# Short Term Transient Pressure Tests - Design and Analysis Considerations

Jeffrey W. Knight, Halliburton Reservoir Services Saeed Hedayati and James L. Hunt, Halliburton Services

# ABSTRACT

Short term transient pressure tests can yield important hydrocarbon reservoir parameters including initial pressure, effective permeability, and dimensionless skin factor. These tests may be characterized by short time durations and limited areal investigation of the reservoir. They are often used to appraise new wells. Drillstem tests, closed-chamber drillstem tests, surge tests, and slug tests are all common short term transient pressure tests.

After a discussion of pressure analysis theory, this paper describes these tests in terms of procedure and information to be gained. Design factors are highlighted with emphasis on such practical points as recommended lengths of flow and shut-in periods, and ratio of shut-in time to flow time, when applicable. Some discourse on tools and data acquisition equipment required to perform each test from a conceptual viewpoint is provided in the following text. This paper also presents analysis methods for each test and demonstrates expected pressure responses with field and simulated data.

# INTRODUCTION

Transient pressure tests yield valuable information when properly conducted and collected data are correctly analyzed. Questions are frequently asked concerning particular aspects of well testing operations such as "how long and how many times should the well be flowed and shut in?" Inquiries are often made as to the type of tools and pressure gauges that should be used in well testing. This paper is practical in nature and was designed for those with little or no previous experience in well testing while providing a refresher for those whose exposure to testing has been infrequent. It is hoped that the intended audience will gain increased understanding of the benefits of well testing and a working knowledge of common short term tests.

Short term tests have as primary objectives the determination of effective permeability, dimensionless skin factor, and initial pressure. These generally include drillstem tests (DST), closed chamber drillstem tests (CCDST), surge tests, and slug tests. Information provided by these tests often spares the operator subsequent expenditures should the tested zone prove disappointing. If the tested zone shows promise, valuable reservoir parameters are known which should prove beneficial in current evaluation and in future reservoir studies. Flowing a well and monitoring bottomhole pressure response provides a dynamic measurement of the well's productivity. Well testing makes sense economically when one considers the information that can be learned.

The remainder of the paper begins with an explanation of basic pressure transient theory which should clarify the necessity for gathering pressure/rate/time data. Thereafter, the four short term tests

mentioned above will be described along the following lines:

- I. Description and purpose
- II. Basic tools and instrumentation
- III. Design factors and simulated tests
- IV. Analysis methods and sample test.

A few concluding remarks will follow.

# **BASIC PRESSURE TRANSIENT THEORY**

In theory, all pressure transient testing involves upsetting the reservoir's equilibrium conditions and monitoring the reservoir's response to the disturbance. In practice, we disturb the reservoir by imposing a rate change on a well and then record downhole pressure response with a pressure gauge. An engineering model is required to relate pressure/rate/time performance at the well thus providing a basis to determine reservoir parameters. The foundation for pressure transient analysis of fluid-filled porous media is based upon the diffusivity equation:

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} = \frac{\phi \mu c_t}{0.000264k} \frac{\partial p}{\partial t}$$
(1)

This partial differential equation results from combining the continuity equation, Darcy's law, and an equation of state. With appropriate inner and outer boundary conditions and initial conditions, solutions to the diffusivity equation yield pressure as a function of both radial distance from the well and flow time. Inherent in the development of the diffusivity equation as presented in Eq. 1 are the following assumptions.<sup>1-4</sup>

- 1. Darcy's law applies
- 2. Single phase radial flow to the well
- 3. Constant reservoir thickness
- 4. Small pressure gradients
- 5. Negligible gravity effects
- 6. Homogeneous, isotropic reservoir
- 7. Isothermal behavior
- 8. Reservoir fluid has small and constant compressibility
- 9. Hydraulic diffusivity  $(\eta)$  is constant and independent of pressure,

where 
$$\eta = \frac{0.000264k}{\phi \mu c_t}$$

For interested readers, references 5-8 provide a detailed look at the development of and solutions to the diffusivity equation. The particular solution of most interest in pressure transient analysis is derived by assuming the reservoir is infinitely large, the well is produced at constant rate, and pressure is equal throughout the reservoir before production commences. The prior three assumptions are the outer and inner boundary conditions and the initial condition, respectively. (See Fig. 1 for summary schematics highlighting the above assumptions.) The assumption of an infinitely large external radius,  $r_e$ , guarantees an infinite period of adjustment to the imposed disturbance or an infinite period of transient behavior. Obviously, no reservoir is of infinite extent; however, if production time is short, reservoir boundaries will likely not influence the pressure response. The tests to be described below generally involve short production times.

The  $E_i$  or line source solution<sup>9</sup> is an exact solution to Eq. 1 for the above stated assumptions and initial and boundary conditions:

$$p(r,t) = p_i + \frac{70.6 \ qB\mu}{kh} E_i [-x]$$
(2)

where the 
$$E_i$$
 function argument  $x = \frac{948 \phi \mu c_i r^2}{kt}$ 

The above equation provides a functional relationship for pressure at any radial distance from the well, at any time, for a constant rate of production. From a practical standpoint, the desired pressure is the wellbore pressure,  $p_{wf}$ , since the pressure response is monitored at the wellbore during a well test. Inherent to the  $E_i$  solution is that the wellbore radius,  $r_w$ , is vanishingly small i.e., the wellbore can be considered a line, hence the term line source solution. At early times in a well test the measured wellbore flowing pressures will deviate from those predicted by Eq. 2 because the well is not a line. However, at practical times of interest, Eq. 2 is a suitable predictor of flowing wellbore pressure. The  $E_i$  solution is somewhat unwieldy and for values of the  $E_i$  argument x < 0.02 a natural log approximation<sup>2</sup> to the  $E_i$  solution may be used with very little error:

$$E_i(-x) = \ln(1.781x)$$
 for  $x < 0.02$ 

In order that the value of the  $E_i$  argument x < 0.02, t must be large and/or r must be small. Since pressure will be measured at a sufficiently small radius,  $r_w$ , and the test time will be large enough in all practical cases, the log approximation will apply. Substitution of the log approximation into Eq. 2 results in the following equation which predicts flowing bottomhole pressures in a well subject to the assumptions and conditions stated above:

$$p_{wf} = p_i - \frac{162.6qB\mu}{kh} \left[ \log \left( \frac{kt}{\phi\mu c_r_w^2} \right) - 3.23 \right]$$
(4)

Algebraic manipulation of Eq. 4 reveals that a plot of flowing wellbore pressure,  $p_{wf}$ , versus log of flowing time, t, is a straight line with the slope:

$$m = \frac{162.6 \ qB\mu}{kh} \tag{5}$$

(3)

The slope of the line (see Fig. 2) is inversely related to reservoir transmissibility,  $kh/\mu$ . If fluid viscosity,  $\mu$ , and formation thickness, h, are known, permeability, k, may be calculated from

$$k = \frac{162.6 \ qB\mu}{mh} \tag{6}$$

The permeability calculated from a well test is actually the effective permeability to either oil, gas, or water. Eq. 6 normally applies to liquid permeabilities.

The preceding developments constitute the classic semilog analysis for constant rate pressure drawdown in an infinite-acting radial flow reservoir system. Fig. 3 shows a comparison of three drawdowns, all with the same rate. The different semilog slopes are due to different permeabilities among the three cases.

During actual testing we find that early time data do not fall on a semilog straight line even as predicted by Eq. 4. The data deviate from a linear response due to the effects of wellbore storage.<sup>10-12</sup> In short, wellbore storage concerns unequal mass transfer. As long as the surface rate of production is not nearly equal to the sandface rate of production, wellbore storage exists and the pressure response is due to fluid movement within the wellbore. The true infinite-acting formation pressure response is masked until storage effects diminish. Calculations for reservoir parameters cannot be performed on this storage-dominated data using the classic semilog analysis. The pertinent problem with wellbore storage is one of recognition so the proper semilog data can be analyzed. Fig. 4 presents the effects of wellbore storage effects decrease, this curve joins the linear trend of the curve not influenced by storage. Wellbore storage delays the appearance of analyzable semilog data.

Skin<sup>10-15</sup> is recognized as a region of either reduced or improved permeability around the wellbore. Drilling and completion operations are a prime source of reduced permeability at the sandface or wellbore damage, while some stimulation operations are an attempt to improve the near wellbore permeability or decrease the wellbore damage. The result of sandface skin damage is substantially reduced productivity. Fig. 5 presents three drawdown curves, all having the same rate and permeability, but with different skin factors. Lower flowing pressures and lower productivity result from higher skin factors. The following equation is used to calculate skin factor for a constant rate drawdown:

$$s = 1.151(\frac{p_i - p_{1hr}}{m} -\log \frac{k}{\phi \mu c_r r_w^2} + 3.32)$$
(7)

The variable  $p_{1hr}$  is the theoretical flowing pressure one hour into the drawdown test. This pressure must fall on the correct semilog straight line region.

Skin factors > 0 indicate wellbore damage while skin factors < 0 indicate flow improvement. A skin factor = 0 means an unaltered condition exists around the wellbore.

Type curves play a supporting role to, and sometimes serve as an alternative for, the pressure drawdown semilog analysis. These curves are simply solutions to the diffusivity equation, typically presented graphically on log-log coordinates. Dimensionless variables<sup>4</sup> are used so that a multitude of possible solutions can be shown on one graph. Type curve matching involves aligning a log-log plot of  $\Delta p$ ,  $(p_i - p_{wf})$  vs test time t for the actual test data over the type curve until a suitable match is found. Parameters such as permeability and skin may be determined from the matching process. Ref. 4 provides a description of the matching process.

Fig. 6 is a type curve for the  $E_i$  solution to the diffusivity equation. Use of this type curve will provide the same information as Eq. 2.

Ramey<sup>10,11</sup> presented the type curve shown in Fig. 7 for a single well in an infinite radial system, including wellbore storage and skin effects. The great utility of the graph is that it presents a means by which to analyze both early time and semilog data unlike the classic semilog method which cannot make use of the early data. For further understanding of the Ramey type curves, the defining equations<sup>10,11</sup> for the dimensionless variables are given below for dimensionless pressure

$$p_D = \frac{kh(p_i - p_{wf})}{141.2qB\mu}$$
(8)

dimensionless time

$$t_D = \frac{0.000264kt}{\phi \mu c_t r_w^2}$$
(9)

and dimensionless wellbore storage coefficient

$$C_D = \frac{5.615C}{2\pi\phi hc r_w^2} \tag{10}$$

where 
$$C = V_{wb}c_{wb}$$

The base case for this type curve is the curve for s = 0 and  $C_D = 0$ , which is the  $E_i$  solution. With the introduction of wellbore storage ( $C_D > 0$ ), the type curves have a unit slope trend and then a transition, before joining the  $E_i$  solution. Thus, the type curve provides an indication of where the semilog data begin, or if any semilog data exist at all. The semilog region typically begins 1.5 log cycles<sup>2</sup> past the end of the wellbore storage unit slope line as illustrated in Fig. 8.

Note that as  $C_D$  increases (implying larger wellbore volumes and/or wellbore fluid compressibility) the onset of the semilog data is delayed to larger values of  $t_D$ . Also, as the dimensionless skin increases,  $p_D$  increases due to the effect skin has on lowering flowing pressures, as  $p_D$  is proportional

to  $(p_i-p_{wf})$ . Present type curve technology incorporates different parameterization such as grouping  $C_D$  and s into one  $C_D e^{2S}$  parameter<sup>16</sup> as well as the inclusion of pressure derivative.<sup>17</sup> Fig. 9 shows a type curve utilizing the newer features. Three items of interest are:

- 1. The pressure derivative has a unit slope which tracks the  $\Delta p$  curve during wellbore storage
- For most values of  $C_D e^{2S}$  the pressure derivative has a "hump" during the transition 2. region between storage and infinite-acting behavior For all values of  $C_D e^{2S}$  the pressure derivative approaches a value of  $p_D=0.5$ ,
- 3. indicative of the infinite-acting radial flow or semilog region.

Although specifically developed for situations of pressure drawdown in liquid wells under the prior assumptions, the aforementioned type curves may be used to analyze pressure buildup data when the production time is large compared to the shut-in time. Agarwal's<sup>18</sup> equivalent time corrects the buildup time ( $\Delta t$ ) such that the drawdown type curve may be used in cases where the production time is short or rate varies prior to well closure. As a rule of thumb, if the buildup time is greater than one tenth the prior production time, equivalent time should be used when curve matching. The buildup derivative log-log plot shape will be incorrect if the preceding drawdown was in storage.<sup>18</sup> The correct  $\Delta p$  for a buildup log-log plot is  $(p_{we}-p_{wf})$ .

A few key assumptions pertaining to the formulation and solution of the diffusivity equation are violated with gas reservoirs. For example, gas fluid properties are a much stronger function of pressure, and gas compressibility is neither necessarily small nor constant. Gas pseudopressure<sup>19</sup> and pseudotime<sup>20</sup> are plotting functions which essentially correct gas well test data to fit the liquid well solutions of the diffusivity equation.

Gas pseudopressure takes into account the change in gas viscosity and gas compressibility factor with pressure

$$m(p) = 2 \int_{p_b}^{p} \frac{p dp}{\mu z}$$
(11)

Gas pseudopressure replaces pressure in semilog and log-log plotting of gas well test data.

