Comparing the New API Method of Calculating Sucker Rod Pumping Systems with the Older Conventional Method

By FRED D. GRIFFIN

Lufkin Foundry & Machine Company

SCOPE OF API-RP-11L

In any sucker rod pumping system, polished rod loads and, consequently, counterbalance and **peak** torque are complex functions of many well variables. Some of these are: (1) polished rod stroke, (2) pumping speed, (3) physical characteristics of rod string, (4) fluid column load, (5) polished rod acceleration pattern, (6) mechanical friction, (7) compressibility, (8) pump submergence, and (9) dynamics of sucker rod string.

Neither conventional calculations nor API-RP-11L consider items (6) or (7) since the magnitude of these values is nearly always unknown. Further, the conventional method usually does not take into consideration pump submergence although this is not always the case.

The API calculation method does consider the pump submergence (when it is known) and also one other very important variable that the conventional method does not consider, namely, rod dynamics. This consideration is the primary difference between the new API method and the conventional method of calculation.

The sucker rod string dynamics take into consideration: (1) viscous damping, (2) unit geometry, (3) spring constant of rods and tubing, (4) ratio of pumping speed to the natural frequency of the rod string, (5) ratio of rod stretch to the polished rod stroke, (6) variation of angular velocity of the cranks, (7) motor slippage, if electrically driven, and (8) system inertia.

In the API method some consideration is given to all these dynamic factors, except unit geometry and system inertia. The unit geometry for API-RP-11L is assumed to be of the conventional type; i.e., the equalizer bearing is located directly over the gear reducer crank shaft. Thus, the conventional crank-balanced units and airbalanced units both would fall into this category.

SIGNIFICANCE OF NONDIMENSIONAL PARAMETERS

Although this paper does not pretend to go into the highly technical aspects of API-RP-11L, it is important to consider briefly two independent variables that appear throughout API-RP-11L. These same two variables appear as the abscissa in Figs. 1 through 6 of this paper:

- 1. N/N_0 ', ratio of pumping speed to the natural frequency of the combination rod string
- 2. F_0/Sk_T , ratio of rod stretch to polished rod stroke

These two variables, or parameters, are the two most important variables in well load behavior.

The value of N_0' , the natural frequency of the combination rod string, will usually be of the magnitude of 30 vibrations per minute or greater. Seldom will the pumping speed exceed 20 strokes per minute; therefore, the value of N/N_0' will vary between 0 and 0.6. Since the pumping speed will never exceed the natural frequency of vibration of the rod string, the higher harmonics $(2N_0', 3N_0', 3N_0', 4N_0', \text{ etc.})$ will never be involved. The lower order harmonics $(1/2 N_0', 1/3 N_0', 1/4 N_0', \text{ etc.})$ will be in the operating range.

It is convenient to think of N/N₀' as "pumping speed" even though it is, in reality, dimensionless. Assume, for example, that a tapered rod string with a particular size pump has a natural frequency of 40 vibrations per minute. Then, saying that N/N₀' = .25, is merely saying that the pumping speed is 10 SPM and the rod string is operating at a 4th order frequency; i.e., N/N₀' = .25 = N/40 or N = 10 SPM.

Similarly, the dimensionless parameter, F_0/Sk_r , represents rod stretch. The "actual" rod stretch induced by the fluid load F_0 is F_0/k_r , where k_r is the spring constant of the rod string. Thus, $(F_0/k_r)/S$ is the rod stretch expressed as

