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ABSTRACT 
A properly designed sucker-rod string should provide failure-free pumping operations for an extended period. 
Improper design of rod tapers can lead to early mechanical failures (rod breaks) with a complete termination of 
pumping action and an inevitable loss of production. According to its prime importance in sucker-rod pumping 
technology several design procedures based on different assumptions were developed in the past. Correct description 
of rod loading conditions during the pumping cycle led to the inclusion of fatigue endurance limits into rod string 
design methods; all modern designs incorporate the modified Goodman diagram that describes fatigue failures. The 
paper details the main features of available rod string designs and discusses their main characteristics; design results 
are compared for example cases. The paper also provides a more thorough comparison of designs involving the 
calculation of loads and stresses predicted from the solution of the damped wave equation. Using a predictive 
analysis program rod stresses are calculated that, plotted on the modified Goodman diagram, provide a proper 
comparison of the merits of the different rod string design methods. 

INTRODUCTION 
The sucker-rod string is a very peculiar piece of man-made structures because its maximum diameter (about one 
inch) is absolutely negligible as compared to its length of several thousand feet making it an absolute “slender” bar. 
The weight of the string is distributed along the length and any section has to carry at least the weight of all the rods 
below it. This fact suggests that the ideal shape would be an inverted cone, continuously tapering from top to 
bottom. Since such a rod string is impossible to manufacture one tries to approach the ideal shape by designing 
tapered strings with sections of increasing diameters toward the surface. For shallow wells, straight rod strings made 
up from one rod size only are also used but deeper wells inevitably require the application of tapered strings. 

In order to find an ideal solution of the design goals detailed mechanical calculations should be performed with the 
actual well conditions properly taken into account. The designer faces two basic problems when designing a sucker-
rod string: 

 how to calculate rod loads during the pumping cycle, and 
 what principle to use for the determination of taper lengths. 

Rod Loads 

The different kinds of possible rod string loads that occur during the pumping cycle can be classified into the 
following groups: 

 Weight of rods; this load is distributed along the string. At any section, it is equal to the weight of the rods 
below the given section. 

 Buoyancy force; always opposes the rod weight and is equal to the hydraulic lift caused by immersing the 
rods into the produced liquid. 

 Fluid load is a concentrated force acting at the bottom of the string during upstroke only and equals the 
force resulting from the net hydrostatic pressure acting on the area of the pump plunger. 

 Dynamic loads are the results of changes in acceleration of the moving masses (rods, fluid column). 
 Frictional forces are of two kinds: (1) fluid friction between the rods and the produced liquid and (2) 

mechanical friction between the rods and the tubing string. 

Investigation of the effects of these forces shows that the rod string is exposed to a cyclic loading. Although the 
upper rods are always in tension, the tension level considerably increases during the upstroke due to the load of the 
fluid lifted. The downstroke load, however, consists of only the buoyant weight of the rods minus dynamic and 
friction forces. Thus, the loading of the sucker rod string is pulsating tension; this fact must be accounted for in the 
mechanical design of the string. 



When calculating the loads in the rod string dynamic and frictional loads are almost impossible to estimate; this is 
the reason they are not included in most of the traditional design procedures. The remaining loads: buoyant rod 
string weight and fluid load are easy to determine but depend on the taper lengths that are about to be determined. 
Rod string design, therefore, is an iterative process. 

In order to ensure the reliability of rod string design it is customary to use some important assumptions that increase 
the calculated rod loads and thus improve the safety of the design: (a) water is pumped, and (b) the fluid level is at 
the pump setting depth, i.e. the well is pumped off. 

Overview of Design Principles 

Early rod string design methods utilized the simplifying assumption that the string was exposed to a static tension 
loading. Their goal was to keep the maximum rod stresses below a percentage of the tensile strength or the yield 
point of the rod material. Several different procedures were developed to design tapered rod strings; the one 
proposed in the Bethlehem Handbook [ 1 ] and later adopted by the API in the earlier editions of RP 11L [ 2 ] gained 
wide acceptance. This is called a “balanced” design based on static loading conditions and sets the maximum stress 
at the top of each section equal. 

The simple design procedures gave reasonable rod life in shallower wells, but as rod stresses became higher in 
deeper wells it became inadequate and overloading of the lower rod sections was experienced, as observed by 
Eickmeier [ 3 ] as early as in 1967. Rod breaks were occurring at operating stresses well below the tensile strength 
or the yield strength of the rod material. Such breaks are typical fatigue failures; this finding caused designers to 
realize that a proper rod string design must account for the cyclic nature of rod loading. This is why the string has to 
be designed for fatigue endurance, as done in most of the present-day procedures. 

