COMPUTER APPLICATION IN SUCKER ROD PUMPING MANAGEMENT

J. R. WHITE Exxon Company, U. S. A.

INTRODUCTION

In the geographical areas of North and West Texas, 94 percent of all oil wells produce by means of artificial lift, and most of the artificial lift installations consist of sucker rod pumping equipment. This percentage equates to some 100,000 rod pumping units in this area alone.¹ With these facts in mind, there should be no doubt as to why the proper management and surveillance of pumping equipment are important.

This paper is limited to a discussion of computer application in the management and surveillance of rod pumping equipment. When terms referring to artificial lift equipment are used in the paper, they are in specific reference to sucker rod pumping installations. Methods and techniques cited for the surveillance and analysis of sucker rod pumping installations are from those employed in Exxon Company, U.S.A.'s Midcontinent Division and are applicable in both their automated and nonautomated areas of operation.

In production systems which contain multiple rod pumped wells, it is often difficult to identify problems associated with individual pumping installations. Failure to promptly detect these problems inevitably results in excessive operating costs, premature equipment failure, and lost production. To alleviate these undesirable results, Exxon Company, U.S.A. has developed a series of computer programs to assist in the surveillance of its rod pumping installations. These programs are of two general types. The first provides detailed data on pumping equipment failures and corrosion treatments by individual installations. The second type of programs is technically oriented.

The technical programs calculate loading conditions and production capabilities of the pumping equipment. Results from the technical programs are compared to actual equipment ratings and latest well test data as a measure of the equipment's performance. Additional features of the technical programs allow an immediate analysis of the effects of varying equipment configurations or pumping conditions for any given installation.

Since Exxon's approach to artificial lift surveillance is based on technical calculations and the analyses of statistical data, it does not require a significant amount of initial investment or operating expense. The computer surveillance programs are proving to be highly efficient tools in the management of artificial lift production properties. Following sections of the paper will illustrate examples of artificial lift computer reports and datahandling methods.

PROGRAM APPLICATION

One of the primary tools in the management and surveillance of sucker rod pumping installations is a series of sucker rod analysis and equipment surveillance computer programs. The programs are primarily designed to assist in the otherwise timeconsuming tasks of identifying installations which require attention and of performing lengthy calculations to determine equipment loadings and producing capabilities under current or modified operating conditions. Specific tasks which are assigned to the series of computer programs include:

- 1. Detection of installations which are not producing optimum fluid volumes
- 2. Detection of installations which have

excessive operating costs due to poor equipment performance

- 3. Identification of artificial lift failures by location and equipment type
- 4. Identification of the cause of failures, including overloaded equipment, fatigued equipment, metallurgy, or corrosion problems
- 5. Detection of installations which are being produced with over or undersized equipment
- 6. Detection of installations which are not pumping efficiently
- 7. Assistance in the design or redesign of pumping equipment under varying operating conditions
- 8. Assistance in the design and analysis of corrosion treatment programs.

By shifting a major portion of the technical calculations and equipment surveillance to computer analyses, technical and operating personnel have been able to concentrate their efforts on those rod pumping installations which have potential for improvement.

MAINTENANCE OF COMPUTER DATA FILES

Before computer analyses can be effectively used in solving artificial lift problems, a complete and accurate data base must be available on individual pumping installations. The data, consisting of information which describes the pumping equipment, corrosion treatments and equipment performance, are stored in computer files in such a manner that they can be readily accessed by the computer programs. To insure that the data files are