Pseudotime takes into account variations with time of gas viscosity and total compressibility

$$t_a = \int_{t_o}^t \frac{dt}{\mu c_t} \tag{12}$$

Defined for buildup only, pseudotime replaces time in semilog and log-log plotting of gas well buildup data. Realistically, the best application for pseudotime is to correct storage-dominated gas well buildup data to the correct unit slope (constant C<sub>D</sub>) line required by the previously discussed type curves. Gas wells may undergo large changes in compressibility during a buildup test, thus  $C_D$  changes, making type curve analysis difficult.

Several investigators<sup>5,21,22</sup> have proposed methods for analyzing pressure buildup data, with the method proposed by Horner<sup>5</sup> being the most popular one. Horner's equation for predicting the pressure buildup in a well following a single, constant rate period of production is:

$$p_{ws} = p_i - \frac{162.6qB\mu}{kh} \log\left(\frac{t+\Delta t}{\Delta t}\right)$$
(13)

Eq. 13 implies that a plot of bottomhole shut-in pressure versus log of dimensionless Horner time,  $(t+\Delta t)/\Delta t)$  is a straight line, with the slope inversely related to transmissibility. Effective permeability is calculated from the slope in the same manner described for the drawdown analysis (Fig. 10).

Horner analysis allows an extrapolation of the transient pressure response to infinite shut-in time (as  $\Delta t \rightarrow \infty$ ,  $(t+\Delta t)/\Delta t \rightarrow 1$ ) to obtain an extrapolated pressure, p\*. For a new well in a large reservoir that has experienced limited production, p\* should be equal to the initial pressure, p<sub>i</sub>. Skin may be calculated from pressure buildup data with the following equation:

$$s = 1.151 \left(\frac{p_{1hr} - p_{wf}}{m} - \log \frac{k}{\phi \mu c_t r_w^2} + 3.23\right)$$
(14)

The variable  $p_{1hr}$  is the theoretical shut-in pressure one hour into the buildup test. This pressure must fall on the correct semilog straight line region.

Fig. 11 displays three buildup curves with different slopes due to different permeabilities only. Wellbore storage can affect pressure buildup also, and Fig. 12 shows the delay of semilog data on one curve because of wellbore storage effects.

It should be noted that the Horner method assumes one constant rate of production prior to well closure. In practice this is difficult to achieve, and hence, rigorous use of superposition<sup>4</sup> for a varying rate schedule may be necessary. Superposition is a mathematical principle associated with partial differential equations of the type as the diffusivity equation. Practically, it allows a solution to be formulated for a well's pressure behavior given any prior rate history. The Horner<sup>5</sup> and Miller et al.<sup>22</sup> methods utilize superposition considering one constant rate prior to well closure.

The flow period preceding well closure is very important because it establishes a pressure drop or gradient away from the well. If pressure around the well is not appreciably reduced by the drawdown, no meaningful pressure buildup will occur.

The maximum information gained during a well test comes from transient data<sup>23</sup>, including effective permeability, skin factor, and  $p^*$  (for buildups). The short term tests described below involve the collection of transient data; however, the analysis methods will not necessarily be limited to the

above described semilog techniques. It is interesting to note that whatever the analysis method, the fundamental basis is the diffusivity equation. Usually, modifications to inner boundary conditions produce different analysis techniques.

Although the necessity of pressure/rate/time data has been emphasized, fluid property data is no less important in obtaining good pressure transient analysis results. In many exploratory wells, fluid properties will not be known at the time of the test and therefore, correlations must be used which will not present a problem in short term tests since in many instances an operator may only require ballpark values for further decision making.

# DRILLSTEM TEST (DST)

## I. Description and Purpose

The DST is a frequently run short term test, introduced to the industry in 1926.<sup>24</sup> An arrangement of tools and valves are carried to the bottom of the well on the drillstring to allow a zone of interest to be isolated and selectively flowed and closed-in. DSTs are performed on wildcat wells, offsets, and on infill wells. Upon successful completion of a DST and analysis of the collected data, an operator should have a basis for decisions concerning further expenditures on the zone. Typical information that DSTs can provide include effective permeability, skin factor, initial pressure, and fluid type present in the formation. In summation, the DST provides a temporary completion of a well so that a transient pressure test may be performed and valuable information collected with minimal expenditures. A pressure/time trace of a common DST is shown in Fig. 13.

## II. Basic Tools and Instrumentation

DSTs may be run in open or cased hole and there exist several variations of tool strings that are utilized depending upon operator requirements. Conceptually, all DSTs are similar and the following five components<sup>25</sup> are necessary:

- 1. **Drillstring** carries the DST tools downhole and serves as a conduit for produced fluids
- 2. **Packer** isolates the zone of interest and relieves the formation of the hydrostatic overbalance due to the drilling or completion fluid thus allowing formation flow
- 3. **Perforated pipe** provides a path through which fluids may flow from the reservoir into the drillstring
- 4. Test valve provides the means to allow the reservoir to flow or to close-in as needed
- 5. **Pressure gauge** provides a pressure record of the test and a crosscheck when difficulties are experienced

It is a good practice to run at least two pressure gauges to allow for comparison if problems are encountered during the test. One gauge is usually run "blanked-off" at the bottom of the test string. This gauge is not in the direct path of the fluid flow but senses pressure changes in the annular region. The other gauge is placed "in-stream," i.e., in the direct flow path, usually above the packer. Gauges should be properly sized "pressure-wise" according to the maximum expected pressures during the test (including hydrostatic and reverse-out pressures) as well as "time-wise" according to the total planned test time (including tripping in and out of the hole). In the U.S., a majority of DSTs employ mechanical pressure gauges although service companies now offer electronic memory recorders for use in DST strings. A cased hole DST will have nearly all the pressure recorders in a single bundle carrier.

Strictly speaking, the DST described here is run with an open surface valve. Many liquid wells will not flow to the surface during the allotted production time on a typical open hole DST. On such wells, the flow period should actually be called a slug period or a period in which there is an increasing bottomhole pressure due to the increasing hydrostatic pressure exerted by the liquid as the pipe fills up. On liquid wells that exhibit slug flow, the rate will be determined based on the pressure data or on the reported liquid recovery in feet, or in barrels if the recovery is reversed out to a tank. Gas wells often flow at the surface and rate may be determined based on surface conditions. A DST well configuration schematic is presented in Fig. 14.

#### III. Design Factors and Simulated Tests

For DSTs, two flow and closed-in sequences are recommended as a minimum since comparison of the initial and final closed-in extrapolated pressures serves as a check for possible depletion. The first flow period should be long enough to bleed off excess pressure (supercharge) caused by overbalanced drilling. If this excess pressure is not bled off, the initial first closed-in pressure may build to a pressure greater than formation pressure. Supercharge is more likely to be seen in oil well testing than gas testing due to the high compressibility of gas. Supercharge effects are also more likely seen in low to medium permeability zones than in highly permeable zones. Regardless of the type of fluid present or the formation permeability, there are compelling reasons to flow most wells at least 30 minutes upon initial opening. These include:

- 1. More likely to relieve supercharge, if present;
- 2. More likely to clean up some of the wellbore damage and return the well to its natural productivity, and
- 3. More likely to lift the rathole volume of mud above the test valve.

The initial buildup should be twice the length of the initial flow as a minimum, to allow for an accurate extrapolated pressure. The purpose of the second flow period is to draw the reservoir pressure down a considerable distance from the wellbore, setting up a good final buildup.

Ideally, the flow rate will stabilize so that an accurate rate may be determined. It is best to allow the surface indications during the second flow period to guide the duration of the final flow and closed-in sequence. For example, a strong surface "blow" during the final flow period indicates good productivity, and, thus, a one hour flow is probably sufficient. The final buildup should be at least as long as the final flow, while a buildup of 1.5 to 2 times the flow duration provides a more confident pressure extrapolation.

For weak surface action, a longer flow time is necessary to adequately investigate out into the reservoir. The final buildup should then be at least twice the flow time and possibly 2.5 to 3 times the flow period to better insure the probability of obtaining good semilog data. For an accurate pressure extrapolation, the correct infinite-acting portion of the data must exist. Should the blow

begin to die during the second flow period, the final buildup should be initiated immediately or else the well may kill itself due to hydrostatic backpressure. If that occurs, there will be no final buildup.

It is important to realize that the maximum time on bottom for an open hole DST is about 4 to 6 hours. This limitation should be considered when planning test flow and closed-in times.

The above guidelines are a combination of previous suggestions<sup>1-4</sup> and experience. It should be noted that many times, valuable qualitative information may be gained from a test, even when no quantitative analysis is possible. For instance this may be due to a lack of pressure development during the buildups, or lack of a measurable hydrocarbon rate.

Figs. 15 to 17 present theoretical responses for various one flow/one closed-in oil producing DSTs. (All theoretical responses in this paper were generated with a well test simulator.<sup>37</sup>) In Fig. 15 the hydrostatic pressure builds up much more quickly during the slug flow period for the high permeability case. The pressure buildup occurs much more quickly for the high permeability case also. Skin damage will inhibit the productivity; e.g., in Fig. 16 notice the slower pressure increase due to the slower rate of liquid influx into the pipe for the damaged case. However, the buildup occurs more rapidly for the damaged case. Fig. 17 presents differences in behavior for a low permeability case for different skin factors.

### IV. Analysis Methods and Sample Tests

DST flow period bottomhole pressure data are rarely analyzable by the previously discussed semilog method. For gas zones, the rate seldom stabilizes in the short time allotted for production. Therefore, gas well DST flow period bottomhole pressures are not frequently analyzed; however, surface pressures are used in conjunction with surface equipment to determine gas rate for buildup analysis. Semilog methods are preferred in the analysis of DST pressure buildup data as long as semilog data exist.

The first field case presented in this paper is an oil zone DST. The pressure/time representation of the two flow/two closed-in period test is shown in Fig. 18. Estimated rock and fluid data and other pertinent test data are presented in Table 1. Raw pressure/time data are given in Table 2. Initial and final buildup period processed data are given in Tables 3 and 4 respectively; results are summarized in Table 5. The steps below explain the analysis procedure.

- 1. A log-log plot (Fig. 19) of both closed-in periods indicates that only the second buildup period data reach the appropriate semilog region. The Horner plot (Fig. 20) confirms that the second buildup period data have a linear character at late time. The second buildup is analyzed for effective permeability, skin, and extrapolated pressure. Any attempt at semilog analysis of the first buildup will result in incorrect parameters because the correct semilog slope has not developed.
- 2. A rate must be determined from the slug flow period. Fig. 21 is an enlarged view of the pressure response during the flow periods. The rate of pressure change with time  $(\Delta p/\Delta t)$  is nearly constant and the slope of the second flow period pressure/time response can be used with the following equation to determine rate:

$$q = 2.0736 x \, 10^5 (\frac{\Delta p}{\Delta t}) \, \frac{V_u}{\rho}$$
(15)

q =  $2.0736 \times 10^{5}(0.9)(0.00492)/(48.8)$ q = 18.8 bbls/day

The recovery method is a possible alternative to the above pressure change method. The recovery method requires the known amount of liquid recovery above the test valve and the size(s) of pipe filled with the recovered liquid. A volume of recovery can then be calculated and a rate for the test determined based on the total flow time.

3. The semilog slope on the expanded Horner plot (Fig. 22) can be determined by subtracting the pressure at log cycle 1 from the pressure at log cycle 0, (same as p\*).

$$\mathbf{m} = |\mathbf{p}^* - \mathbf{p}_1| \tag{16}$$

m = |2546.9-2432.3| = 114.6 psi/cycle

4. To calculate permeability

$$k = \frac{162.6 \, q \, B \, \mu}{mh}$$

$$k = \frac{162.6(18.8)(1.545)(0.33)}{114.6(12)} = 1.13 \ md$$

5. To calculate skin the following modified skin equation for short producing time is used

$$s = 1.151[\frac{p^{*}-p_{wf}}{m} - \log\left(\frac{kt}{\phi\mu c_{f}r_{w}^{2}}\right) + 3.23]$$
(17)

$$s = 1.151[\frac{2546.9 - 128.6}{114.6} - \log(\frac{1.13(1.523)}{0.10(0.33)(22.91x10^{-6})(0.345)^2}) + 3.23]$$
  
$$s = +19.6$$

The next case presented is a gas zone DST. The pressure/time representation of the test is presented in Fig. 23. Estimated rock and fluid data and other test information are given in Table 6. Pressure time and data are presented in Table 7. Initial and fixed buildup period processed data are given in Tables 8 and 9, respectively. Results are summarized in Table 10. The steps below explain the analysis.