The fatigue endurance limit of API steel rod materials, called the allowable stress is calculated from the modified 
Goodman formula [ 4 ]: 
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where:  Sa = fatigue endurance limit (allowable stress), psi 
  SF = service factor, - 
  Ta = minimum tensile strength of the rod material, psi 
  Smin = minimum rod stress, psi. 

The first tapered rod string design procedure specifically developed for fatigue loading was proposed by West [ 5, 
6 ]. West developed a taper design that maintains the same amount of safety for every taper section. The objective of 
the design is to have the same ratio of maximum stress to allowable stress (represented by the Service Factor used) 
in each taper. Rod strings designed this way will have the same safety factor included in every taper and will not 
have any weak points. 

The next rod string design proposed by Neely [ 7 ] introduced the concept of modified stress and aimed at reaching 
the same modified stress values at the top of each taper section. His design method was adopted by the American 
Petroleum Institute in 1976 and taper percentages calculated using his procedure were published in the later editions 
of RP 11L [ 2 ]. The tables published in API RP 11L gained wide acceptance mainly because they eliminated the 
time necessary for detailed design calculations. 

The latest design procedure was proposed by Gault-Takacs [ 8 ] which overcomes the drawbacks of previous 
procedures and gives a more theoretically sound design method while requiring only moderate computational time. 
The goal of the design is to have the same degree of safety in every taper section. Service factors for all tapers will 
be the same, and rod strings will be subjected to a uniform level of fatigue loading all along the string. 

QUICK COMPARISON OF DESIGN PROCEDURES 
Main Features 

The main features of available rod string design procedures are collected in Table 1 which contains information on 
the different ways authors estimate rod loads and presents each model’s basic design goal. 



The early design proposed in the Bethlehem Handbook disregards minimum and dynamic loads and does not 
consider buoyancy effects. West, too, ignores buoyancy forces to compensate for friction forces that are usually 
unknown but tend to act opposite the buoyant force. Although he considers dynamic loads but uses the obsolete 
Mills acceleration factor method which gives reasonable predicted loads for small pumps and medium pumping 
depths only. Neely’s approach to load calculations includes buoyancy as well as dynamic loads for which he 
recommends an empirical correlation. In this design model, dynamic loads are assumed to linearly decrease 
downward. The Gault-Takacs model is the only one that tries to include the effect of the force wave reflections in 
the rod string when calculating rod loads and finds the surface dynamic loads from RP 11L (now called 
API TL 11L) calculations. These dynamic loads are distributed along the string in proportion to the mass being 
moved and have different magnitudes during the up-, and downstroke. 

Investigation of the design goals of the different models reveals huge differences in basic principles. The Bethlehem 
model designs strings with the same maximum stresses at the top of each taper. This means that the Smin - Smax 
points plotted on the Modified Goodman diagram [ 4 ] for the different taper sections will fall on a horizontal line 
which must inevitably cross several SF = constant lines. Lower tapers (with lower minimum stresses) have a higher 
service factor and a consequently reduced safety than the tapers higher up the string. The fatigue loading on lower 
tapers, therefore, is higher and these sections are more likely to experience premature failure. 

Setting the service factors (SFs) equal in each taper, as done by West and Gault-Takacs, ensures the same amount of 
safety for every taper section. Rod strings designed this way have the same safety factor included in every taper and 
do not have any weak points. 

Finally, Neely defines a “modified stress” and forces those at the top of each taper equal: 

minmaxmod  5625.0 SSS   2 

where:  Smod  = “modified” stress, psi, 
  Smin, Smax = maximum and minimum rod stresses, psi. 

Setting the modified stresses equal in each taper means that Smin - Smax points belonging to the different tapers, when 
plotted on the modified Goodman diagram (MGD), will lie on a parallel to the SF = 1 line. This line, however, 
inevitably crosses the lines corresponding to any service factor other than 1.0. Therefore, the design generates 
different safety factors for each taper; upper tapers are relatively more loaded than lower ones. This situation is just 
the opposite of early design methods where usually the lower tapers were under-designed. 