	WELL SERVICE REPORT	
CARD CODE (1) 1 DISTRICT	ANDREWS	(2) 3 (5-9)
FIELD SUPERINTENDENT	ING (3-4) 36	LEASE CODE 55766
LEASE NAME MEANS S.A	. KNIT WELL 1418	
DEPTH TO FAILURE: NO. OF RODS (20)	1 (21-23) OR JTS. C	DF TBG. (20) 2 (21-23) 1 9
REMARKS:		
FAILING EQUIPMENT (24-25)	FAILURE TYPE (26-27)	EQUIPMENT CONDITION-RODS (29)
01 ROD BODY 02 ROD PIN 03 ROD COUPLING 04 ROD SUB 05 PULL ROD 06 POLISHED ROD 07 ROD PUMP 08 TUBING PUMP 09 HYDRAULIC PUMP 10 DOUBLE DISPLACEMENT PUMP 11 HOLDOWN 12 SEATING NIPPLE 13 PUMP ANCHOR 14 TUBING ANCHOR 15 POWER OIL TUBING 14 TUBING GOUPLING 17 TUBING THREAD 19 GAS LIFT EQUIPMENT 20 NEW INSTALLATION 21 CHANGE 22 WORKOVER 23 ABANDON 24 OTHER 25 TUBING ROW	01 BREAK 12 CRACKED 03 WORN 14 HOLE 15 THREAD LEAK 16 STUCK 17 SPLIT 18 PLUGGED 10 UNSEATED 10 UNSEATED 11 CUT OUT 12 CROOKED 13 SANDED 14 PARAFFIN 15 LOW PRODUCTION 16 FAILED TO PUMP 17 NO FAILURE 18 RE-SPACE OR LONGSTROKE 19 BOTTOM HOLE PRESSURE TEST 20	 PHILED OR WORN - SHOULD BE REPLACED BOXES PHILED OR WORN - SHOULD BE REPLACED BOXES SHOULD BE REPLACED REPL CD RODS OR RODS & COUPLINGS REPL CD COUPLINGS ONLY CHKD, AND FOUND O K PHITED OR WORN - SHOULD BE REPLACED COUPLINGS PHILD WRN OR HAMMERED COUPLINGS SHOULD BE REPLACED COUPLINGS SHOULD BE REPLACED COUPLINGS ONLY CHKD, AND FOUND O K SCALE ON DOWNHOLE EQUIPMENT SCALE AND PARAFFIN
26 NONE 27 POLISHED ROD LINER 28 SCALE TREATMENT PULL PUMP	(28) WELL SERVICE	(32) 1
29 SWABBING 1 REPLACE 2 REPAIR		2 DOLLARS 436
	CONTRACTORX	<u>4×× (42-43)</u>

FIG=1 DATA FORM WELL SERVICE

current, statistical data on equipment failures and corrosion treatments are entered in the computer at least twice a month. Maintenance of the computer files are greatly enhanced through the use of simplified field entry forms. The forms require a minimum of effort to complete, and persons responsible for their completion do not have to be familiar with computer processing illustrated in the following examples.

Figure 1 is an input form for recording data associated with well servicing work. The form is normally completed by the well service unit operator. Cards are punched directly from this form for entry into the computer. The top portion of the form contains data that define the artificial lift installation being serviced and dates the work. This information also serves as tags for the proper sorting of data within the computer files. Additional information on the form defines the item of equipment which failed, cause of failure, condition of the equipment remaining in the well, and information pertaining to well servicing costs. The form has been designed to receive data through simple numeric entries or by circling a descriptive code. In the example, entries relating to well servicing on Well 1418 show: (1) failure of a tubing coupling; (2) type of failure was a thread leak; (3) some tubing couplings required replacing; and (4) servicing costs were \$436.

The abbreviated subsurface pump repair forms in the next two figures are of particular significance because of the ease in which a large amount of detailed data is handled. They provide for a complete description of the worn or failing parts. As in the previous example, the top portions of both forms describe location and the date of the work. The subsurface pump is identified by its unique serial number and by its API pump description code. The form illustrated in Fig. 2 pertains to the pump that is pulled from the well. Individual pump parts are listed horizontally across the page, and failure codes are tabulated in columns below each part. Definitions of the failure codes are printed on the left-hand side of the form. As noted in the example, the pump barrel, traveling valve cage, standing valve seat, and standing valve cage were found to be worn or damaged when the pump was disassembled in the repair shop. The form in Fig. 3