- 1. A log-log plot utilizing real gas pseudopressure (Fig. 24) indicates the second closedin period data reached the correct semilog region. The Horner plot, also with pseudopressure, (Fig. 25) shows the semilog response straightening during the second buildup.
- 2. To calculate rate use the reported stabilized surface pressure of 25 psig on a 0.25 in. positive choke during the second flow. A suitable field determination of gas flow rate can be made with the following equation for 6-inch positive chokes.

$$q = \frac{Cp}{\sqrt{\gamma T}}$$
(18)  

$$q = \frac{26.51(25+14.65)}{\sqrt{0.6(80+460)}} = 58Mscf/D$$

- 3. From the expanded Horner plot (Fig. 26), we determine a suitable semilog line and calculate the slope as
  - $m = |m(p^{*})-m(p_{1})|$ (19)

 $m = |1037.5-966.7| = 70.8 MMpsi^2/cp/cycle$ 

4. To calculate permeability

$$k = \frac{0.001637 \ qT}{mh}$$
(20)

$$k = \frac{0.001637(58)(180+460)}{70.8(10)} = 0.086 \ md$$

4. To calculate skin the short producing time equation yields

$$s = +13.2$$

$$s = 1.151[\frac{m(p*) - m(p_{wf})}{m} - \log(\frac{kt}{\phi \mu c_{f} r_{w}^{2}}) + 3.23]$$
(21)

$$s = 1.151[\frac{1037.5 - 0.3818}{70.8} - \log \frac{0.086(1.305)}{(0.10)(0.022)(148.9 x 10^{-6})(0.365)^2} + 3.23]$$

# CLOSED CHAMBER DRILLSTEM TEST (CCDST)

## I. Description and Purpose

Alexander<sup>26</sup> proposed this modified version of the DST in 1977. While similar to the conventional DST, the closed-chamber DST utilizes a closed surface valve during the flow periods. Rigorous use of surface pressure changes (dp/dt) and liquid influx data allow calculation of gas and liquid rates. Normal analysis of pressure buildup data taken during the closed-in periods may proceed with the known rates. According to Alexander CCDST offers greater security and safety over a standard DST and the rates can be used to estimate flow times necessary for fluid recovery in order to design surface equipment for future conventional testing.

CCDST appears particularly suited to low permeability gas well testing. The test provides permeability, reservoir pressure, skin, and a fluid sample. A bottomhole pressure/time trace of a common CCDST may resemble that of DST ( See Fig. 13.).

## II. Basic Tools and Instrumentation

The tools and instrumentation required for  $CCDST^{26}$  do not significantly differ from those required for DST. Note that the additional hardware required over a conventional DST include:

- 1. A continuous recording surface pressure gauge from which surface pressure change with time (dp/dt) may be determined
- 2. A pressure gauge located at the bottom of the chamber above the test valve to confirm liquid recovery in the chamber.

## III. Design Factors and Simulated Tests

Strictly speaking, the aims of CCDST do not differ from those of DST, and the same information can be gained from both procedures. The CCDST simply provides a more rigorous basis for rate determination, particularly for gas wells, along with the previously stated advantages of safety and security.

An attractive feature of CCDST is that the test may be switched to conventional DST i.e., the surface valve may be opened at any point during flow periods. A common procedure is to start a test as closed-chamber and then switch to open surface flow during the second or subsequent flow periods. The prior DST discussion concerning length of flow and shut-in applies to CCDST. However, often a short first flow period of 10-15 minutes is used. Alexander<sup>26</sup> presents a detailed pre-CCDST design for maximum fluid influx and corresponding expected surface pressure rise.

Fig. 27 is a CCDST well configuration schematic.

Figs. 28-31 present downhole and surface pressure responses for several theoretical closed-chamber responses. The simulations do not consider chamber blowdown during the buildup portions of the test. The first two figures (28 and 29) are responses for 100% liquid production. The two cases differ only by permeability. Notice the very minor rise in surface pressure, which confirms no free gas

production. Figs. 30 and 31 represent 100% gas production for a high and medium permeability case, respectively. For the high permeability case (Fig. 30) the surface and bottomhole pressure increased rapidly and, in fact, returned to static conditions prior to the closed-in period. The medium permeability case (Fig. 31) does not have as sharp a pressure rise.

## IV. Analysis Methods and Sample Test

Semilog and type curve methods are applicable to CCDST pressure buildup analysis. The surface pressure response during the flow periods (surface valve closed) provides an excellent indication of the fluid influx at the sandface. Alexander<sup>26</sup> provides a methodology to determine if the surface pressure response is consistent with 100% gas production, 100% gas-free water production, or something in between such as gassy water or liquid hydrocarbons. The surface pressure behavior is predicted through real gas laws and knowledge of the chamber volume. Rates may be determined by using the change in surface pressure with time (dp/dt) and liquid influx. Charts and equations<sup>26</sup> are presented for determining rate during CCDST flow periods.

The closed-chamber test example below was performed on a coalbed methane well. Rock, fluid data, and pertinent test data are shown in Table 11. Final buildup period processed data are presented in Table 12. To analyze the data the following steps are taken:

- 1. The downhole gauge pressure/time plot (Fig. 32) strongly suggests the initial closed-in period does not have the "closure" necessary for analysis and appears to be storage-dominated. Therefore we will not attempt analysis on this period.
- 2. In order to plot the second buildup using equivalent time, the rates during the test must be calculated from the surface pressure response. Fig. 33 is a plot of surface pressure during the test. Alexander<sup>26</sup> gave the following equation for 100% pure gas influx cases when the surface valve is closed and the test valve is open:

$$q = \left(\frac{286}{T_z}\right) \left(V_{ch} \frac{dp}{dt}\right) \tag{22}$$

The average dp/dt during the first flow is 0.066 psia/min while for the second flow dp/dt is 0.064 psia/min

$$\therefore, q_1 = \frac{(286)(54.22)(0.066)}{(76+460)(0.95)} = 2.01 \ Mscf/D$$

and

$$q_2 = \frac{(286)(54.22)(0.064)}{(76+460)(0.95)} = 1.95 Mscf/D$$

3. A derivative log-log plot of the second buildup utilizing pseudopressure and equivalent pseudotime is shown in Fig. 34. At this point the analysis may be ended because the derivative log-log plot suggests that storage effects probably corrupted the equivalent time function.<sup>18</sup> A semilog plot for the second buildup period is shown in Fig. 35.

Also, the test cannot be analyzed by the techniques presented in this paper due the fact that during 100% gas flow, the pressure/rate/time relationship is not adequately described by the diffusivity equation. Therefore any test interpretation is questionable.<sup>27</sup>

# SURGE TEST

### I. Description and Purpose

The surge test is a limiting form of the previously described closed-chamber flow period. Originally conducted in offshore Gulf Coast wells, backsurge perforation washing and underbalanced perforating served to clean up the well, enabling higher productivity well completions. Recent advances<sup>28-33</sup> in analysis techniques allow the surge pressure data to be analyzed.

Surge tests are typically shorter than DSTs but allow for a rapid initial assessment of a zone with a relatively small amount of production. The tests can provide good estimates for permeability and even better estimates of initial pressure. A fluid sample may be retrieved, also. A pressure/time trace of a typical surge is shown in Fig. 36.

### II. Basic Tools and Instrumentation

Petak, et al.<sup>28</sup>, Simmons<sup>30</sup>, and Mfonfu and Grader<sup>31</sup> provide schematic diagrams of typical surge test tool configurations and instrumentation which include:

- 1. Valves The formation surges against the upper valve when the lower valve is opened.
- 2. **Packer** isolates zone of interest.
- 3. **Pressure gauge** run in the chamber and/or blanked-off below the lower valve. Usually is of the electronic variety due to the rapid pressure changes which require accurate measurements.
- 4. **Chamber** entraps the surged fluid volume and is comprised of the available gas or air-filled drillstring below the upper valve.

The chamber may contain an initial liquid cushion in addition to the air or nitrogen cushion. As liquid enters the chamber the available gas cushion is compressed and formation flow decreases as pressure builds back to static reservoir pressure within the chamber.

Surges are normally conducted on cased wells. A surge test well configuration is presented in Fig. 37.

## III. Design Factors and Simulated Tests

The surge test is a backpressure test with constantly changing rates. This would appear to present problems from an analysis standpoint due to the need for determining a declining rate schedule for superposition. Fortunately, the analysis method used below relies on total volume produced during the surge and not on rate determination. Therefore, no problem exists as far as determining the length of flow and closed-in periods for design purposes. However, the chamber should be properly sized to assure true surge behavior, i.e., the reservoir fluid produced into the chamber compresses the available gas cushion and sandface flow decreases to practically zero.

Soliman's method<sup>32,33</sup> of surge analysis assumes that the production time is very small compared to the total test duration, and that the chamber completely fills with reservoir fluid. Therefore, it would appear that small chamber volume tests are more effective since such chambers would fill faster, thus shortening overall test time. However, a distinct advantage exists when operators employ larger chamber volumes. With larger chamber volumes (implying more produced volume during the test) the producing formation has a better chance of cleaning up the non-indigenous fluids which cause skin damage while sampling a larger volume of reservoir.

The following recommendations based on experience should provide some general guidelines when considering a surge test.

- 1. The analysis<sup>32,33</sup> described below depends on the late time data of the surge period. The chamber should be properly sized to assure meaningful results in a reasonable amount of time. Therefore the use of a surge test design package (simulator) to evaluate various scenarios is recommended.
- 2. Highly sensitive electronic pressure recorders are usually necessary to measure the response, particularly the small pressure changes at late times.
- 3. Although not precluded by theory, gas zones do not appear to produce results as amenable to analysis as oil zones.
- 4. The best applications appear to be in relatively highly permeable liquid wells as per the earlier description of the use in Gulf Coast wells.
- 5. Multiple surges allow for cross checking of results.

Figs. 38 and 39 illustrate theoretical pressure responses for liquid well surge tests. The different responses shown in Fig. 38 are due to different permeabilities. Notice that for the lower permeability case, the response is essentially a slug flow until the air cushion is compressed. At that point, pressure begins building more rapidly. Fig. 39 shows a single permeability case for three values of skin. Chamber fillup will be slower for lower productivity cases; e.g. for either low permeability or high skin damage.

## IV. Analysis Methods and Sample Test

Soliman's method is analytical, graphical, and allows for rapid analysis of short producing time tests provided that the total test time  $(t_p + \Delta t)$  is much greater than the production time,  $t_p$ . The late time pressure data are used for extrapolation and permeability calculation. This method involves making a series of three plots to identify flow regime, to obtain extrapolated pressure, and finally to calculate permeability. Skin cannot be calculated.

The surge test field data below represent a good example of radial flow response. A pressure/time graph (Fig. 40) shows the test response. Rock and fluid data are presented in Table 13 and results in Table 14. (Due to the large number of data points used in the analysis, the data are not presented in this paper.) To perform the analysis the following steps are taken:

- 1. The derivative log-log plot (Fig. 41) indicates a negative unit slope at late time, confirming radial flow.
- The Cartesian plot (Fig. 42) is constructed, utilizing the radial flow time function, 1/∆t. An expanded plot (Fig. 43) reveals a linear portion of late time data which extrapolates to 2774.4 psia (infinite shut-in time (1/∞=0) on the abscissa).
- 3. To calculate permeability a log-log plot of  $(p_i p_{wf})$  vs  $\Delta t$  is constructed (Fig. 44). For radial flow, the late time data should have a negative unit slope on the log-log plot. From the negative unit slope line drawn on the plot, a value of  $\Delta p$  at  $\Delta t$  of one hour is determined to be 5.05 psia. The following equation is used to calculate permeability for radial flow cases.

$$k = \frac{1694.4 \ V_{ch}\mu}{h(p_i - p_{wf})_{\Delta t = 1hr}}$$
(23)

$$k = \frac{1694.4(1.77)(0.427)}{26(5.05)} = 9.8 \ md$$

## **SLUG TEST**

#### I. Description and Purpose

The slug test was introduced by Ferris and Knowles<sup>34</sup> in the field of groundwater hydrology in 1954, and this test is performed by allowing a reservoir to produce liquid into tubing or drill collars/drillpipe while open at the surface. Once liquid flows at the surface, slug flow no longer exists and true pressure drawdown commences. The only technical difference between slug and surge tests is that surge tests employ a closed surface valve or closed chamber. Both tests are backpressure tests but due to the closed chamber and air compression, surge tests build back to static reservoir pressure faster than slug tests. Fig. 13 includes the slug flow portion of a typical DST.

Realistically speaking, slug tests are not as useful as the three previously described tests, and probably occur as often by accident as by direct planning. Fluid samples, permeability, skin, and initial pressure are theoretically available on slug tests; however certain analysis techniques may preclude determination of initial pressure or skin.

#### II. Basic Tools and Instrumentation

The slug test requires essentially the same tools and instrumentation that the DST employs.

### III. Design Factors and Simulated Tests

From a design standpoint the slug test appears easier to manage since there is no concern for length

of time for a following buildup. Surface "blow" should provide an indication of the rate of liquid influx into the drillpipe. Obviously, pressure will increase faster for fillup of smaller ID pipe and for higher gradient fluid. In the DST section, it was seen that liquid wells exhibit slug flow during the flow periods and this slug flow may be analyzed as a slug test. When reservoir pressure, will not support a full column of liquid however; the hydrostatic backpressure will "equalize" with reservoir pressure, killing the well.

Fig. 45 shows a slug flow period with a gentle curvature that is indicative of subcritical flow. As liquid head increases inside the drillpipe, backpressure on the formation increases and the rate of liquid influx decreases. The diffusivity equation dictates that an increase in bottomhole flowing pressure must be accompanied by a decrease in flow rate. Fig. 46 presents an actual slug flow period with a break in the rate of pressure buildup. This break results from the fluid going from small ID drill collars to larger ID drillpipe. In this case the rate of fluid influx is constant (even though backpressure increases) and the flow is called critical flow.<sup>1,4</sup> During critical flow the flow rate does not depend on pressure drop as such the diffusivity equation is not governing the response. Restrictive tool IDs result in critical flow conditions. Such flow data cannot be analyzed; however, an ensuing buildup can be analyzed. Fig. 47 presents a high permeability slug test. This situation is similar to surge behavior.