COMPARISON OF PREDICTED AND MEASURED LOADS FOR 77 WELLS

REPORT NO.		[N					CEMEN	POLISHE	PEAK POLISHED ROD LOAD		MINIMUM POLISHED ROO LOAD			PEAK TORQUE (100% MECHANICAL EFF)			
	TYPE UNIT *	PUMP DEPTH	STROKE	8 P.K	API ROD COMBINATION	PLUNGER DIA.	N/W	Fo/Skr	API-RP-11L METHOD	CONVENTIONAL METHOD	API-RP-IIL WETHOD	CONVENTIONAL METHOD	MEASURED	API-RP-IIL METHOD	CONVENTIONAL METHOD	MEASURED	API-RP-IIL METHOD	CONVENTIONAL METHOD	MEASURED (C'BAL. CORRECTED)	MEASURED (C <mark>BAL.AS MEASURED)</mark>
75	4	7554	<u>99.7</u>	14.5	76	1/4	.4/9	.328	264	268 256	21,478	18361 24,378	16,920 18,840	8,1 04 10, 9 62	6,173 10,409	5612 11,220			/63,000 /03,000	214,000
7 <u>6</u> 70	č	8,56/ 3,64	100 74	12	56 66	1/2	.365 .207	.411 .176	261 476	485	11,864	10,263	11,550	1,201	3,123	2,100	204,886	139,230	178,000	/98,300
10	C C	3,595 5,644	44	<u>22</u> /4.5	76 86	2 /2	.295 .289	.149 140	688 5/4	460	11.977	V5,830 20,103	21,600	2,884 5,3/2	3.939 6,9/3	2,550	125,001 400,687	136.735	418,000	15,300
5 13	M	2,350	86	/5	66	2	181	. 122	541	554	11,631	9,088	10,950	1,727	2,36/	1,969		· [147,000	195,000
1/ 12	<u> </u>	5,595 7, 85 0	76 1195	/7 7.5	8ć 76	13/4	. <u>335</u> 224	.124 .229	455 184	403	/8,455 20,053	20,094		5,364 10,041	6,685	6,450 10,280	269,/40	274,864	225,000	229,00
35	С	5,200	12	9.3 16	86 76	2 3/4	.170 .1 60	. <i>182</i> . <i>1</i> 63	460 1068	455	20,232			6,290 475	8,245 2,256	8,090 299	465,713	339,072	491,000	536.00
)7 13	M	2,68i 2,642	85.5	11	37	23/4	.//0	.200	1,140	1,347	12,497	13,533	15.710	4,584	3,454	452			305,000	413,000
6 20	M M	7,925 8,750	145.6	12.8 13	<u>86</u>	1/2	.361 404	242 429	489 3/0	479 289	28,475 28,148	23,896		7,388 10,921	6,550 9,726	7,380 8,630		-	391,000	523,00 377,000
27	C	4,925	100	12	76	2	.222	262	470	454	18,617	16658	15,870	3,972 4,667	6,131	4,680 3,290	397,228	210,520	328,000	360,000
10 45	M C	4,748 4,300	<u>86</u> 74.7	11	86 76	2	.196 .242	268 .267	362 400	341 429	/6,842 /6,689	14,825	15,740 15,8 9 0	5,378	5,880 5,073	3,480	210,368	3/7,805	222,200	224,40
56 60	ç	2,790 4,650	63 86	13 14	66 76	2 1/4	148 .246	.188 271	4// 469	403	11,130	9,530	9, <i>980</i> 17,790	2,180 3,346	3,292 5,487	1,750	157,000 331,081	106,046	135,700 347,000	173,00 127,000
0	~	5.227	120	11	76	2	.216	.121	591	532	16,357	16,897	16,490	5,256	5,684	3,490			260,000	279.00
72 74	M	6,690 5,/53	144 64	12 16	86 66	2	.282 .337	245	677 238	241	27,773		26.020		6,751	4,140	165,056	135,252	126,000	190,00
35	M	3,091	86	14.7	66	2 /4	./86	//6 .3 39	686 220	663 243	11,710 28.026	10,619	12,430	1,878 12,328	2542	150			427,000	212,80
36 9/	M	9,126 5.020	120 64	9.5 12 6.7	86 76	1 1/2	.308 .228 .230	./57	261 198	205	13.197	14,581	15.280	5,592	6.8.39	6,00	140./55	131,614	163.000	180.000