CARD CODE (1) 4 DIS	TRICT	AN	DR	ews						(2	3]					(5-9)		
	k	IN	G						(J	-4) 3	6	,	LEASE	CODE	5	· 5	7	6	6
	MEAN	15	S. /	9 .		w	ELL (1¢	D-13)	2	7 1	6]		[2	2	<u>+19</u>	7	5
PUMP STATUS (20):	PUMP N	UMBER	(21-26)	53	7								DATE	M	. D.	0	AY	Y	EAR
1 PUMP WAS RUN	PUMP SH	IOP			xx	< × >	K		(27-2	a) 🕽	(X								
D PUMP WAS PULLED	API PUM DES. (29-	(P 40)	2	01	50	R	W	B	c [2 4	10								
3 PUMP WAS PULLED AP	ID JUNKED	тс	DTAL PUA	AP REPAIR	COST - D	OLLAR!	5 (41.	44)		26	0								
	(45-46) (47-48)	(49-50)	(51-52)	(53-54)		(55-60)		(61-66)			67-72		(73-78)		
	Liner	1	Valve	T. Plar	T · ·	1	T	ravelin	g Val	/•				itanding	Valve	•			
			Rod or	Cage or	Barrel		Upper			Lower			Upper			Lower			
TAILORE CO	DE Barrel	Plunge	Puil Tube	U.P.T. Cplg	Extension	Ball	Seat	Cage	Boli	Seat	Cage	Ball	Seat	Coge	Ball	Seat	Cage		
Worn	01	101	01	01	01			(01)			01			00		1	01		
Break	02	02	02	1 02	1 01 1		1												
Split						02	02	02	02	02	02	02	02	02	02	02	02		
Cracked		03	03	03	03	02	02	03 01	02	02	02	02	02	02	02	02	02		
I Greened as Scored	04	03	03	03	03	02	02	02 03 04	02 04	02	02 03 04	02	02 04	02 03 04 05	02 04	02 04	02 03 04 05		
Grooved or Scored Fluid Cut	03	03 04 05 06	03 04 05 06	03 04 05 06	02 03 04 05 06	02 04 05 06	02 04 05 06	03 04 05 06	02 04 05 06	02 04 05 06	02 03 04 05 06	02 04 05 06	02 04 03	02 03 04 05 06	02 04 05 06	02 04 05 06	02 03 04 05 06		
Grooved or Scored Fluid Cut Plating Flaked	03 04 05 06 07	03 04 05 06 07	03 04 05 06 07	03 04 05 06	03 04 05 06 07	02 04 05 06	02 04 05 06	02 03 04 05 06	02 04 05 06	02 04 05 06	02 03 04 05 06	02 04 05 06	02 04 03 06	02 03 04 05 06	02 04 05 06	02 04 05 06	02 03 04 05 06		
Grooved or Scored Fluid Cut Plating Flaked Beat Out	04 05 06 07	03 04 05 06 07	03 04 05 06 07	03 04 05 06 08	02 03 04 05 06 07	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08	02 04 05 06	02 04 03 06	02 03 04 05 06 08	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08		
Grooved or Scored Fluid Cut Plating Flaked Beat Out Bent	04 05 06 07 09	03 04 05 06 07 09	03 04 05 06 07 09	03 04 05 06 08	03 04 05 06 07 09	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08	02 04 05 06 08	02 04 05 06 08	02 03 04 05 .06 08		
Grooved or Scored Fluid Cut Plating Flaked Beat Out Bent Thread Damage	03 04 05 06 07 07 09 10	03 04 05 06 07 09 10	03 04 05 06 07 09 10	03 04 05 06 08 10	03 04 05 06 07 09 10	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08 08	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08 10	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08 10	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08 10		
Grooved or Scored Fluid Cur Plating Flaked Beat Out Bent Thread Damage Internal Pits	03 04 05 06 07 09 10 10	03 04 05 06 07 09 10 11	03 04 05 06 07 09 10 11	03 04 05 06 08 10 11	03 04 05 06 07 09 10	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08 10 11	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08 10 11	02 04 05 06 08	02 04 03 06	02 03 04 05 06 08 10 11	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08 10 11		
Grooved or Scored Fluid Cut Plating Flaked Beat Out Beat Thread Damage Internal Pits External Pits	03 04 05 06 07 09 10 11	03 04 05 06 07 09 10 11 11	03 04 05 06 07 09 10 11 11	03 04 05 06 08 10 11 12	03 04 05 06 07 09 10 11 11 12	02 04 05 06 08	02 04 05 06 08 12	02 03 04 05 06 08 10 11 11	02 04 05 06 08 12	02 04 05 06 08 12	02 03 04 05 06 08 10 11 11 12	02 04 05 06 08	02 04 03 06 08 12	02 03 04 05 06 08 10 11 11	02 04 05 06 08 12	02 04 05 06 08 12	02 03 04 05 06 08 10 11 12		
Grooved or Scored Fluid Cut Plating Flaked Beat Out Bent Thread Damage Internal Pits External Pits	04 05 06 07 09 10 11	03 04 05 06 07 09 10 11 12	03 04 05 06 07 09 10 11 12	03 04 05 06 08 10 11 12	03 04 05 06 07 09 10 11 12	02 04 05 06 08 12	02 04 05 06 08 12	02 03 04 05 06 08 10 11 11 12	02 04 05 06 08 12	02 04 05 06 08 12	02 03 04 05 06 08 10 11 12	02 04 05 06 08		02 03 04 05 06 08 10 11 12	02 04 05 06 08 12	02 04 05 06 08 12	02 03 04 05 06 08 10 11 12		
Grooved or Scored Fluid Cut Plating Floked Beat Out Bent Thread Damage Internal Pits External Pits Other	04 04 05 06 07 09 10 11 11 02 09	03 04 05 06 07 09 10 11 12 12	03 04 05 06 07 09 10 11 12 19	03 04 05 06 10 11 12 19	03 04 05 06 07 09 10 11 12	02 04 05 06 08 12 19	02 04 05 06 08 12 19	02 03 04 05 06 08 10 11 12 19	02 04 05 06 08 12 19	02 04 05 06 08 12 19	02 03 04 05 06 08 10 11 12 19	02 04 05 06 08 12	02 04 05 06 12 19	02 03 04 05 06 08 10 11 12 19	02 04 05 06 08 12 19	02 04 05 06 08 12 12	02 03 04 05 06 08 10 11 12 19		