Sample Case 

In order to illustrate the main features of rod string design models an example case of a three-taper rod string is 
presented. Well parameters are given here; calculated taper lengths found from each design are displayed in Table 2. 

Pump Setting Depth 6,000 ft Plunger Size 2 in 
PR Stroke Length 120 in Pumping Speed 6 SPM 
Rod Grade API D Service Factor 0.9 
API Rod Code 86 Liquid Sp. Gr. 1.0 

Comparison of the four rod string designs is done on the modified Goodman diagram in Fig. 1. The stresses plotted 
are calculated according to each model’s basic assumptions, as detailed in Table 1. Fig. 1 presents a non-
dimensional form of the modified Goodman diagram (MGD) and contains Smin - Smax points for each taper and each 
design procedure. The two dashed lines represent the fatigue endurance limits of the given rod material for SF = 0.8 
and 0.9. 

As seen, all four design methods produced strings that can safely handle the estimated well loads indicated by the 
fact that all maximum stresses are below the fatigue endurance limits of the rod material for SF = 0.9. Their 
behavior in relation to the fatigue loading of the individual tapers, however, is different. Two design models (West 
and Gault-Takacs) have their three points belonging to the three tapers located on SF = constant lines; this is in 
accordance with their design principles. These strings are, therefore, uniformly loaded and have tapers designed with 
the same safety against fatigue failure. 



The string designed by Neely’s procedure is not uniformly loaded because the line connecting the three points 
corresponding to the three tapers is clearly seen to intersect a SF = constant line. The reason for this is that 
according to Neely’s design principle the three points must fall on a constant modified stress line. This line, 
however, has a slope identical to that of the SF = 1 line, i.e. 0.5625; but the slope of any SF = const. line is less than 
that and equals 0.5625 SF, see Eq. 1. In conclusion, this method results in having different service factors in the 
design of each taper as seen in Fig. 1. The top taper (represented by the rightmost point) is relatively more loaded 
and is bound to fail first. 

If the Bethlehem model is followed then it is easy to see that even greater differences in the fatigue loading of the 
different tapers take place. As shown in Fig. 1 maximum rod stresses are about the same and the three points 
belonging to the tapers lie nearly on a horizontal. This means that the bottom taper (corresponding to the leftmost 
point) is much more loaded than the upper ones. This fact was proved in the oil fields when in the late 1960’s rod 
strings designed according to this model failed almost invariably at the bottom taper. 

Predicted Loads 

Up to this point all loads and stresses were calculated according to each design procedure’s basic assumptions, as 
detailed in Table 1. These loads, however, can only be considered as estimates for the given pumping conditions. In 
order to exactly compare the features of the different rod string designs, one would have to actually measure the 
loads occurring in the different strings just designed. Since this would be close to impossible to do, this is, of course, 
not a viable approach. The best possible solution of the problem involves the calculation of rod loads from the 
solution of the damped wave equation written on the rod string. This approach is justified by experience gained 
since the introduction of the wave equation in the late 1960s [ 9 ] proving that the predictive solution of the damped 
wave equation gives loads that very closely match measurements. Since mechanical stresses in the rods must be 
calculated from “true” loads the solution must include the effects of buoyant forces that occur on the different tapers. 
[ 10 ] Therefore, the rod strings designed by different procedures will be compared in this paper on the basis of loads 
and stresses calculated using predictive analysis techniques. 

The rod strings designed for the sample case were used to find the distribution of rod loads during the up-, and the 
downstroke using the predictive solution of the damped wave equation. For the calculations we assumed a 
conventional pumping unit, a vertical well, average damping factors, Grade D rods, and pumping water in a pump-
off condition. Minimum and maximum pumping loads were determined at the top of each rod taper that allowed the 
calculation of mechanical stresses at the top sections of the tapers. These stresses, plotted on the modified Goodman 
diagram (MGD) define the fatigue loading of the strings and allow one to derive important conclusions on the merits 
of the different procedures. 

Fig. 2 contains a comparison of the four design procedures for the example case based on the predicted rod stresses 
and plotted on the modified Goodman diagram. Rod stresses, compared to those shown in Fig. 1, have considerably 
changed; the general trend is that minimum stresses became lower while maximum stresses became higher. This is a 
clear indication that predicted dynamic loads are higher than those assumed by the design procedures because 
dynamic loads tend to alter rod loads that way. This effect is most pronounced for the Bethlehem model where the 
bottom taper’s fatigue loading has extremely increased. 