#### IV. Analysis Methods and Sample Test

Ramey, et al.<sup>35</sup> presented a type curve method for analysis of slug test data. (For a more thorough treatment of the type-curve method applied in this example, see Earlougher<sup>4</sup>.) Soliman<sup>36</sup> presented a slug analysis method which utilizes an equivalent buildup. The short producing time technique used to analyze surge data may sometimes apply to slug test data. For the case presented below, the Ramey, et al. slug flow type curve is used for evaluation. The simulator<sup>37</sup> was employed to generate the slug flow data represented in Fig. 48. Simulator input data are given in Table 15 while the generated pressure/time data are shown in Table 16. Results are summarized in Table 17. The type curve match is shown in Fig. 49. The following steps provide the complete analysis.

1. The recorded match parameters are

$$(C_D e^{2S})_M = 10^6$$
,  $t_M = 1.47$  hr,  $(t_D/C_D)_M = 10$ 

2. To calculate the storage coefficient

$$C = \frac{V_{\mu}}{\left(\frac{\rho}{144} \frac{g}{g_c}\right)}$$
(24)

$$C = \frac{0.00579}{(\frac{62.3}{144} \ \frac{32.2}{32.2})}$$

3. To calculate permeability

$$k = 3389 \ \frac{\mu}{h} \ \frac{C}{t_M} (\frac{t_D}{C_D})$$
(25)

$$k = 3389(\frac{1}{10})(\frac{0.0134}{1.47})(10) = 30.9 \ md$$

4. To calculate skin

$$s = \frac{1}{2} \ln \left[\frac{\phi c_t h r_w^2 (C_D e^{2S})_M}{0.89359C}\right]$$
(26)

$$s = \frac{1}{2} \ln \left[\frac{0.10(8x10^{-6})(10)(.5)^2 10^6}{0.89359(0.0134)}\right]$$

s = +2.6

The above values agree with the simulator input.

## CONCLUSIONS

Ł

The tests described in this paper provide operators of oil and gas wells valuable information. By performing pressure transient tests, an operator may determine if a well's initial poor performance is due to low permeability and/or skin damage. These parameters guide decisions concerning potential well stimulation and the design of such stimulation, or may lead to the plugging and abandonment of the well. Future field studies (reservoir simulation, material balance) make judicious use of initial pressure. Although well testing should be considered throughout the life of a well, early testing is as critical as any future testing.

Even though these short term tests are relatively less costly to run than longer tests, no less consideration should be given to the type of equipment and test time necessary for a good test. Testing companies should be able to provide operators with appropriate testing procedures, if requested, to enhance the possibilities for a good, conclusive well test.

# NOMENCLATURE

| В                | Formation volume factor, RB/STB                                                |
|------------------|--------------------------------------------------------------------------------|
| С                | Wellborc storage coefficient, RB/psi (Eqs. 10 & 24)                            |
|                  | Choke coefficient, Mscf/D/psia (Eq. 18)                                        |
| C <sub>p</sub>   | Wellbore storage coefficient, dimensionless                                    |
| c,               | Total system compressibility, psi <sup>-1</sup>                                |
| Cwb              | Wellbore fluid compressibility, psi <sup>-1</sup>                              |
| g                | Acceleration of gravity, $ft/sec^2$                                            |
| g,               | Units conversion factor, $32.17 \text{ lb}_{-} \text{ ft/(lb,sec}^2)$          |
| h                | Formation thickness. ft                                                        |
| k                | Formation permeability, md (refers to fluid permeability in analysis examples) |
| m                | Semilog slope, psi/cycle                                                       |
|                  | or MMpsi <sup>2</sup> /cp/cycle                                                |
| m(p)             | Gas pseudopressure, psi <sup>2</sup> /cp                                       |
| D                | Pressure. psi                                                                  |
| 7<br>DL          | Base pressure, psi                                                             |
| D <sub>D</sub>   | Pressure, dimensionless                                                        |
| D:               | Initial reservoir pressure, psi                                                |
| Г1<br>D.         | Pressure in pine prior to DST flow period, psi                                 |
| Р.<br>D <b>г</b> | Bottomhole flowing pressure, psi                                               |
| Pwi<br>D         | Bottomhole shut-in pressure, psi                                               |
| D <sub>1</sub>   | Pressure at log cycle 1 on Horner plot, psi                                    |
| D11-             | Theoretical pressure one hour into test period                                 |
| FIN              | (flow or shut-in), psi                                                         |
| ש*               | Extrapolated pressure from buildup semilog line, psi                           |
| a                | Flow rate of oil or gas. STB/D or Mscf/D                                       |
| r                | Radius, ft                                                                     |
| In               | Radius, dimensionless (r./r)                                                   |
| r.               | External boundary radius, ft                                                   |
| с<br>Г.,,        | Wellbore radius, ft                                                            |
| s                | Skin, dimensionless                                                            |
| Т                | Temperature. °R                                                                |
|                  | Surface in Eq. 18                                                              |
|                  | Reservoir in Eq. 20                                                            |
|                  | Average chamber in Eq. 22                                                      |
| t                | Time, hours (minutes in Eq. 15)                                                |
| t,               | Pseudotime, hrs-psi/cp                                                         |
| t_               | Equivalent pseudotime, hrs-psi/cp                                              |
| t <sub>n</sub>   | Time, dimensionless                                                            |
| t.               | Equivalent time, hours                                                         |
| t.               | Base time, hrs                                                                 |
| t                | Production time, hours                                                         |
| P<br>V.          | Chamber volume bbl                                                             |
| V.               | Wellbore volume available for storage bbl                                      |
| 'wb<br>V         | Pine canacity hhle/ft                                                          |
| 'μ<br>7          | Gas compressibility factor dimensionless                                       |
| 4                | ous compressionity motor, unconstantess                                        |

## Greek Symbols

| γ | Fluid gravity, dimensionless               |
|---|--------------------------------------------|
| Δ | Difference                                 |
| η | Hydraulic diffusivity, ft <sup>2</sup> /hr |
|   | Viscosity on                               |

- Viscosity, cp Effective porosity, fraction Density, lb/ft<sup>3</sup> 3.14159... բ Փ
- ρ π

.

# REFERENCES

- 1. Matthews, C.S. and Russell, D.G.: Pressure Buildup and Flow Tests in Wells, Monograph Series, SPE, Richardson, TX (1967) 1.
- 2. Lee, John: Well Testing, Textbook Series, SPE, Richardson, TX (1982).
- Horne, R.N.: Modern Well Test Analysis A Computer Aided Approach, Petroway, Inc., Palo Alto, CA, (1990).
- 4. Earlougher, R.C., Jr.: Advances in Well Test Analysis, Monograph Series, SPE, Richardson, TX (1977) 5.
- 5. Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill Book Co., Inc., New York (1937).
- 6. van Everdingen, A.F. and Hurst, W.: "The Application of the Laplace Transformation to Flow Problems in Reservoirs", Trans., AIME (1949) 186, 305-324.
- Horner, D.R.: "Pressure Build-Up in Wells", Proc., Third World Pet. Cong., E.J. Brill, Leiden (1951) II, 503.
- 8. Carslaw, H.S. and Jaeger, J.C.: Conduction of Heat in Solids, Oxford at the Clarendon Press (1959).
- 9. Theis, C.V.: "The Relation Between the Lowering of The Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground-Water Storage," Trans., AGU (1935) 519-524.
- 10. Ramey, H.J., Jr.: "Short-Time Well Test Data Interpretation in the Presence of Skin Effect and Wellbore Storage," JPT (Jan. 1970) 97-104.
- Agarwal, R.G., Al-Hussainy, R., and Ramey, H.J., Jr.: "An Investigation of Wellbore Storage and Skin Effect in Unsteady Liquid Flow: I. Analytical Treatment," SPEJ (Sept. 1970) 279-290; Trans., AIME, 249.
- 12. Wattenbarger, R.A. and Ramey, H.J., Jr.: "An Investigation of Wellbore Storage and Skin Effect in Unsteady Liquid Flow: II. Finite Difference Treatment," SPEJ (Sept. 1970) 291-297; Trans., AIME, 249.
- 13. van Everdingen, A.F.: "The Skin Effect and Its Influence on the Productive Capacity of a Well," Trans., AIME (1953) 198, 171-176.
- 14. Hurst, W.: "Establishment of the Skin Effect and Its Impediment to Fluid Flow Into a WellBore," Pet. Eng. (Oct. 1953) B-6 through B-16.
- 15. Hawkins, M.F., Jr.: "A Note on the Skin Effect," Trans., AIME (1956) 207, 356-357.
- Gringarten, A.C., Bourdet, D., Landel, P.A., and Kniazeff, V.: "A Comparison Between Different Skin and Wellbore Storage Type Curves for Early-Time Transient Analysis," paper SPE 8205 presented at the 1979 SPE Annual Technical Conference and Exhibition, Las Vegas, NV, Sept. 23-26.
- 17. Bourdet, D., Ayoub, J.A., and Pirard, Y.M.: "Use of the Pressure Derivative in Well Test Interpretation," SPE Formation Evaluation (June 1989) 293-302.
- 18. Agarwal, R.G.: "A New Method to Account for Producing Time Effects When Drawdown Type Curves are Used to Analyze Pressure Buildup and Other Test Data," paper SPE 9289 presented at the 1980 SPE Annual Technical Conference and Exhibition, Dallas, TX, Sept. 21-24.
- 19. Al-Hussainy, R. and Ramey, H.J., Jr.: "Application of Real Gas Flow Theory to Well Testing and Deliverability Forecasting," JPT (May 1966) 637-642, Trans., AIME (237).
- Agarwal, R.G.: "Real Gas Pseudotime A New Function for Pressure Buildup Analysis of Gas Wells," paper SPE 8279 presented at the 1979 SPE Annual Technical Conference and Exhibition, Las Vegas, NV, Sept. 23-26.
- 21. Muskat, M.: "Use of Data on the Build-Up of Bottomhole Pressures," Trans., AIME (1937) 123, 44-48.
- 22. Miller, C.C., Dyes, A.B., and Hutchinson, C.A., Jr.: "The Estimation of Permeability and Reservoir Pressure From Bottom-Hole Pressure Build-Up Characteristics," Trans., AIME (1950) 189, 91-104.
- 23. Koederitz, L.F.: Notes on Well Test Analysis, University of Missouri-Rolla, (July 1985).
- 24. Murphy, W.C.: "The Interpretation and Calculation of Formation Characteristics from Formation Test Data," Pamphlet T-101, Halliburton Services, Duncan, OK. (1970).
- 25. Fulton, D.D.: "A Primer of DST Chart Interpretation," Halliburton Reservoir Services Technical Presentation HRS 4086.

- 26. Alexander, L.G.: "Theory and Practice of the Closed-Chamber Drillstem Test Method," JPT (Dec. 1977) 1539-1544.
- 27. Kamal, M.M. and Six, J.L.: "Pressure Transient Testing of Methane Producing Coalbeds," paper SPE 19789 presented at the 1989 SPE Annual Technical Conference and Exhibition, San Antonio, TX, Oct. 8-11.
- 28. Petak, K.R., Prasad, R.K., and Coble, L.E.: "Surge Test Simulation," paper SPE 21832 presented at the Rocky Mountain Regional Meeting and Low-Permeability Reservoirs Symposium held in Denver, CO, Apr. 15-17, 1991.
- 29. Simmons, J.F., and Sageev, A.: "Application of Closed Chamber Theory to Backsurge Completion Testing," SPE Production Engineering (Nov. 1988) 527-535.
- 30. Simmons, J.F.: "Interpretation of Underbalanced Surge Pressure Data by Rate-Time Convolution," JPT (Jan. 1990) 74-83.
- Mfonfu, G.B.S., and Grader, A.S.: "An Implicit Numerical Model for the Closed Chamber Test," SPE 19832 presented at the 1989 SPE Annual Technical Conference and Exhibition, San Antonio, TX, Oct. 8-11.
- 32. Soliman, M.Y.: "Analysis of Buildup Tests With Short Producing Time," SPE Formation Evaluation (Aug. 1986) 363-371.
- Soliman, M.Y., and Petak, K.R.: "Method Analyzes Pressure for Short Flow Times," Oil and Gas Journal (Apr. 30, 1990) 49-54.
- 34. Ferris, J.G., and Knowles, D.B.: "The Slug Test for Estimating Transmissibility," USGS Ground Water Note 26, 1-7, 1954.
- 35. Ramey, J.J., Jr., Agarwal, R.G., and Martin, I.: "Analysis of 'Slug Test' or DST Flow Period Data," J.C. Pet. Tech. (July-Sept., 1975) 37-47.
- Soliman, M.Y.: "New Technique for Analysis of Variable Rate or Slug Test," paper SPE 10083 presented at the 1981 SPE Annual Technical Conference and Exhibition, San Antonio, TX, Oct. 5-7.
- 37. Halliburton Reservoir Services Well Test Simulator "RTZ"

# ACKNOWLEDGEMENTS

We express our appreciation to the managements of Halliburton Reservoir Services and Halliburton Services for permission to publish this paper. We also commend David Parnell and Rayleene Morris for their assistance in the production of the paper. Thanks to all others who offered suggestions and support.