SUBSURFACE PUMP SERVICE REPORT

FIG= 2 DATA FORM--DAMAGED PUMP

describes the metallurgy of individual parts in the replacement pump. The form has codes to describe the metal, or combination of metals, which are used in each pump component. The form is similar in design to the one used for describing the damaged pump, except codes are used to define metallurgy rather than condition of the parts in the pump. In combination, the two forms provide for a description of the condition and metallurgy on 17 critical pump parts. The pump shop is responsible for completing both forms; and as before, computer cards are punched directly from the forms.

A description of the sucker rod pumping equipment and current well test data is required before technical calculations can be performed. The well test information is routinely stored in the computer as it is received. The description of rod pumping equipment is a one-time entry in the computer from a simple keypunch form, and it only requires updating as actual equipment changes are performed.

PROGRAM REQUIREMENTS

Usable, easy to interpret reports are the ingredients that allow computer analysis to be an effective tool in the management of artificial lift installations. To achieve this end, the analyses programs are designed to include options which allow the report users to sort, rank, exclude, or summarize data to best serve their requirements.

Further, a measure of the economic significance of the installation or item of equipment under study is available in the report so that proper work priorities can be set. The methods for running artificial lift programs vary according to their types — statistical or technical. Those programs which work with statistical data are not considered to be time critical and are normally run on a scheduled basis. The programs which perform technical calculations are principally designed to be run for specified installations upon request; however, they may also be run routinely on all installations to assist in the surveillance of equipment performance. The technical programs require a minimum amount of input data, and results are immediately available.