Comparison of Fig. 1 and Fig. 2 makes it clear that a meaningful evaluation of the rod string design procedures must 
not be based on each model’s calculation procedure because design loads are very different from predicted ones. 
Using predicted loads received from the solution of the damped wave equation, on the other hand, ensures the 
highest possible approximation of measured loads and can thus give a reliable foundation to further investigations. 

SYSTEMATIC EVALUATION OF ROD STRING DESIGNS 
Background 

It must be clear that an ideally designed sucker-rod string should have the same level of safety in each taper so that 
none of the tapers is a weak link in the system. The safety of a given taper section against fatigue failure is defined 
as the ratio of the actual maximum stress and the allowable stress. Using Eq. 1 that describes the modified Goodman 
diagram (MGD) and solving it for the service factor we get: 









 



min

max

5625.0
4

S
T

S
SF

a

 3 

where:  SF  = service factor, -, 
  Ta  = minimum tensile strength of the rod material, psi, 
  Smin, Smax = minimum and maximum rod stresses, psi. 

This formula indicates that the safety of any taper section is proportional to the service factor (SF) calculated from 
the actual rod stresses. Therefore, to attain the same amount of safety in every taper section one has to ensure that 
calculated SFs for each taper are the same; this is the basic requirement for an ideal design. Procedures following 
this idea like West [ 5, 6 ] and Gault-Takacs [ 8 [, therefore, have a sound background and can be expected to 
properly design the rod string. 

Since all design procedures use rod loads that are only estimated during the design process, investigations using 
predicted loads and stresses can reveal features not relevant in the original calculation model. This analysis involves 
the calculation of SF values for each taper based on the predicted stresses in the top section of the tapers using 
Eq. 3. If calculated SFs are equal then Smin – Smax points plotted on the MGD chart must fall on the same 
SF = const. line. In case the points fall on different SF = const. lines, the design procedure does not meet the criteria 
for an ideal design. 

The merits of the design procedures are evaluated based on their ability to force predicted stresses on a SF = const. 
line. In order to check this feature a SF = const. line on the modified Goodman diagram is fitted between the Smin –
 Smax points belonging to the different tapers. Using the method of least squares the service factor belonging to the 
best fitting line is found from the following formula: 
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where:  SF  = service factor, -, 
  Ta  = minimum tensile strength of the rod material, psi, 
  Smin (i), Smax (i) = minimum and maximum rod stresses in the ith taper , psi, 
  n  = number of tapers in the string, -. 

The deviation of the Smin – Smax points from the line belonging to this SF value on the MGD chart indicates how 
efficiently the given procedure can approximate the ideal rod string design. Its measure is the goodness of fit defined 
in the next formula. Perfect fit is indicated by R2 = 1; lower values are received if points scatter more from the best 
fitting line. 
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where:  R2  = goodness of fit, -, 
  Smax (i) = maximum rod stress in the ith taper, psi, 
  Smax, calc (i) = maximum rod stress found from Eq. 1 in the ith taper, psi, 
  Smax avg = average of the maximum rod stresses in the string, psi, 
  n  = number of tapers in the string, -. 

Results for the Sample Case 

The best-fitting lines’ SF, as well as R2 values for the sample case are given in Table 2 for the four design 
procedures. As seen, the closes approach to an ideal design (where R2 = 1) is provided by the Gault-Takacs 
procedure and the Bethlehem method is the worst performer. Good results were also obtained with the West and the 
Neely procedures and R2 values above 0.9 were found; this indicates that they perform properly even with predicted 
rod stresses i.e. under actual conditions. The best and the worst designs are compared in Figs. 3 and 4 where stresses 
belonging to each taper are plotted for two conditions: (a) as calculated in the design procedure, and (b) as found 
from the predictive solution of the wave equation. The best-fitting line using the SF value found from Eq. 4 is also 



plotted. As seen in Fig. 3, the rod string designed by the Gault-Takacs procedure has a low deviation between the 
best-fitting line and the three points belonging to the predicted stresses. The early method proposed by Bethlehem, 
on the other hand, performs very poorly as indicated in Fig. 4 because predicted stresses widely scatter around the 
best fitting line. 