| Children for Case. Basic reservoir riberties and rest mornation |       |                                             |         |  |
|-----------------------------------------------------------------|-------|---------------------------------------------|---------|--|
| Effective Porosity                                              | 10%   | Pay Thickness, ft                           | 12      |  |
| Reservoir Temperature, °F                                       | 131   | Wellbore Radius, ft                         | 0.345   |  |
| Oil Formation Volume Factor, RB/STB                             | 1.545 | System Compressibility, MMpsi <sup>-1</sup> | 22.91   |  |
| Oil Viscosity, cp                                               | 0.33  | Pipe Capacity, bbls/ft                      | 0.00492 |  |
| Oil Density, lb/ft <sup>3</sup>                                 | 48.8  |                                             |         |  |

#### Table 1 Oil DST Field Case: Basic Reservoir Properties and Test Information

SOUTHWESTERN PETROLEUM SHORT COURSE - 92

t,

hrs

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.450

0.505

0.522

0.538

0.555

0.588

0.605

0.622

0.638

0.655

0.672

0.705

0.738

0.772

0.805 0.855

0.905

0.938

0.972

1.005

1.088

1.172

1.257

1.338

1.422

1.487

1.487

1.537

1.587

1.637

1.687

1.737

1.787

1.837

1.887

1.937

1.987

2.037

2.087

2.137

#### Table 2 Oil DST Field Case: Time and Pressure

40.7

40.7

43.6

46.6

48.9

51.0 53.5 53.5

57.6

61.8

141.7

200.5

259.5 318.1

365.0

440.7

503.6

569.4

639.9

706.1

853.5

1009.4

1134.9

1287.7

1477.6

1666.4

1778.9

1882.2

1977.4

2160.5

2297.2

2391.7

2447.5

2482.8

2499.6

63.2

64.3

79.4

83.6

85.7

87.9

91.0

93.7

96.3

99.3

101.3

105.5

108.1

110.5

#### Table 3 Oil DST Field Case: Buildup No. 1. Processed Data

#### Table 4 Oil DST Field Case: Buildup No. 2. Processed Data

Δp,

t + ∆t

∆t.,

p.,,

Δt,

 p,
 t,
 p,

 psig
 hrs
 psig

 46.5
 2.187
 111.6

2.237

2.287

2.337

2.387

2.437 2.505

2.522

2.538

2.555

2.572

2.588

2.605

2.622

2.638

2.655

2.672

2.705

2.738

2.772

2.805

2.838

2.872

2.905

2.938

2.972

3.005

3.088

3.172

3.255

3.338

3.422

3.505

3.672

3.838

4.005

4.172

4.338 4.500 2493.5

2497.0

2498.8

2505.3

2509.9

2511.5

2515.6

2516.3 2517.8

| р,     | ∆t,   | р.,,   | Δt <sub>e</sub> , | ∆p,    | t + ∆t  |
|--------|-------|--------|-------------------|--------|---------|
| psig   | hrs   | psig   | hrs               | psi    | ∆t      |
| 111.6  | 0.000 | 61.8   | •                 | 0.0    | *       |
| 115.8  | 0.017 | 141.7  | 0.968             | 79.9   | 31.300  |
| 118.5  | 0.033 | 200.5  | 1.876             | 138.7  | 16.150  |
| 122.0  | 0.050 | 259.5  | 2.730             | 197.7  | 11.100  |
| 123.3  | 0.067 | 318.1  | 3.534             | 256.3  | 8.575   |
| 128.6  | 0.083 | 365.0  | 4,292             | 303.2  | 7.060   |
| 349.7  | 0.100 | 440.7  | 5.008             | 378.9  | 6.050   |
| 490.2  | 0.117 | 503.6  | 5.686             | 441.8  | 5.329   |
| 619.3  | 0.133 | 569.4  | 6.328             | 507.6  | 4,788   |
| 766.7  | 0.150 | 639.9  | 6,938             | 578.1  | 4.367   |
| 931.4  | 0.167 | 706.1  | 7.519             | 644.3  | 4.030   |
| 1067.0 | D 200 | 853.5  | 8 596             | 791 7  | 3.525   |
| 1207.2 | 0 233 | 1009.4 | 9.577             | 947.6  | 3 164   |
| 1580.5 | 0.267 | 1134.9 | 10 470            | 1073 1 | 2 894   |
| 1711.0 | 0.201 | 1287 7 | 11 293            | 1225.9 | 2 683   |
| 1922.0 | 0.350 | 1477.6 | 12 403            | 1415.8 | 2 4 4 3 |
| 2096.0 | 0.000 | 1666.4 | 13 380            | 1604.6 | 2 263   |
| 2217.0 | 0,400 | 1779.0 | 12 005            | 17171  | 2.205   |
| 2307.1 | 0.455 | 1992.2 | 14 552            | 1920.4 | 2.103   |
| 2364.2 | 0.407 | 1077 4 | 14.000            | 1020.4 | 2.002   |
| 2396.0 | 0.500 | 0160.5 | 16.070            | 1915.0 | 2.010   |
| 2441.6 | 0.363 | 2,00.0 | 17.000            | 2090.7 | 1.000   |
| 2452.2 | 0.007 | 2297.2 | 10 100            | 2235.4 | 1.758   |
| 2459.6 | 0.752 | 2391.7 | 10.122            | 2329.9 | 1.6/2   |
| 2473.8 | 0.833 | 2447.5 | 18.867            | 2385.7 | 1.606   |
| 2484.5 | 0.917 | 2482.8 | 19.536            | 2421.0 | 1.551   |
| 2488.5 | 0.982 | 2499.6 | 20.013            | 2437.8 | 1.514   |

Producing Time = 0.505 hr

| hrs   | psig   | hrs    | psi    | ∆t     |
|-------|--------|--------|--------|--------|
| 0.000 | 128.6  | *      | 0.0    | *      |
| 0.017 | 349.7  | 0.989  | 221.1  | 92.400 |
| 0.033 | 490.2  | 1.957  | 361.6  | 46.700 |
| 0.050 | 619.3  | 2.905  | 490.7  | 31.467 |
| 0.067 | 766.7  | 3.832  | 638.1  | 23.850 |
| 0.083 | 931.4  | 4.741  | 802.8  | 19.280 |
| 0.100 | 1111.6 | 5.631  | 983.0  | 16.233 |
| 0.117 | 1267.2 | 6.502  | 1138.6 | 14.057 |
| 0.133 | 1449.7 | 7.356  | 1321.1 | 12.425 |
| 0.150 | 1580.5 | 8.193  | 1451.9 | 11.156 |
| 0.167 | 1711.0 | 9.014  | 1582.4 | 10.140 |
| 0.200 | 1922.0 | 10.607 | 1793.4 | 8.617  |
| 0.233 | 2096.0 | 12.140 | 1967.4 | 7.529  |
| 0.267 | 2217.0 | 13.615 | 2088.4 | 6.713  |
| 0.300 | 2307.1 | 15.038 | 2178.5 | 6.078  |
| 0.333 | 2364.2 | 16.409 | 2235.6 | 5.570  |
| 0.367 | 2398.6 | 17.730 | 2270.0 | 5.155  |
| 0.400 | 2422.0 | 19.010 | 2293.4 | 4.808  |
| 0.433 | 2441.6 | 20.244 | 2313.0 | 4.515  |
| 0.467 | 2452.2 | 21.435 | 2323.6 | 4.264  |
| 0.500 | 2459.6 | 22.585 | 2331.0 | 4.047  |
| 0.583 | 2473.8 | 25.312 | 2345.2 | 3.611  |
| 0.667 | 2484.5 | 27.823 | 2355.9 | 3.285  |
| 0.750 | 2488.5 | 30.155 | 2359.9 | 3.031  |
| 0.833 | 2493.5 | 32.320 | 2364.9 | 2.828  |
| 0.917 | 2497.0 | 34.335 | 2368.4 | 2.662  |
| 1.000 | 2498.8 | 36.227 | 2370.2 | 2.523  |
| 1.167 | 2505.3 | 39.636 | 2376.7 | 2.306  |
| 1.333 | 2509.9 | 42.651 | 2381.3 | 2.143  |
| 1.500 | 2511.5 | 45.337 | 2382.9 | 2.016  |
| 1.667 | 2515.6 | 47.753 | 2387.0 | 1.914  |
| 1.833 | 2516.3 | 49.918 | 2387.7 | 1.831  |
| 1.995 | 2517.8 | 51.814 | 2389.2 | 1.764  |

Producing Time = 1.523 hr

#### Table 5 Oil DST Field Case: Analysis Results

| p <sup>*</sup> , psig | 2546.9 |
|-----------------------|--------|
| Oil Permeability, md  | 1.13   |
| Skin, dim.            | +19.6  |

#### Table 6 Gas DST Field Case: Basic Reservoir Properties and Test Information

| 0%  | Pay Thickness, ft                           | 10                                                                                                                                                                                |
|-----|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80  | Wellbore Radius, ft                         | 0.365                                                                                                                                                                             |
| 80  | System Compressibility, MMpsi <sup>-1</sup> | 148.9                                                                                                                                                                             |
| 0.6 | Choke Coefficient*(0.25"), Mscf/D/psia      | 26.51                                                                                                                                                                             |
| )21 |                                             |                                                                                                                                                                                   |
|     | 9%<br>80<br>80<br>0.6<br>921                | <ul> <li>Pay Thickness, ft</li> <li>Wellbore Radius, ft</li> <li>System Compressibility, MMpsi<sup>-1</sup></li> <li>Choke Coefficient<sup>*</sup>(0.25"), Mscf/D/psia</li> </ul> |

\*6" Positive Choke

#### Table 7 Gas DST Field Case: Time and Pressure

| t,    | р,     |   | t,    | р,     |
|-------|--------|---|-------|--------|
| hrs   | psig   |   | hrs   | psig   |
| 0.000 | 39.7   |   | 1.793 | 1018.5 |
| 0.050 | 40.0   |   | 1.810 | 1482.3 |
| 0.100 | 40.0   |   | 1.827 | 1863.7 |
| 0.150 | 40.0   |   | 1.843 | 2166.9 |
| 0.200 | 40.0   |   | 1.860 | 2407.9 |
| 0.257 | 39.7   |   | 1.877 | 2597.5 |
| 0.273 | 177.0  |   | 1.893 | 2730.4 |
| 0.290 | 365.2  |   | 1.910 | 2858.5 |
| 0.307 | 651.0  |   | 1.927 | 2991.4 |
| 0.323 | 1006.7 |   | 1.960 | 3235.1 |
| 0.340 | 1301.4 |   | 1.993 | 3406.5 |
| 0.357 | 1509.8 |   | 2.027 | 3555.4 |
| 0.373 | 1777.0 |   | 2.060 | 3659.0 |
| 0.390 | 1973.2 |   | 2.093 | 3745.7 |
| 0.407 | 2190.0 |   | 2.127 | 3817.2 |
| 0.423 | 2350.8 |   | 2.160 | 3862.7 |
| 0.457 | 2604.3 |   | 2.193 | 3902.8 |
| 0.490 | 2803.5 |   | 2.227 | 3935.0 |
| 0.523 | 2993.5 |   | 2.260 | 3960.8 |
| 0.557 | 3152.1 |   | 2.343 | 4000.1 |
| 0.590 | 3288.6 |   | 2.427 | 4022.7 |
| 0.623 | 3408.2 |   | 2.510 | 4036.4 |
| 0.657 | 3516.0 |   | 2.593 | 4045.2 |
| 0.690 | 3607.1 |   | 2.677 | 4051.7 |
| 0.712 | 3645.5 |   | 2.760 | 4055.5 |
| 0.712 | 24.1   |   | 2.927 | 4060.9 |
| 0.795 | 24.8   |   | 3.093 | 4064.5 |
| 0.878 | 36.4   | [ | 3.260 | 4066.5 |
| 0.962 | 43.3   |   | 3.427 | 4068.0 |
| 1.045 | 48.5   |   | 3.467 | 4068.2 |
| 1.128 | 52.1   |   |       |        |
| 1.212 | 55.3   |   |       |        |
| 1.295 | 55.3   |   |       |        |
| 1.378 | 55.3   |   |       |        |
| 1.462 | 56.9   |   |       |        |
| 1.545 | 56.9   |   |       |        |
| 1.628 | 56.9   |   |       |        |
| 1.712 | 59.4   |   |       |        |
| 1.760 | 58.2   |   |       |        |
| 1.777 | 496.1  |   |       |        |