EXAMPLES OF STATISTICAL REPORTS

Figures 4, 5, and 6 are examples of reports developed from historical data in the computer files for individual pumping installations. The reports are statistical in nature, and they are printed on a scheduled basis in the Division computer center and mailed to appropriate management, technical and operational personnel. The examples display data from two of some 200 wells in the Means San Andres Unit Waterflood, Andrews County, Texas. They can be related to earlier figures illustrating methods of data entry.

Figure 4 is an illustration of a well servicing

		(45-46)	{47-48}	(49-50)	(51-52)	(53-54)		(55-60)			(61-66)			(67-72)			(73-78)	
		Liner		Valve	T. Pler			T	ravelin	g Valv				5	itanding	g Valv	•	
		or		Rod or	Cage or	Borrel		Upper			Lower			Upper			Lower	
PART MET	ALLURGY	Barrel	Plunger	Pull Tube	U.P.T. Cpl	g Extensions	Ball	Seat	Cage	Ball	Seat	Cage	Ball	Seat	Cage	Bali	Seat	Cage
Regular Steel, No	Hardening	01	01	00	01	01												
~~~~	~~~	-		~~		トート		~~		~~	~	نين	~		<u> </u>	~	نىپ	
Brass or Aluminum	Bronze	13	13	13	CD	13	13	13		13	13		13	13	l i l	13	13	
Brass or Al. Bronze	Chrome Plated	(4)	14	14	14	14												
Monel		15	15	15	15	15	15	15		15	15		15	15		15	15	
Monel, Chrome Pla	oted	16	16	16	16	16												
Cobalt - Nickel Spi	ay		17				1											
Cobalt-Nickel Spray	, Cor.Resistant Pins		18															
Other		19	19						¥.			<b>T</b>			T			Ţ.
LINER OR SLEEVE	JACKET OR TUBE	MA	TL'S.	Cage M	Anterial	Type Gui	de		_		VA	LVE CA	AGE N	AATERI	ALS			
Cast Iron	Regular Steel	20	20	Brass or A	Al. Bronze	Br. or Al. Bro	onze		B			44	I		Ð			- 44
	Alloy or Stainless	21	21			Insert			45			45	]		45			45
	Brass or Monel	22	22		[	Spray			46			46			46			46
Hard Cast Iron	Regular Steel	23	23		[	Rubber			47			47			47		1	47
	A	-			-			~	_		_					<u> </u>	~	-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~								$\leq$								_	
						ITO	HER_B/		ID SEA	T MAT	ERIALS							
Cobalt-Chrome Ste	ei				1		(3)	(52)		52	52		62	(52)		52	52	
Titanium Carbide			1				53	53		53	53		53	53		53	53	
Tungsten Carbide							54	54		54	54		54	54		54	54	
	100 4404	T					55	55		55	55	1	55	55		55	55	
Special Stainless, 4	4UC, 44UA	1	1													-		

SAME TYPE HEADING AS FIGURE 2

FIG- 3 DATA FORM- REPLACEMENT PUMP

report. The report is primarily directed to operations and engineering personnel responsible for the performance of artificial lift equipment. As stipulated in the report request, each of the installations required equipment service work at least twice during the preceding 12-month period. Columnar data describe such information as date of the job, depth to subsurface failure, item and type of equipment failure, recent production performance, a general description of the subsurface equipment, and well servicing costs. An examination of the report reveals that Well 1418 required a total of six jobs during the period, due to a variety of equipment problems. Equipment condition codes following the job on May 13, 1975, (see code definitions on input form) give a general description of the subsurface equipment as: (1) rods are in good condition; (2) some tubing couplings showed wear and were replaced; and (3) no paraffin or scale buildup.