Generalized Evaluation 

In order to evaluate the merits of the rod string design procedures in a more general way the following project was 
set up. Investigations assumed a conventional pumping unit, a vertical well, average damping factors, Grade D rods, 
and pumping water in a pump-off condition as general constraints. A framework of pump setting depths and pump 
sizes was laid down and for each combination of those a matrix of pumping speeds and polished rod stroke lengths 
was selected. After selecting different possible API taper combinations every element of the matrix contained all 
parameters required for the design and strings were designed using the different procedures. The next step of the 
project involved the calculation of rod stresses in each taper of the strings using the predictive solution of the 
damped wave equation. Predicted stresses were used to find the best fitting SF = const. line on the modified 
Goodman diagram using Eq. 4. Finally Eq. 5 was used to evaluate the goodness of fit. 

The Bethlehem procedure was excluded from further study because it gave taper lengths with widely deviating 
predicted stresses from the best fitting line. Results for the other design methods are contained in Tables 3 – 5 where 
R2 values are displayed; these give a good indication of the merits of the designs. Designs with a goodness of fit of 
at least R2  = 0.9 are shaded and are considered as being close to ideal designs. Cells containing “-” indicate that the 
design is not valid because the calculated service factor is greater than unity. The tables enable one to check the 
behavior of the different rod string design procedures in the investigated ranges of operating conditions. One general 
observation is that the reliability of the designs deteriorates at pumping speeds above SPM = 10. 

Evaluation of the RODSTAR Model 

The commercial computer program package RODSTAR [ 11 ] includes the design of the rod string while 
performing a predictive analysis of the rod pumping system. The design procedure is based on predicted rod loads 
that are calculated from the solution of the damped wave equation so the design does not rely on approximate 
calculations like the four procedures discussed so far. Taper lengths are selected so that their loading is identical at 
the top of each taper; loading is defined as follows: 
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where:  Smax (i), Smin (i) = maximum and minimum rod stresses in the ith taper, psi, 
  Sa (i)  = allowed rod stress in the ith taper, found from Eq. 1, psi. 

Substituting the formula for Sa (i) from Eq. 1 and expressing the maximum stress in the ith taper section we get: 
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In this formula C denotes the identical loading of the tapers and can attain values between 1 (fully loaded) and 0 (no 
load). In case of C = 1 (fully loaded tapers) Eq. 7 is identical to Eq. 1 and the string design is ideal because the 
safety against fatigue failure is the same in each rod taper. This situation, however, changes if the tapers are not fully 
loaded when the results deviate from the ideal case. This is clearly seen on the MGD presented in Fig. 5 where 
C =const. lines calculated from Eq. 7 (shown in dashed lines) are plotted along with SF = const. lines for a case 
when SF = 0.9 is used during the design process. As shown, the RODSTAR model gives a perfect design only if the 
string is fully (100%) loaded, but at any other loading the points belonging to the stresses in the different tapers will 
fall on lines intersecting the SF = const. lines. In conclusion, the string design based on equal loadings does not 
meet the criteria for an ideal design because the safety against fatigue failure is different for each taper section. 

The RODSTAR design applied to the sample case is included in Table 2 which indicates the parameters of the best-
fitting SF = const. line as well. Calculated stresses for the three tapers are plotted on the MGD in Fig. 6 along with 
the best-fitting line; the points are seen to scatter and do not fall on the line belonging to the best-fitting line. This 
indicates the systematic flaw of the design principle. 



GENERAL CONCLUSIONS 
The comprehensive evaluation of the available sucker-rod string design procedures presented in the paper resulted in 
the following general conclusions. 

 The proper assessment of rod string designs, in lieu of measurements, must rely on predicted stresses 
calculated from the solution of the damped wave equation because loads and stresses estimated by the 
different procedures are not a true measure of the actual conditions. 

 Optimum rod string design must provide the same safety against fatigue failures in each rod taper section; 
this is ensured by having the same Service Factor (SF) at the top of each taper. 

 The early (Bethlehem) design principle of setting equal the maximum stresses at the top of each taper 
produces rod tapers with different safety; bottom tapers are usually more loaded than upper ones. 

 The West, Neely, and Gault-Takacs design methods behave properly and provide equal safety in each taper 
in most of the ranges investigated in the paper. 

 The design principle utilized in the RODSTAR program package does not meet the criteria of an ideal 
string design. 
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Table 1 
Model Year Min. Load Max. Load Dyn. Loads Design Goal 

Bethlehem 1953 - 
Fluid load plus 
rod weight in air 

- 
Equal max. 
stresses 

West 1973 
Rod weight 
in air 

Fluid load plus 
rod weight in air 
plus dynamic loads 

Mills 
acceleration 
factor 

SF = const. 