Table 8 Gas DST Field Case: Buildup No. 1, Processed Data

| At    | m(n).                   | ۸t    | $\Delta m(\mathbf{p})$ . | t 1 At                                                     |
|-------|-------------------------|-------|--------------------------|------------------------------------------------------------|
| hrs   | MMpsia <sup>2</sup> /cp | hrs   | MMpsia²/cp               | $\frac{\mathbf{t} + \Delta \mathbf{t}}{\Delta \mathbf{t}}$ |
| 0.000 | 0.2052                  | *     | 0.0000                   | *                                                          |
| 0.017 | 2.7466                  | 0.939 | 2.5413                   | 16.400                                                     |
| 0.033 | 10.8719                 | 1.770 | 10.6667                  | 8.700                                                      |
| 0.050 | 33.4681                 | 2.511 | 33.2629                  | 6.133                                                      |
| 0.067 | 78.5519                 | 3.175 | 78.3467                  | 4.850                                                      |
| 0.083 | 129.5410                | 3.775 | 129.3360                 | 4.080                                                      |
| 0.100 | 172.6040                | 4.317 | 172.3990                 | 3.567                                                      |
| 0.117 | 235.6780                | 4.813 | 235.4730                 | 3.200                                                      |
| 0.133 | 287.1680                | 5.265 | 286.9630                 | 2.925                                                      |
| 0.150 | 348.6800                | 5.681 | 348.4750                 | 2.711                                                      |
| 0.167 | 397.1530                | 6.063 | 396.9470                 | 2.540                                                      |
| 0.200 | 477.9620                | 6.746 | 477.7570                 | 2.283                                                      |
| 0.233 | 544.8020                | 7.333 | 544.5970                 | 2.100                                                      |
| 0.267 | 610.9450                | 7.845 | 610.7400                 | 1.963                                                      |
| 0.300 | 667.7340                | 8.297 | 667.5291                 | 1.856                                                      |
| 0.333 | 717.6360                | 8.701 | 717.4310                 | 1.770                                                      |
| 0.367 | 762.0640                | 9.059 | 761.8590                 | 1.700                                                      |
| 0.400 | 802.6240                | 9.379 | 802.4180                 | 1.642                                                      |
| 0.433 | 837.2510                | 9.673 | 837.0450                 | 1.592                                                      |
| 0.455 | 851.9370                | 9.847 | 851.7320                 | 1.564                                                      |

Producing Time = 0.257 hr

| Table 9                                          |    |
|--------------------------------------------------|----|
| Gas DST Field Case: Buildup No. 2, Processed Dat | ta |

| Δt,   | m(p),      | Δt,     | ∆m(p),                  | t + ∆t |
|-------|------------|---------|-------------------------|--------|
| hrs   | MMpsia²/cp | hrs     | MMpsia <sup>2</sup> /cp | Δt     |
| 0.000 | 0.3818     | •       | 0.0000                  | *      |
| 0.017 | 19.6917    | 0.987   | 19.3100                 | 79.300 |
| 0.033 | 80.3614    | 1.950   | 79.9796                 | 40.150 |
| 0.050 | 166.6040   | 2.889   | 166.2220                | 27.100 |
| 0.067 | 257.9170   | 3.806   | 257.5350                | 20.575 |
| 0.083 | 341.9100   | 4.700   | 341.5280                | 16.660 |
| 0.100 | 414.9050   | 5.573   | 414.5230                | 14.050 |
| 0.117 | 475.7290   | 6.425   | 475.3480                | 12.186 |
| 0.133 | 519.9590   | 7.258   | 519.5770                | 10.788 |
| 0.150 | 563.7220   | 8.072   | 563.3410                | 9.700  |
| 0.167 | 610.2020   | 8.868   | 609.8200                | 8.830  |
| 0.200 | 697.9710   | 10.405  | 697.5890                | 7.525  |
| 0.233 | 761.4280   | 11.876  | 761.0460                | 6.593  |
| 0.267 | 817.5620   | 13.285  | 817.1801                | 5.894  |
| 0.300 | 857.1120   | 14.636  | 856.7310                | 5.350  |
| 0.333 | 890.4970   | 15.931  | 890.1150                | 4.915  |
| 0.367 | 918.2110   | 17.175  | 917.8290                | 4.559  |
| 0.400 | 935.9280   | 18.367  | 935.5460                | 4.263  |
| 0.433 | 951.5930   | 19.517  | 951.2110                | 4.012  |
| 0.467 | 964.2050   | 20.627  | 963.8230                | 3.796  |
| 0.500 | 974.3310   | 21.690  | 973.9490                | 3.610  |
| 0.583 | 989.7890   | 24.189  | 989.4070                | 3.237  |
| 0.667 | 998.6970   | 26.471  | 998.3150                | 2.958  |
| 0.750 | 1004.1000  | 28.577  | 1003.7200               | 2.740  |
| 0.833 | 1007.5800  | 30.514  | 1007.2000               | 2.566  |
| 0.917 | 1010.1500  | 32.302  | 1009.7600               | 2.424  |
| 1.000 | 1011.6500  | 33.970  | 1011.2700               | 2.305  |
| 1.167 | 1013.7800  | 36.951  | 1013.4000               | 2.119  |
| 1.333 | 1015.2100  | 39.565  | 1014.8199               | 1.979  |
| 1.500 | 1016.0000  | 41.872  | 1015.6200               | 1.870  |
| 1.667 | 1016.5900  | 43.915  | 1016.2100               | 1.783  |
| 1.707 | 1016.67001 | 44.3631 | 1016.29001              | 1.765  |

#### Table 10 Gas DST Field Case: Analysis Results

| m(p <sup>*</sup> ), MMpsia | 1037.5 |
|----------------------------|--------|
| p*, psia                   | 4135   |
| Gas Permeability, md       | 0.086  |

Skin, dim. +13.2

Producing Time = 1.305 hr

#### Table 11 CCDST Field Case: Basic Reservoir Properties and Test Information

| Reservoir Temperature, °F                                        | 126   | Pay Thickness, ft                                                 |       |
|------------------------------------------------------------------|-------|-------------------------------------------------------------------|-------|
| Effective Porosity,                                              | ≈5%   | Wellbore Radius, ft                                               | 0.354 |
| Gas Gravity, dim.                                                | 0.65  | System Compressibility, MMpsi <sup>-1</sup>                       | ≈524  |
| Z Factor, dim.                                                   | 0.95  | Chamber Volume, Bbls                                              | 54.22 |
| Gas Viscosity, cp                                                | 0.016 | Average Chamber Temperature, °F                                   | 76    |
| First Flow Period Surface Pressure<br>Change with Time, psia/min | 0.066 | Second Flow Period Surface Pressure<br>Change with Time, psia/min | 0.064 |

182

Table 12 CCDST Field Case: Processed Data

|   | Δt.   | D      | Δt.,          | Superposition | m(p),                   | ∆m(p),                                 |
|---|-------|--------|---------------|---------------|-------------------------|----------------------------------------|
|   | hre   | nsia   | hre-nele/cn   | Function      | MMpsla <sup>2</sup> /cp | MMpsia <sup>2</sup> /cp                |
|   |       | Po     | III o-hoim ch |               |                         | ······································ |
|   | 0.000 | 27.17  | *             | •             | 47298                   | •                                      |
|   | 0.008 | 27.62  | 20.90         | 8.0001        | 49352                   | 2054                                   |
|   | 0.025 | 28.49  | 62.33         | 7.0784        | 53420                   | 6122                                   |
|   | 0.041 | 29.37  | 105.40        | 6.6353        | 57663                   | 10365                                  |
|   | 0.058 | 30.24  | 148.86        | 6.3441        | 61985                   | 14687                                  |
|   | 0.075 | 31.12  | 193.55        | 6.1226        | 66486                   | 19188                                  |
|   | 0.091 | 31.97  | 237.70        | 5.9493        | /0955                   | 2365/                                  |
|   | 0.108 | 32.82  | 282.70        | 5.8030        | /5040                   | 28248                                  |
|   | 0.124 | 33.09  | 329.04        | 5.5/30        | 80309                   | 33072                                  |
|   | 0158  | 35.42  | 422.24        | 5 4646        | 90337                   | 43040                                  |
|   | 0.174 | 36.28  | 469.67        | 5 3748        | 95479                   | 48182                                  |
|   | 0.191 | 37.14  | 517.76        | 5.2926        | 100744                  | 53446                                  |
|   | 0.208 | 38.01  | 566.94        | 5.2161        | 106197                  | 58899                                  |
|   | 0,224 | 38,86  | 615.57        | 5.1466        | 111646                  | 64348                                  |
|   | 0.241 | 39.71  | 664.69        | 5.0819        | 117217                  | 69919                                  |
|   | 0.257 | 40.57  | 714.91        | 5.0204        | 122975                  | 75677                                  |
|   | 0.274 | 41.42  | 765.33        | 4.9629        | 128789                  | 81491                                  |
|   | 0.291 | 42.27  | 816.27        | 4.9086        | 134723                  | 87426                                  |
|   | 0.307 | 43.11  | 867.52        | 4.8572        | 140707                  | 93410                                  |
| _ | 0.324 | 43.93  | 919.27        | 4.8083        | 146663                  | 99365                                  |
|   | 0.340 | 44.73  | 969.84        | 4./632        | 152582                  | 105284                                 |
|   | 0.357 | 45.61  | 1024.36       | 4./1/0        | 159210                  | 111918                                 |
|   | 0.373 | 40.44  | 10/5.03       | 4.0700        | 100093                  | 116295                                 |
|   | 0.390 | 47.30  | 1129.03       | 4.0344        | 1/2321                  | 123023                                 |
|   | 0.407 | 40.13  | 1227.07       | 4.5954        | 185577                  | 138280                                 |
|   | 0.420 | 49.78  | 1291.81       | 4 5214        | 192419                  | 145121                                 |
|   | 0.456 | 50.59  | 1345.72       | 4,4869        | 199207                  | 151909                                 |
|   | 0.473 | 51.40  | 1400.58       | 4,4532        | 206105                  | 158808                                 |
|   | 0.490 | 52.21  | 1455.96       | 4.4205        | 213113                  | 165815                                 |
|   | 0.515 | 53.44  | 1539.84       | 4.3732        | 223966                  | 176668                                 |
|   | 0,531 | 54.25  | 1595.27       | 4.3434        | 231252                  | 183954                                 |
|   | 0.548 | 55.06  | 1651.54       | 4.3141        | 238646                  | 191348                                 |
|   | 0.564 | 55.86  | 1708.08       | 4.2857        | 246059                  | 198761                                 |
|   | 0.581 | 56.66  | 1765.04       | 4.2581        | 253579                  | 206281                                 |
|   | 0.598 | 5/.45  | 1821.//       | 4.2314        | 261111                  | 213813                                 |
|   | 0.614 | 50,23  | 1026.20       | 4.2000        | 268650                  | 221353                                 |
|   | 0.001 | 59.01  | 1930.39       | 4.1/99        | 2/0292                  | 220334                                 |
|   | 0.040 | 60.57  | 2051 66       | 4.1336        | 201881                  | 244583                                 |
|   | 0.681 | 61.34  | 2109.43       | 4 1077        | 299727                  | 252430                                 |
|   | 0 706 | 62.49  | 2197 21       | 4 0733        | 311632                  | 264334                                 |
|   | 0 722 | 63.26  | 2256.26       | 4 0510        | 319727                  | 272429                                 |
|   | 0.739 | 64.01  | 2314.10       | 4.0296        | 327708                  | 280410                                 |
|   | 0.755 | 64.77  | 2373.11       | 4.0084        | 335891                  | 288593                                 |
|   | 0.772 | 65.53  | 2432.37       | 3,9876        | 344172                  | 296874                                 |
|   | 0.789 | 66.29  | 2492.33       | 3.9670        | 352550                  | 305252                                 |
|   | 0.805 | 67.02  | 2550.54       | 3.9475        | 360690                  | 313392                                 |
|   | 0.830 | 68.14  | 2640.11       | 3.9184        | 373351                  | 326053                                 |
|   | 0.847 | 68.89  | 2700.53       | 3.8993        | 381948                  | 334650                                 |
|   | 0.863 | 69.62  | 2760.09       | 3.8809        | 390406                  | 343108                                 |
|   | 0.880 | 70.34  | 2819.40       | 3.8630        | 398835                  | 351537                                 |
|   | 0.896 | 71.07  | 2880.12       | 3.8450        | 407472                  | 360174                                 |
|   | 0.913 | 71.78  | 2939.87       | 3.8277        | 415959                  | 368661                                 |
|   | 0.938 | 72.86  | 3030.73       | 3.8020        | 429029                  | 381731                                 |
|   | 0.954 | 73.58  | 3091.25       | 3.7854        | 437852                  | 390554                                 |
|   | 0.971 | 74.29  | 3151.48       | 3.7691        | 446639                  | 399341                                 |
|   | 0.988 | /5.00  | 3212.43       | 3.7529        | 455509                  | 408212                                 |
|   | 1 004 | 1 7571 | 1 3273.13     | 1 3.7371      | I 464465                | . 41/16/                               |