The corrosion inhibitor treatment report in Fig. 5 is primarily used by corrosion engineers and operations supervisors. It is designed to recap the well's producing capability, describe the current corrosion treating program, and summarize the number and type of equipment jobs that might be related to corrosion problems. In the example, Well 1418 had a total of five service jobs which could be attributed to corrosion. The current corrosion treatment program for the well consists of circulating 2.0 gallons of the described chemical down the tubing-casing annulus for a period of 0.4 hours three times a week. Annual cost of the chemical treatment is \$1154.

Engineers use the subsurface pump repair report, Fig. 6, to obtain data which describe the condition of the damaged pump and metallurgy of components in the replacement pump. The report shows that the original pump in Well 2716 had a pitted barrel, worn traveling valve cage, scored standing valve seat, and pitted standing valve cage. The cost to repair the subsurface pump was \$206 and it operated for 212 days. The report also indicates the metallurgy of critical parts in both the damaged pump and in its replacement (refer to Fig. 3 for code descriptions).

A number of programs are designed to uniquely summarize and sort statistical sucker rod pumping data into reports for special studies. An example of one such routine is illustrated in Fig. 7. This special report program summarizes the number of failures on individual subsurface pump parts for a specified operating area. Additional logic in the program totals the number of failures by metallurgical properties for each of the parts. Finally, the resulting data are sorted into a report that not only shows the

WELL SERVICING REPORT

"WELL HAD AT LEAST 2 SERVICING JOBS IN THE LAST 12 MONTHS"

				E	EQUIPMENT		PRODUCTION		ROD STRING		PUMP	JOB
WELL	DATE	<u>DE PTH</u>	FAILURE	-	TY PE	CONDITION	FLUID	OIL	<u>7/8</u>	<u>3/4</u>	SIZE	COST
1418	1/16/75	-0-	POL ROD	-	BREAK	000	442	101	71	100	1.75	174
	2/13/75	1500	ROD COUP	-	UNSCREWED	700	439	103	71	100	1.75	165
	2/14/75	4275	TBG PUMP	-	WORN	700	439	103	71	100	1.75	205
	4/16/ 7 5	1350	ROD BODY	-	BREAK	7 00	401	96	71	100	1.75	183
	5/13/75	3630	TBG COUP	-	THRD LEAK	757	399	95	71	100	1.75	482
	7/19/75	1400	ROD BODY	-	BREAK	700	595	138	71	100	1.75	223
2716	1/3/75	-0-	PUMP -		RESPACE	000	9 0	14	0	177	1.50	82
	2/24/75	4425	ROD PUMP	-	WORN	700	85	15	0	177	1.50	179
					EIC A W	LI CEDVICI	NC DEDODE					

MEANS SAN ANDRES UNIT

WELL SERVICING REPORT FIG. 4

pump parts which have resulted in the largest number of failures in the area, but also the best type of metallurgy to design into these parts. Considering the volume of data involved, it would not be practical to use any method other than computer analysis for such a study.

EXAMPLES OF TECHNICAL ANALYSES

Looking at another phase of sucker rod pumping management, a technical program was developed which computes the installation's producing capability and compares it to actual performance. The routine also calculates loading conditions and compares them to design ratings on the pumping equipment. With proper application, the program assists in identification of installations that are not pumping efficiently, detection of installations with over or undersized equipment and in designing equipment. When pumping problems are detected through the computer analyses just described, and if the technical staff considers it necessary, the actual loading conditions on the pumping equipment are measured in the field. This method is less expensive than others that continually monitor load conditions on individual units to detect equipment problems because of the investment required to permanently install monitoring equipment.