Neely 1976 
Buoyant rod 
weight 

Fluid load plus 
buoyant rod weight 
plus dynamic loads 

Special 
formula 

Equal 
modified 
stresses 

Gault -
Takacs 

1990 
Buoyant rod 
weight 

Fluid load plus 
buoyant rod weight 
plus dynamic loads 

From 
RP 11L 

SF = const. 

Table 2 
Model ¾” taper 7/8” taper 1” taper SF R2 

Bethlehem 2,364 ft 1,853 ft 1,783 ft 0.842 0.142 
West 1,469 ft 2,400 ft 2,131 ft 0.817 0.933 
Neely 1,543 ft 2,254 ft 2,203 ft 0.819 0.947 

Gault - Takacs 1,774 ft 2,239 ft 1,987 ft 0.829 0.993 
RODSTAR 1,825 ft 2,200 ft 1,975 ft 0.801 0.908 
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Table 3 

86 100 120 86 100 120 86 100 120

4 0.87 0.87 0.86 4 0.92 0.90 0.88 4 x x x

6 0.98 0.95 0.93 6 0.91 0.91 0.92 6 x 0.81 0.76

8 0.79 0.78 0.94 8 0.90 0.93 0.76 8 0.78 0.74 0.70

10 0.99 0.90 0.51 10 0.89 0.78 0.72 10 0.70 0.72 0.69

12 -11.9 -18.4 -4.05 12 -9.89 -1289 -1619 12 0.90 0.81 0.72

86 100 120 86 100 120

4 0.91 0.89 0.87 4 0.95 0.94 0.92

6 0.89 0.88 0.89 6 0.95 0.95 0.93

8 0.91 0.94 0.94 8 0.97 0.97 0.96

10 0.76 0.70 0.57 10 0.98 0.97 0.94

12 1.00 0.99 1.00 12 0.37 0.49 0.72

86 100 120 86 100 120

4 0.96 0.97 0.98 4 0.99 0.98 0.98

6 0.97 0.97 0.95 6 0.99 0.98 0.97

8 0.98 0.95 0.72 8 1.00 - -

10 0.13 -1.85 -15.1 10 0.69 - -

12 0.76 0.85 - 12 - - -

86 100 120 86 100 120 86 100 120

4 0.89 0.88 0.89 4 0.93 0.91 0.92 4 0.96 0.96 0.95

6 0.88 0.90 0.94 6 0.94 0.93 0.92 6 0.97 0.97 0.96

8 0.96 0.92 0.88 8 0.97 0.97 0.99 8 0.99 0.97 0.99

10 0.40 -0.82 -20.1 10 0.94 0.89 0.70 10 0.98 0.94 0.95

12 0.40 -0.73 0.66 12 0.63 0.62 0.60 12 0.01 -0.60 -1.05

86 100 120 86 100 120 86 100 120

4 0.98 0.99 0.99 4 0.98 0.99 0.98 4 1.00 0.99 -

6 0.96 0.96 0.97 6 0.99 0.99 0.99 6 0.99 - -

8 0.95 0.86 0.23 8 1.00 1.00 0.99 8 0.93 - -

10 -1.09 -5.30 -15.0 10 0.40 0.00 - 10 0.73 - -

12 0.96 0.94 0.88 12 0.97 - - 12 -0.24 - -

WEST
Plunger Diameter

1.5" 2" 2.5"
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00

0'

API 97 API 97 API 97

8,
00

0'