5	C	5.020 9550	64 173		86	1 1/4	.230	.176 .250	1 98 615	192 549	25,826 28,822	24,399			14,828	15,820 8.930	641,163	4/6,295	5/9,000	565,00
16 97	M	7 .500 8,000	168 /68	10.4 9.6	86 86	14	.275 .271	284	461	463	29,/04	25,575	21,500	8,750	9,582	13,570			423,000	637,00
20 22	C C	2,360 5,372	54	/6 /8	66 76	21/4	.154	.3 38	423 439	443	9,814 19,581	8,235 17,664	10,562	1,471 3 ,88 3	5,612	1.625	120,340 284,980	87,686 235,014	141,300	165,70
3	C	4,300	74	17	76	2	274	.263	440	4 96 331	17,287	15.338	16.381	2.616	4.561	4.875	288,795 89,002	210,1 32 68.346	240,400	278,00
9 22	<u>C</u>	2,396 2,400	54 52	/3 /5	66 76	2%	.127	120 .1 4 9	390	403	,0,545	8,895	10,240	2,427	3,203	1,9:6	116,274	79,688	109,900	114,100
4	5	4,325	74	16.5 11.5	76	2	.267 .204	.225	468 209	503	16,6.95	15290		3,207 4,640	4,725	4,330	271,951	205,998	232,500	256,00
34 47	M C	4.350 1,129	86	9	66 76	1/2	.244	.367	147	145	19,276	18,177	20,360	8,715	9,632 2,497	8, 6 60	205,860	192,240	148,300 275,348 704,500	447,00
5/ 52	$\frac{c}{c}$	2,358 2,383	44	20.5	66 66	2 1/4	./83 ./99	./92 ./96	434	467	9,827 10,192	8,340 8,572	10,296	1,130 991	2 379	<u>946</u> 1,287	105,789 112,065	71,208	95,000	100,00
<u>53</u>	С	4,326	74	18.3	76	2%	_296 _287	.222	625 675	452 625 616	16,697 15,652	16,69		2,782	4,226	3/9 234	292,350 281,/34	243,126	358,000	368,00
54 55	C C	3,821 4,675	74	20	76	2	.231	.153	329	320	15,396	13,118	19,588	4,027	5,374	3,320	323,162	201,344	427,000	483,00
55	C M	2,750	100	16 <u>2</u> 13.7	66 76	2%	.182	.103	8// 877	803	12,403	9,306		830 1,660	2,238	1,162	300,703	199,212	274,000	336,00
70 34	C	4,126 3,775	100	17	76	2%	.240	.172	817	819	17,941	14,978	17,635	72.5	3,277	1,088	469,973		430,508	464,00
16 22	C M	3,775 4,200	100	14.5	76 36	2 /8	.204	.172	702 671	680	16,596 20,584		7,080	.,801 3,177	1,010 1,949	2,691 1,374	407,575	257,400	442,000	598,00
23	C.	3,414	42	165	77	12	.229	. 262	158 840	155 766	1.328			4,342 5,378	5,330	3,908 360	91,344	70,048	66,100	95,800 804,0
2 4 13	M	5,915 5,474	168	11	86 86	2 /2	.228	208	1,129	1,166	23,745	25.06	527144	4,106	5,832	2.340			770,000	785.00
4	Ç	2,367 4,600	74	12.1	76	21/4	./34 .249	.160	229	<u>456</u> 219	12,227	10,920	12,513	2,557	4,028 7,652	2,457 6,201	185,303 207,886	134,394	209,100 85,800	226,3
28	М	9,250	168	10	86	14	.332	.105	309	: 6	26,512	24201	26,208	10,52	10,136	9,828 2,106	379.4/0	245.024	675,000	895,00
3 4 35	с С	3,555 9, 42 5	100	13	76 86	21/4	.172	.170 .269	<u>638</u> 200	670 205	16,371 26,650	13,673				12,636	445,00	382,851	538,500	584,10
36	Ç	9,584	/68	8	86	14	.275	.180	233	231	26,300	25,324	20, 2,4	12,767	14.042	15,444	694,072	490,767	737,000	
37 40	M	8,975 8,0/2	128	6.5 9.5	86 86	1/4	.210	.256	252	259	24,64	22,53	1 27,36	10,591	10,897	13,923 9,275	648,261		460,700	592,8