#### Table 12 CCDST Field Case: Processed Data

| F   | Δt.     | p      | ∆t          | Superposition | m(p),                   | ∆m(p),                  |
|-----|---------|--------|-------------|---------------|-------------------------|-------------------------|
|     | hrs     | osia   | hrs-nsia/cn | Function      | MMpsla <sup>2</sup> /cp | MMpsia <sup>2</sup> /cp |
| 1   |         | Pole   | ine peratop |               | FF                      | · · · · · · · · ·       |
| ſ   | 1.021   | 76.42  | 3333.24     | 3.7218        | 473505                  | 426207                  |
| I   | 1.046   | 77.53  | 3424.97     | 3.6989        | 487811                  | 440513                  |
| 1   | 1.063   | /8.29  | 3486.94     | 3.6837        | 49//24                  | 450427                  |
| 1   | 1.079   | 79.04  | 3547.73     | 3.6692        | 50/603                  | 460305                  |
| 1   | 1.090   | 9.79   | 3732 68     | 3.0340        | 537536                  | 470279                  |
|     | 1 146   | 82.00  | 3793.61     | 3 6126        | 547517                  | 500219                  |
| 1   | 1,170   | 83.11  | 3887.59     | 3.5920        | 562865                  | 515567                  |
|     | 1,187   | 83.84  | 3949.19     | 3.5787        | 573072                  | 525775                  |
| ł   | 1.204   | 84.58  | 4011.82     | 3.5655        | 583513                  | 536216                  |
|     | 1.220   | 85.32  | 4073.46     | 3.5526        | 594045                  | 546747                  |
|     | 1.237   | 86.07  | 4136.21     | 3.5397        | 604812                  | 557515                  |
|     | 1.253   | 86.80  | 4197.98     | 3.5272        | 615384                  | 568086                  |
|     | 1.270   | 87.53  | 4260.88     | 3.514/        | 626045                  | 5/8/48                  |
|     | 1.290   | 00.02  | 4354.94     | 3.4962        | 642132                  | 594834                  |
|     | 1 2 2 8 | 00.06  | 4410.29     | 2 4044        | 652720                  | 616205                  |
| 1   | 1 345   | 90.78  | 4475.03     | 3 4606        | 674603                  | 627306                  |
|     | 1.361   | 91.49  | 4605.12     | 3.4491        | 685448                  | 638150                  |
| ł   | 1.386   | 92.56  | 4700.18     | 3.4319        | 701954                  | 654656                  |
| -1  | 1.403   | 93.26  | 4762.54     | 3.4208        | 712855                  | 665557                  |
| -1  | 1.419   | 93.97  | 4826.39     | 3.4095        | 723997                  | 676699                  |
| 1   | 1.436   | 94.67  | 4889.09     | 3.3986        | 735067                  | 687769                  |
| -   | 1.453   | 95.37  | 4952.31     | 3.3878        | 746217                  | 698920                  |
|     | 1.478   | 96.40  | 5045.69     | 3.3721        | 762777                  | 715479                  |
|     | 1.494   | 97.09  | 5109.14     | 3.3615        | //3969                  | /266/1                  |
| 1   | 1.511   | 97.70  | 5172.40     | 3.3311        | 705241                  | 737943                  |
|     | 1 552   | 00.40  | 5331 01     | 3 3 2 5 5     | 813358                  | 749133                  |
| ł   | 1.552   | 99.81  | 5362 70     | 3 3207        | 818875                  | 771577                  |
|     | 1.569   | 100.16 | 5395.69     | 3.3155        | 824743                  | 777445                  |
|     | 1.577   | 100.49 | 5426.32     | 3.3107        | 830295                  | 782997                  |
|     | 1.586   | 100.84 | 5457.29     | 3.3059        | 836203                  | 788905                  |
|     | 1.594   | 101.23 | 5489.82     | 3.3009        | 842812                  | 795514                  |
|     | 1.602   | 101.61 | 5521.15     | 3.2961        | 849276                  | 801978                  |
| 1   | 1.610   | 101.98 | 5552.49     | 3,2913        | 855593                  | 808295                  |
|     | 1 627   | 102.36 | 5616 74     | 3.2004        | 8686/1                  | 8014607                 |
|     | 1.635   | 103.11 | 5648.37     | 3 2769        | 875029                  | 827731                  |
| ł   | 1.644   | 103.48 | 5680.02     | 3.2722        | 881442                  | 834144                  |
|     | 1.652   | 103.86 | 5712.50     | 3.2673        | 888050                  | 840752                  |
|     | 1.660   | 104.23 | 5743.74     | 3.2627        | 894508                  | 847210                  |
| ł   | 1.668   | 104.60 | 5775.28     | 3.2581        | 900988                  | 853691                  |
|     | 1.677   | 104.97 | 5807.28     | 3.2535        | 907492                  | 860194                  |
|     | 1.685   | 105.33 | 5838.74     | 3.2489        | 913842                  | 866545                  |
|     | 1.693   | 105.70 | 58/1.02     | 3.2443        | 920392                  | 8/3094                  |
| -1  | 1.702   | 106.07 | 5024.76     | 3.2390        | 920904                  | 8/900/                  |
|     | 1 718   | 106.43 | 5967./1     | 3,2352        | 933301                  | 892702                  |
| ł   | 1 727   | 107 16 | 5998 92     | 3 2261        | 946461                  | 899163                  |
|     | 1.735   | 107.53 | 6030.88     | 3,2216        | 953125                  | 905827                  |
|     | 1.743   | 107.90 | 6062.49     | 3.2172        | 959812                  | 912514                  |
|     | 1.751   | 108.27 | 6094.18     | 3.2128        | 966522                  | 919224                  |
|     | 1.760   | 108.64 | 6126.39     | 3.2083        | 973255                  | 925957                  |
|     | 1.768   | 109.01 | 6157.95     | 3.2040        | 980014                  | 932716                  |
| 1   | 1.776   | 109.40 | 6191.16     | 3.1995        | 987158                  | 939861                  |
|     | 1.785   | 109.77 | 6222.80     | 3.1952        | 993965                  | 946667                  |
|     | 1 801   | 110.14 | 6254.47     | 3.1909        | 1000790                 | 953494                  |
| - 1 | 1.001   | 110.00 | 0207.41     | , 0.1000      | 1 1000010               | 300/10                  |

SOUTHWESTERN PETROLEUM SHORT COURSE - 92

| Table 12                    |      |
|-----------------------------|------|
| CCDST Field Case: Processed | Data |

| At I   | 0        | ٨t            | Superposition | m(p).          | $\Delta m(\mathbf{n})$ |
|--------|----------|---------------|---------------|----------------|------------------------|
| ,      | r-wtr    |               | F             | N############# | MM==1=2/               |
| hrs    | psia     | inrs-psia/cpi | Function      | mmpsia/cp      | mmpsia-/cp             |
|        | ' I      |               |               |                |                        |
| 1.809  | 110.90   | 6318.05       | 3.1824        | 1014890        | 967590                 |
| 1 818  | 111 20   | 6351 53       | 3 1770        | 1022160        | 974862                 |
| 1 926  | 111 65   | 6383 03       | 2 1720        | 1028900        | 081506                 |
| 1 0020 | 110.00   | 641E 77       | 0.1739        | 1020050        | 001000                 |
| 1.034  | 112.04   | 0413.//       | 3.1094        | 1030210        | 90091/                 |
| 1.843  | 112.41   | 0447.14       | 3.1653        | 1043180        | 995886                 |
| 1.851  | 112.79   | 6480.11       | 3.1610        | 1050370        | 1003070                |
| 1.859  | 113.16   | 6511.84       | 3.1569        | 1057380        | 1010080                |
| 1,868  | 113.54   | 6544.80       | 3.1526        | 1064610        | 1017310                |
| 1.876  | 113.91   | 6576.44       | 3.1486        | 1071670        | 1024380                |
| 1 884  | 114 28   | 6608 23       | 3 1445        | 1078760        | 1031460                |
|        | 115 70   | 6702 81       | 2 1225        | 1100250        | 1050050                |
| 1 051  | 117 07   | 6866 02       | 2 1120        | 1126970        | 1080570                |
| 1.331  | 110 07   | 60.000        | 3 1004        | 1150070        | 1111000                |
| 1.3.0  | 10.3/    | 0903.08       | 3,1004        | 1100000        | 111330                 |
| 2.001  | 119.4/   | 7000.13       | 3.0887        | 1100000        | 1133300                |
| 2.017  | 120.21   | /125.46       | 3.0809        | 1195490        | 1148190                |
| 2.042  | 121.31   | 7222.63       | 3.0695        | 1217790        | 1170500                |
| 2.067  | 122.41   | 7320.47       | 3.0581        | 1240310        | 1193010                |
| 2.092  | 123.50   | [ 7417.94     | 3.0470        | 1262820        | 1215520                |
| 2.108  | 124.22   | 7482.50       | 3.0397        | 1277790        | 1230500                |
| 2 133  | 125 31   | 7580 93       | 3 0287        | 1300640        | 1253340                |
| 2 158  | 126 38   | 7678 38       | 3 0170        | 1323250        | 1275060                |
| 2 183  | 127 44   | 7776 80       | 3.0175        | 13/5860        | 1208560                |
| 2.103  | 100 44   | 7770.00       | 3.00/1        | 1040000        | 1010500                |
| 2.200  | 120.14   | 7040.99       | 3.0002        | 1000000        | 1313590                |
| 2.225  | 129.25   | /941.52       | 2.9894        | 1384880        | 133/590                |
| 2.249  | 130.35   | 8039,70       | 2.9791        | 1408880        | 1361580                |
| 2.274  | 131.43   | 8136.81       | 2.9690        | 1432630        | 1385330                |
| 2.291  | 132.16   | 8202.49       | 2.9622        | 1448800        | 1401500                |
| 2.316  | 133.26   | 8302.17       | 2.9520        | 1473330        | 1426030                |
| 2.341  | 134.32   | 8398.39       | 2.9423        | 1497160        | 1449860                |
| 2.366  | 135 40   | 8499 07       | 2 9322        | 1521640        | 1474340                |
| 2 383  | 136 10   | 8564 37       | 2 0250        | 1597610        | 1/0/010                |
| 2.303  | 127 14   | 9661.00       | 2.3230        | 1561500        | 151/000                |
| 2.407  | 137.14   | 0001.98       | 2.9102        | 1501500        | 1514200                |
| 2.432  | 130.20   | 0/01./9       | 2.9005        | 1000030        | 1538/30                |
| 2.457  | 139.22   | 8858.93       | 2.89/2        | 1609810        | 1562520                |
| 2.482  | 140.24   | 8956.93       | 2.8880        | 1633770        | 1586480                |
| 2.499  | 140.93   | 9022.82       | 2.8818        | 1650080        | 1602790                |
| 2.524  | · 141.98 | 9122.80       | 2.8725        | 1675060        | 1627760                |
| 2.548  | 143.00   | 9219.25       | 2.8636        | 1699500        | 1652200                |
| 2.573  | 144.05   | 9317.72       | 2.8546        | 1724840        | 1677540                |
| 2,598  | 145.11   | 9418 08       | 2 8456        | 1750610        | 1703310                |
| 2 615  | 145 79   | 9483.05       | 2 8308        | 1767250        | 1710050                |
| 2640   | 1/6 91   | 0581 52       | 2.0030        | 1700240        | 17/5050                |
| 2.040  | 1/7 05   | 0600.00       | 2.0011        | 1010110        | 1750000                |
| 2.005  | 147.85   | 9050.80       | 2.8224        | 1010110        | 1770820                |
| 2.009  | 140.00   | 9//9.11       | 2.8139        | 1043820        | 1/90220                |
| 2./14  | 149.90   | 98/7.48       | 2.8054        | 1869450        | 1822150                |
| 2.739  | 150.91   | 9975.43       | 2.7971        | 1895010        | 1847710                |
| 2.756  | 151.58   | 10040.60      | 2.7916        | 1912060        | 1864760                |
| 2.781  | 152,59   | 10138.80      | 2.7834        | 1937900        | 1890600                |
| 2.806  | 153.60   | 10237.30      | 2.7752        | 1963920        | 1916620                |
| 2.831  | 154.60   | 10336.00      | 2.7672        | 1989850        | 1942550                |
| 2,856  | 155 58   | 10433 10      | 2,7503        | 2015420        | 1968120                |
| 2 881  | 156.57   | 10531 40      | 2 7514        | 2041420        | 100/120                |
| 2,001  | 157 00   | 10506.00      | 0.7314        | 2041420        | 2011/20                |
| 2.09/  | 157.23   | 10090.00      | 2.7462        | 2008800        | 2011550                |
| 2.922  | 150.22   | 10094.60      | 2./384        | 2085130        | 2037830                |
| 2.947  | 159.20   | 10/92.60      | 2.7307        | 2111300        | 2064010                |
| 2.972  | 160.17   | 10891.10      | 2.7230        | 2137380        | 2090080                |
| 2.997  | 161.12   | 10987.10      | 2.7156        | 2163060        | 2115770                |
| 3.022  | 162.10   | 11087.20      | 2.7080        | 2189720        | 2142430                |
| 3.046  | 163.05   | 11183.80      | 2.7007        | 2215720        | 2168430                |