API 97 API 97 API 97

Table 4 

86 100 120 86 100 120 86 100 120

4 0.93 0.51 0.50 4 0.95 0.96 0.98 4 0.94 0.93 0.96

6 0.99 0.49 0.47 6 0.98 1.00 0.97 6 0.97 0.97 0.98

8 0.89 0.46 0.44 8 0.99 0.98 1.00 8 0.93 0.93 0.90

10 #### 0.46 0.46 10 0.85 0.99 0.98 10 0.82 0.67 0.50

12 -4.08 0.54 0.53 12 -8.48 -4.35 -2.21 12 -6.44 #### ####

86 100 120 86 100 120

4 0.90 0.90 0.88 4 0.96 0.96 0.95

6 0.91 0.91 0.92 6 0.97 0.98 0.99

8 0.95 0.98 1.00 8 0.98 0.99 0.99

10 0.39 -2.81 -4.40 10 0.85 0.77 0.53

12 0.98 0.89 0.71 12 -0.84 -0.70 -0.52

86 100 120 86 100 120

4 0.95 0.97 0.98 4 1.00 0.99 0.99

6 0.97 0.98 0.96 6 1.00 1.00 1.00

8 0.97 0.89 0.32 8 0.98 - -

10 -0.35 -8.37 #### 10 0.65 - -

12 0.61 0.83 - 12 - - -

86 100 120 86 100 120 86 100 120

4 0.89 0.88 0.89 4 0.93 0.93 0.93 4 0.98 0.98 0.98

6 0.89 0.92 0.98 6 0.95 0.97 0.97 6 1.00 0.99 1.00

8 0.93 0.61 0.42 8 0.99 0.99 0.90 8 0.99 0.97 0.96

10 -1.08 #### -54.0 10 0.77 0.35 -0.84 10 0.81 0.16 0.20

12 -0.81 -3.90 -3.37 12 -0.84 -0.92 #### 12 -1.36 -7.69 -8.71

86 100 120 86 100 120 86 100 120

4 0.98 0.99 0.99 4 0.98 0.99 0.99 4 0.99 1.00 -

6 0.96 0.96 0.99 6 0.99 1.00 1.00 6 0.96 - -

8 0.95 0.77 -0.65 8 1.00 0.99 0.99 8 0.81 - -

10 -1.98 #### #### 10 0.36 -0.52 - 10 0.67 - -

12 0.96 0.95 0.82 12 0.95 - - 12 -0.87 - -
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GAULT - TAKACS
Plunger Diameter

1.5" 2" 2.5"



 
 

 

 

Table 5 

86 100 120 86 100 120 86 100 120

4 0.73 0.74 0.75 4 0.84 0.84 0.85 4 x x 0.88

6 0.83 0.82 0.83 6 0.87 0.93 0.95 6 0.90 0.90 0.90

8 0.68 0.71 0.80 8 0.89 0.95 0.82 8 0.86 0.83 0.80

10 0.92 0.93 0.59 10 0.92 0.82 0.79 10 0.79 0.86 0.86

12 #### #### 0.01 12 #### #### #### 12 0.94 0.92 0.72

86 100 120 86 100 120

4 0.80 0.79 0.78 4 0.91 0.91 0.91

6 0.79 0.79 0.81 6 0.93 0.94 0.94

8 0.82 0.85 0.85 8 0.97 0.97 0.95

10 0.96 0.95 0.98 10 1.00 0.98 0.96

12 0.87 0.87 0.89 12 0.61 0.68 0.87

86 100 120 86 100 120

4 0.91 0.93 0.95 4 1.00 0.99 1.00

6 0.92 0.94 0.92 6 1.00 1.00 1.00

8 0.96 0.99 0.96 8 0.98 - -

10 0.75 0.45 -0.7 10 0.61 - -

12 0.98 0.98 0.96 12 - - -

86 100 120 86 100 120 86 100 120

4 0.77 0.76 0.77 4 0.86 0.85 0.87 4 0.96 0.97 0.96

6 0.78 0.81 0.83 6 0.89 0.89 0.90 6 0.98 0.98 0.99

8 0.90 0.92 0.92 8 0.93 0.94 0.97 8 1.00 1.00 0.99

10 1.00 1.00 0.8 10 0.99 0.97 0.90 10 0.98 0.77 0.90

12 0.95 0.97 0.95 12 0.97 1.00 0.98 12 -0.02 -0.67 -1.73

86 100 120 86 100 120 86 100 120

4 0.93 0.94 0.95 4 0.97 0.98 0.98 4 0.98 - -

6 0.91 0.91 0.92 6 0.98 0.99 1.00 6 0.90 - -

8 0.99 1.00 0.86 8 0.99 0.99 0.99 8 0.68 - -

10 0.92 0.21 -0.93 10 0.73 0.46 - 10 0.22 - -

12 0.95 0.88 0.83 12 1.00 0.96 - 12 -1.63 - -
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Figure 5 

20

22

24

26

0 2 4 6 8 10

Min. Stress, Fraction of Tensile, %

M
a

x.
 S

tr
es

s,
 F

ra
ct

io
n

 o
f 

T
en

si
le

, 
%

Predicted SF

RODSTAR
SF = 0.801

R2 = 0.908

 
Figure 6 


