1.0
Silver	ND	5.0
Lindane	ND	0.4
Endrin	ND	0.02
Methoxychlor	ND	10.0
Toxaphene	ND	0.5
2,4-Dichlorophenoxyacetic Acid	ND	10.0
2,4,5-Trichlorophenoxypropionic Acid	ND	1.0
ND = Not Detected		

Table IV **Toxicity Studies - Reacted Triazine Product**

25

50

75

100 150

% Protection

70.5

80.5

85.0

87.9

91.6

Single Dose Oral Toxicity in Rates
Test Results: The LD 50 is greater than 5.0 g/kg of body weight.
Primary Dermal Irritation in Albino Rabbits
Test Results: Reacted Triazine product is a non-irritant.
Primary Eye Irritation/Corrosion in Rabbits
 * Eye irritation is the production of reversible changes in the eye following application of the test article to the anterior surface of the eye. * Eye corrosion is the production of irreversible tissue damage to the eye following application of the test article to the anterior surface of the eye.
Test Results: Under the conditions of the study, the test article is an irritant but not corrosive.
Inhalation Toxicity in Rats
Test Results: Under the conditions of the study, the test article is non-toxic.