Figure 8 is an abbreviated pumping analysis request form. Since the required calculation data are stored in computer files, the user need only specify the installations that are of interest to obtain an analysis of current operating conditions. Other options that are available in the program are listed in the example. When the program user needs to perform an analysis under modified conditions or if permanent file changes are required, he enters the proper program function code and only the data that define the changes.

The report in Fig. 9 is an example of a pumping analysis performed under current operating conditions and equipment configurations for Well 88 in the Robertson Clearfork Waterflood Unit. For reference, the result of the well's latest production test is also listed; well test information is likewise

CORROSION TREATMENT REPORT

MEANS SAN ANDRES UNIT

WELL	PRODUC	TION		(HEMICAL	TREATMENT		AN	NUAL NU	ANNUAL COST			
	FLUID	OIL	TYPE	GALS	FREQ	METH.	HOURS	BODY	PIN	CPLG	PUMP	TBG	CHEMICAL
1418	595	138	7760	2.0	3/W	CIRC	0.4	2	0	1	1	1	1154
2716	85	15	7755	1.5	2/W	CIRC	0.6	0	0	0	1	0	577
				FIG. 5	5 – CORE	ROSION TI	REATMEN	NT REP	ORT				

SUBSURFACE PUMP REPAIR REPORT

PART CONDITION AND METALLURGY CODES

MEANS SAN ANDRES UNIT

WELL	PUMP NUMBER	DATE	BARREL	PLUNGER	VALVE <u>ROD</u>	TOP CAGE	TRAV BALL	ELING VA	ALVE CAGE	STA BALL	NDING V SEAT	ALVE CAGE	REPAIR COSTS	LIFE DAYS
2 716	S39	7/24 /7 4	2	26	1	1	52	52	32	52	52	32		
	[,] S39	2/24/75	XPIT						WORN		SCOR	XPIT	260	212
	S578	2/24/75	14	23	1	13	52	52	44	52	52	44		
				F1G. 6	– SUI	BSURFA	CE PUN	MP REPO	DRT					

274

obtained from the computer files. The first line of the pumping analysis report describes the size and load ratings of the equipment along with the latest surveyed fluid level and pumping unit type code. The code in the example specifies that the unit is conventional with an electric motor as the prime mover. The second line describes pumping conditions, shows the latest well test volumes, displays results of the calculations, and dates the latest fluid level survey. The report is designed to print calculated equipment loads under their corresponding ratings for convenience. Looking at the report data, one may determine that the analysis was performed as if the pumping fluid level depth was near the pump seat, 6000 ft; and that under this condition, the unit would be required to have a

nonobtainable pumping efficiency of 115 percent to duplicate actual production volumes. This comparison suggests that the pumping fluid level is well above the pump seat, as was confirmed by data from a field survey. Additional report data show that calculated loads do not exceed equipment ratings; thus, there might be an opportunity to increase production simply by altering pumping conditions. The effects of increasing strokes per minute on the pump from the current 11.2 to 14.0 are shown in Fig. 10. The report indicates that it should be possible to increase fluid production in the magnitude of 30 BPD by the modification, from the latest test volume of 173 to the calculated volume of 204 BPD, and that calculated equipment loads are still below the equipment ratings. The indicated SUMMARY REPORT - SUBSURFACE PUMP COMPONENT PUMP LIFE

BY METALLURGY

PUMP COMPONENT	METALLURGY	NUMBER FIELD FAILURES	AVERAGE LIFE-DAYS
TOP PLUNGER CAGE	ALLOY STEEL	7	190
	ALLOY STEEL - HARDENED	4	93
	BRASS OR AL. BRONZE	2	524
	MONEL	26	244
	REG. STEEL	12	297
	REG. STEEL HARDENED	16	360
	STAINLESS STEEL HARDENED	1	140
	OTHER	3	<u>321</u>