Table 12 CCDST Field Case: Processed Data

| Δt,     | p <sub>wt</sub> , | ∆t <sub>na</sub> , | Superposition | m(p),                   | ∆m(p),                  |
|---------|-------------------|--------------------|---------------|-------------------------|-------------------------|
| hrs     | psia              | hrs-psia/cp        | Function      | MMpsia <sup>2</sup> /cp | MMpsia <sup>2</sup> /cp |
| 3.071   | 164.00            | 11282.00           | 2.6933        | 2241880                 | 2194580                 |
| 3.088   | 164.63            | 11346.90           | 2.6884        | 2259310                 | 2212010                 |
| 3.113   | 165.58            | 11445.30           | 2.6812        | 2285710                 | 2238420                 |
| 3.138   | 166.52            | 11542.40           | 2.6740        | 2311990                 | 2264700                 |
| 3.163   | 167.46            | 11639.90           | 2.6669        | 2338430                 | 2291130                 |
| 3.188   | 168.40            | 11737.80           | 2.6599        | 2365010                 | 2317710                 |
| 3.213   | 169.33            | 11834.80           | 2.6529        | 2391450                 | 2344160                 |
| 3.238   | 170.26            | 11932.30           | 2.6460        | 2418050                 | 2370750                 |
| 3.262   | 1/1.18            | 12028.30           | 2.6393        | 2444500                 | 239/200                 |
| 3.287   | 172.11            | 12134.60           | 2.6318        | 24/1390                 | 2424090                 |
| 3.290   | 172.39            | 12104.10           | 2.0290        | 2479510                 | 2432210                 |
| 3 3 1 2 | 173.02            | 12230.20           | 2.02/3        | 2409100                 | 2441600                 |
| 3.320   | 173.32            | 12261 70           | 2.0232        | 2497030                 | 2450540                 |
| 3.329   | 173.64            | 12295 10           | 2 6207        | 2515940                 | 2468640                 |
| 3,337   | 173 94            | 12326 80           | 2 6186        | 2524720                 | 2477420                 |
| 3.345   | 174.24            | 12358.90           | 2.6164        | 2533520                 | 2486220                 |
| 3.354   | 174.55            | 12391.10           | 2.6142        | 2542620                 | 2495320                 |
| 3.362   | 174.87            | 12424.60           | 2.6119        | 2552040                 | 2504740                 |
| 3.370   | 175.17            | 12455.80           | 2.6098        | 2560890                 | 2513590                 |
| 3.379   | 175.48            | 12488.50           | 2.6076        | 2570040                 | 2522740                 |
| 3.387   | 175.79            | 12520.90           | 2.6054        | 2579210                 | 2531920                 |
| 3,395   | 176.09            | 12552.50           | 2.6033        | 2588110                 | 2540810                 |
| 3.403   | 176.39            | 12583.90           | 2.6012        | 2597010                 | 2549710                 |
| 3.412   | 176.70            | 12010.00           | 2.5989        | 2606240                 | 2558940                 |
| 3.420   | 177.90            | 12040.00           | 2.5970        | 20140/0                 | 2567280                 |
| 3,420   | 177.60            | 12002.50           | 2.0940        | 2624420                 | 2577130                 |
| 3 4 4 5 | 177.89            | 12745 20           | 2.5925        | 26/1780                 | 2503600                 |
| 3.453   | 178.19            | 12776.50           | 2.5884        | 2650780                 | 2603480                 |
| 3.461   | 178.51            | 12809.70           | 2.5862        | 2660390                 | 2613090                 |
| 3.470   | 178.81            | 12840.50           | 2.5841        | 2669430                 | 2622130                 |
| 3.478   | 179.11            | 12872.70           | 2.5820        | 2678470                 | 2631170                 |
| 3.486   | 179.41            | 12906.70           | 2.5798        | 2687530                 | 2640230                 |
| 3.495   | 179.67            | 12935.80           | 2.5779        | 2695400                 | 2648100                 |
| 3.503   | 1/9.96            | 12968,50           | 2.5/58        | 2704190                 | 2656890                 |
| 3.511   | 180.27            | 13002.10           | 2.5/36        | 2/13590                 | 2666290                 |
| 3 5 2 8 | 180.50            | 13065 20           | 2.5710        | 2722410                 | 2073110                 |
| 3 5 3 6 | 181 14            | 13003.20           | 2.5095        | 2731240                 | 2003940                 |
| 3,544   | 181.42            | 13128 00           | 2 5654        | 2748640                 | 2701340                 |
| 3.553   | 181.71            | 13161.90           | 2.5633        | 2757510                 | 2710210                 |
| 3.561   | 181.97            | 13191.70           | 2.5614        | 2765480                 | 2718180                 |
| 3.569   | 182.25            | 13224.70           | 2.5593        | 2774070                 | 2726770                 |
| 3.578   | 182.53            | 13256.70           | 2.5572        | 2782670                 | 2735380                 |
| 3.586   | 182.81            | 13287.80           | 2.5552        | 2791300                 | 2744000                 |
| 3.594   | 183.11            | 13321.30           | 2.5531        | 2800540                 | 2753250                 |
| 3.603   | 183.39            | 13353.00           | 2.5511        | 2809190                 | 2761900                 |
| 3.611   | 183.65            | 13382.10           | 2.5493        | 281/230                 | 2769940                 |
| 3,619   | 183.95            | 13417.70           | 2.54/0        | 2826530                 | 2779230                 |
| 3,636   | 184 40            | 13479.80           | 2.5455        | 2034200                 | 2700980                 |
| 3.644   | 184.77            | 13509.90           | 2.5431        | 2852010                 | 2804710                 |
| 3.653   | 185.08            | 13543.40           | 2,5392        | 2861670                 | 2814370                 |
| 3.661   | 185.38            | 13574.80           | 2.5372        | 2871030                 | 2823740                 |
| 3.669   | 185.68            | 13606.30           | 2.5353        | 2880420                 | 2833120                 |
| 3.677   | 185.98            | 13637.80           | 2.5333        | 2889810                 | 2842510                 |
| 3.686   | 186.28            | 13669.10           | 2.5314        | 2899220                 | 2851920                 |
| 3.694   | 186.58            | 13701.80           | 2.5294        | 2908650                 | 2861350                 |
| 3.702   | 186.86            | 13/31.90           | 2.5275        | 2917460                 | 2870160                 |

| A+ 1      | n      | ۸t          | Superposition | m(p).                   | ∆m(p).                  |
|-----------|--------|-------------|---------------|-------------------------|-------------------------|
| μ<br>bre  | neia   | hre_nele/on | Function      | MMpsia <sup>2</sup> /cp | MMpsia <sup>2</sup> /cp |
| nrø       | haia   | па-рыс/ср   | - diletion    |                         |                         |
| 3.711     | 187.16 | 13764.70    | 2.5255        | 2926920                 | 2879620                 |
| 3.719     | 187.46 | 13795.50    | 2.5236        | 2936390                 | 2889090                 |
| 3.727     | 187.78 | 13829.80    | 2.5215        | 2946520                 | 2033220                 |
| 3./36     | 188.06 | 13858.70    | 2.5198        | 2955360                 | 2917920                 |
| 3.744     | 188.67 | 13923.00    | 2,5159        | 2974750                 | 2927450                 |
| 3 760     | 188.96 | 13953 70    | 2.5140        | 2983980                 | 2936680                 |
| 3.769     | 189.26 | 13985.80    | 2.5121        | 2993550                 | 2946250                 |
| 3.777     | 189.56 | 14018.40    | 2.5101        | 3003130                 | 2955830                 |
| 3.785     | 189.84 | 14048.40    | 2.5083        | 3012080                 | 2964790                 |
| 3.794     | 190.14 | 14081.40    | 2.5063        | 3021690                 | 29/4390                 |
| 3.802     | 190.43 | 14112.60    | 2.5045        | 3031000                 | 2903/00                 |
| 3.810     | 190.72 | 14144.40    | 2.5020        | 3049640                 | 3002350                 |
| 3,019     | 191,01 | 14773.00    | 2.4969        | 3068670                 | 3021380                 |
| 3.852     | 192.18 | 14301.90    | 2.4932        | 3087440                 | 3040140                 |
| 3,868     | 192.77 | 14366.40    | 2.4894        | 3106580                 | 3059290                 |
| 3.885     | 193.34 | 14428.80    | 2.4858        | 3125140                 | 3077840                 |
| 3.910     | 194.18 | 14521.60    | 2.4804        | 3152580                 | 3105280                 |
| 3.935     | 195.05 |             | 2.4/48        | 3181130                 | 3133830                 |
| 3.968     | 195.18 | 14/43.30    | 2.4070        | 3245590                 | 3198300                 |
| 4 026     | 198.13 | 14963 10    | 2.4551        | 3283250                 | 3235950                 |
| 4.051     | 198.95 | 15058.60    | 2.4497        | 3310700                 | 3263410                 |
| 4.084     | 199.94 | 15175.40    | 2.4432        | 3344010                 | 3296710                 |
| 4.109     | 200.70 | 15270.80    | 2.4379        | 3369690                 | 3322390                 |
| 4.142     | 201.67 | 15391.70    | 2.4313        | 3402610                 | 3355310                 |
| 4.167     | 202.40 | 15485.80    | 2.4261        | 342/480                 | 3380190                 |
| 4.200     | 203.34 | 15607.80    | 2,4195        | 3483710                 | 3436410                 |
| 4.225     | 204.04 | 15819.10    | 2.4082        | 3515110                 | 3467810                 |
| 4.283     | 205.67 | 15915.00    | 2.4031        | 3540050                 | 3492750                 |
| 4.317     | 206.56 | 16030.60    | 2.3970        | 3570990                 | 3523700                 |
| 4.350     | 207.49 | 16156.80    | 2.3904        | 3603480                 | 3556180                 |
| 4.375     | 208.16 | 16247.00    | 2.3856        | 3626980                 | 35/9680                 |
| 4.408     | 209.03 | 16367.30    | 2.3/94        | 303/500                 | 3633270                 |
| 4.433     | 209.68 | 16457.70    | 2.3740        | 3711050                 | 3663760                 |
| 4 4 4 4 4 | 211 17 | 16668.70    | 2.3640        | 3733470                 | 3686180                 |
| 4.524     | 212.00 | 16788,50    | 2.3580        | 3763110                 | 3715820                 |
| 4.549     | 212.61 | 16877.40    | 2.3535        | 3784970                 | 3737670                 |
| 4.582     | 213.42 | 16995.50    | 2.3477        | 3814090                 | 3766790                 |
| 4.607     | 214.03 | 17085.90    | 2.3432        | 3836090                 | 3788800                 |
| 4.640     | 214.81 | 1/200./0    | 2.33/5        | 3004320                 | 3846000                 |
| 4.6/4     | 215.61 | 17320.80    | 2.3317        | 2014520                 | 3867230                 |
| 4.098     | 216.07 | 17526 50    | 2 3217        | 3943040                 | 3895740                 |
| 4 756     | 217.53 | 17610.40    | 2.3177        | 3963580                 | 3916280                 |
| 4,790     | 218.33 | 17734.70    | 2.3117        | 3993010                 | 3945710                 |
| 4.815     | 218.88 | 17818.10    | 2.3078        | 4013310                 | 3966010                 |
| 4.848     | 219.63 | 17935.60    | 2.3022        | 4041070                 | 3993770                 |
| 4.873     | 220.19 | 18021.60    | 2.2982        | 4061860                 | 40145/0                 |
| 4.906     | 220.93 | 18136.60    | 2,2928        | 4089420                 | 4042120                 |
| 4.939     | 221.00 | 18334.80    | 2.2070        | 4136930                 | 4089630                 |
| 4.904     | 222 74 | 18428.20    | 2.2794        | 4157210                 | 4109920                 |
| 4.997     | 222.85 | 18456.10    | 2.2781        | 4162860                 | 4115560                 |

#### Table 12 CCDST Field Case: Processed Data

# Table 13Surge Test Field Case: Basic Reservoir Propertiesand Test Information

| Effective Porosity,                 | 11%   | Pay Thickness, ft                          | 26   |
|-------------------------------------|-------|--------------------------------------------|------|
| Oil Formation Volume Factor, RB/STB | 1.326 | Chamber Volume, Bbls                       | 1.77 |
| Oil Viscosity, cp                   | 0.427 | Total Compressibility, MMpsi <sup>-1</sup> | 47   |

1

Į

# Table 14 Surge Test Field Case: Analysis Results

| p <sup>*</sup> , psia | 2774.4 |
|-----------------------|--------|
| Oil Permeability, md  | 9.8    |

#### Table 15 Simulated Water Zone Slug Test: Input Data

| Initial Pressure, psia            | 2600 | Pay Thickness, ft                           | 10      |
|-----------------------------------|------|---------------------------------------------|---------|
| Permeability, md                  | 30   | Wellbore Radius, ft                         | 0.5     |
| Skin, dim.                        | +2   | Viscosity, cp                               | 1.0     |
| Effective Porosity                | 10%  | System Compressibility, MMpsi <sup>-1</sup> | 8       |
| Formation Volume Factor, RB/STB   | 1.05 | Pipe Capacity, bbls/ft                      | 0.00579 |
| Water Density, lb/ft <sup>3</sup> | 62.3 |                                             |         |

Table 16 Simulated Water Zone Slug Test: Time, Pressure, Dimensionless Pressure

| t,<br>hrs | p,<br>psia | р <sub>ря</sub> ,<br>dim. |
|-----------|------------|---------------------------|
| 0.0033    | 28.9650    | 0.9942                    |
| 0.0270    | 93.0940    | 0.9684                    |
| 0.0551    | 160.3230   | 0.9414                    |
| 0.0878    | 232.6750   | 0.9123                    |
| 0.1234    | 306.3770   | 0.8826                    |
| 0.1724    | 401.4100   | 0.8444                    |
| 0.2209    | 489.4270   | 0.8090                    |
| 0.2605    | 557.1210   | 0.7817                    |
| 0.3068    | 632.6000   | 0.7514                    |
| 0.3613    | 716.2510   | 0.7177                    |
| 0.4252    | 808.2880   | 0.6807                    |
| 0.5002    | 908.7190   | 0.6403                    |
| 0.6044    | 1036.1040  | 0.5890                    |
| 0.7301    | 1173.4250  | 0.5338                    |



Cross Sectional View



Figure 1 - Infinite-acting radial flow schematic















sisq ,q



10\*







192





t, min

Surface Pressure

Bottomhole Pressure

t, hrs

Figure 32 - CCDST field case - bottomhole pressure response



WELL SURGING

Figure 37 - Surge test well configuration

RESERVOR

PRE-SURGE

Figure 36 - Typical surge-test pressure response

TIME