	TOTAL	71	272
UPPER TRAVLING VALVE BALL	ALLOY STEEL - HARDENED	1	291
	COBALT - CHROME STEEL	32	202
	MONEL	27	404
	SPECIAL ALLOY HARDENED	1	86
	TUNGSTEN CARBIDE	1	619
	OTHER	_2	<u>336</u>
	TOTAL	64	298
FIG-	7-PUMP COMPONENT LIFE-BY META	ĻLURGY	

modifications are critically reviewed before being implemented to make certain the change is practical. For example, it might be necessary to down-rate allowable rod stresses, from maximum rating, due to the rods' operating environment or age.

REQUEST FORM

SUCKER ROD PUMPING TECHNICAL ANALYSIS

LEASE	WELL	ION		PUMP		FLUID	NUME	BER OF	RODS	TBG
NUMBER	NUMBER	FUNCT	SIZE	STK LTH	SPM	DEPTH	8/8	7/8	3/4	SIZE

DESCRIPTION OF FUNCTION CODES

0 - Perform analysis for current conditions and equipment.

1 - Perform analysis using specified altered data.

2 - Update computer file data as specified.

3 - Perform analysis on all wells on Lease.

4 - List equipment configuration and pumping conditions for all wells on Lease. FIG. 8 - TECHNICAL ANALYSIS-REQUEST FORM

**** WELL TEST SUMMARY ****

R OD PUMP 24 HOUR TEST RATE TEST ---FORM PROD REMARKS DATE ZN WELL TRGT TIME DIA LTH SPM OIL SW SW% FGAS GOR TIME ROBERTSON CLEARFORK UNIT S/B 173 1 - 18 - 61 88 79 2.0 1.5 74 11.2 77 96 55 26 338 24.0 LOW GOR

*** SUCKER ROD ANALYSIS ***

EQUIPMENT SIZE AND RATINGS

		NU	IMBER	OF RC	DS								
WELL	9/8	8/8	7/8	3/4	5/8	1/2	TBG	PUMP	S FL	MPSI	MINLB	MLBS	UNIT
NO.							DIA	DPTH	DPTH	STRS	TORQ	BEAM	TYPE
88	0	0	0	153	91	0	2.0	6100	<u>4300</u>	37.0	228	21.0	1 E

ANALYSIS-CURRENT PUMPING COND.

PUMP DATA TEST TEST CALC TEST 87D B/D B/D % PUMP MTOR C FL MPSI MINLB DATE--FLD MLBS DIA LTH SPM OIL FLD FLD EFF TIME BHP DPTH STRS TURQ BEAM LV SURVEY 1.5 74 11.2 77 173 1 50 115 24.0 13 6000 32.8 162 14.5 1- 9-76

FIG. 9 TEST & TECHNICAL ANALYSIS-CURRENT CONDITIONS

*** SUCKER ROD ANALYSIS ***

EQUIPMENT SIZE AND RATINGS

		NUM	IBER O	F RO	DS								
WELL	9/8	8/8	7/8	3/4	5/8	1/2	TB G	PUMP	S FL	MPSI	MINLB	MLBS	UNIT
NO.	·						DIA	DPTH	DPTH	STRS	TORQ	BEAM	TYPE
88	0	0	0	153	91	0	2.0	6100	4300	36.2	228	21.0	1E
ANALY	SIS O	NEW.	PUMPI	NG C	OND.								
PUM	P DAT.	A TRO	T TRG	Т СА	LC	TRGT							
		- - B/	'D B/	D B	/ D	%	PUMP	MTOR	C FL	MPSI	MINLB	MLBS	DATE FL D
DIA L	TH S	PM OI	L FL	D F	LD	EFF	TI ME	BHP	DPTH	STRS	TORQ	BEAM	LV SURVEY
1.5	74 <u>14</u>	0	17 17	3 2	04	85	24.0	18	6000	34.3	189	15.2	1- 9-76
			F	1G- 10)TEC	HNICAL	ANALY	SISMOI	DIFIED CO	ONDITIC	ONS		

CONCLUSIONS

- 1. Exxon Company, U.S.A. has developed a series of statistical and technical analyses programs that effectively assist in the surveillance and management of its sucker rod pumping installations. Since initiating the use of computer analyses in the artificial lift management system, failure frequency of subsurface pumping equipment has been reduced by 21 percent.
- 2. Simplified field entry forms insure that computer files will contain complete and accurate analyses data.
- 3. Report options, which allow personnel to sort, rank, and summarize data to fit their requirements, are necessary for computer

analyses to be effective.

REFERENCE

1. Railroad Commission of Texas, Oil and Gas Division: Monthly Crude Oil Production Report. Oct. 1975.

ACKNOWLEDGMENTS

The author wishes to thank Exxon Company, U.S.A. for permission to publish this paper. Special recognition is given to personnel in Exxon's Midcontinent Division, Production Engineering Section, namely Messrs. A.H. Ilfrey and W.R. Shuck, for their work in artificial lift surveillance and management through computer analyses.

278

.