¢ 43		3,200 2,4/4	144	9 18	68 66	7%	.117	.098			9,852	8,627	10,624	1.620	2,465	2,535 1,500	648,261	438,408	126,900	177,60
44	M	6,400	120	11	76	2	.264	-68	443	4.51	23,331	21,672	19,923	5,870	7,944	3,931	199,339		275,700	
53 54		2,478 1,844	74 42	16	76 76	24	.148	.112	62 4 691	732	10,974	8,362	7,800	700	12,107	0	108,434	75,394	70,500	30,00
55	C	2,623	64	18	65	2 1/4	.174	.162	582	596 433			12,450		2,170	2,870	56,654	115,124	162,400	
<u>3</u> 4	M	5.200 7.309	86 144	<u>14</u> 9.1	76 86	2	.2.35	.226	416	401	25,291	22.08	23,738	9,220	9.858	6.750			460,100	478.00
7 <u>2</u> 76	C	6,884 3,824	:00 120	.7.6 9.4	66 87	13/4	.427	229		644 721			1 29,130 21,780		6,364 6,843	3,180	510,583 495,923	570,572 343,020	6:5,500 596,900	
77	A	4.062	:46	13.2	87	23/4	.202	.161	1,563	1,525	27,341	22,15	3 13,000	262	4.000	2130	1.025,200	659,628	797,000	
84 85	$\frac{c}{c}$	3,509 3,585	54	10	65 65	1/2	./30	.178		116	8,741	7.671	7.933 7,849	2,327	3,291	3.173 2.422	7 <u>3,307</u> 38,432	50,025 6.3,5/0	61 ,200 63,700	35,600
<u>93</u>	M	10,336	120	8	26	1 1/2	.294	. 380	183	167	28,492	26,212	26,700	15.219	15,413	4 940	512.342		259,100	42E,30 36B,40
<u>//</u> 22	Ę.	35/6 6,0-5	240	9	<u>88</u> 87	3 % 2 ³ /4	.129	205		1,217	33,486	29,344	3:625	8,153	0,540		,132,164	1, 64,240	1,326,500	46,
<u>99</u>	A	6,900	120	163	86	2	335	<u>326</u> 222	874		\$1,452	26,756		5,537	4,293	3.629 3,530	746,701 800,809	724,501 566,690	735,100	-82,50 562,50
26	C C	4,876 5,016	20	15	86 76	24	.258	.175	366	376	17,176	4,926	15,555	4,395	€,474	5,330	424,700	266,301	23,000	
36		5.016 3,950 6, 3 42	64	10	66 37	1 1/2	.161	/65 ./56					11,352			4930	121,107 1,500,421	76,704	1,235,100	1.245.20

* C-CONVENTIONAL UNIT M-UNCONVENTIONAL GEOMETRY A-AIR BALANCED UNIT

TABLE 1

.

a fraction of the polished rod stroke. A sucker rod system having a value of $F_0/Sk_r = .4$ is a system that has 40 per cent of the polished rod stroke taken up in rod stretch. When operating at very low speeds, where overtravel is nil, this means that the net stroke at the plunger is 60 per cent of the polished rod stroke. Once again, it is convenient to think of F_0/Sk_r as rod stretch although it, too, is dimensionless. The value of F_0/Sk_r should not be pictured as a measure of the size of the pumping unit. For example, two units shown on Table 1 (Report No. 303 and 435) each have an F_0/Sk_r value of .269. The unit for Report No. 303 is for a 74-in. stroke unit pumping from 4300 ft, with a 2-in. pump, 7/8-3/4 rods, and requires a 320 API reducer size.

The unit for Report No. 435 is for a 120-in.stroke unit pumping from 9425 ft with a 1-1/4in. pump, 1-7/8 - 3/4-in. rods, and requires a 640 API gear reducer size.

It is seen that one value of the nondimensional parameter F_0/Sk_r can cover a whole series of pumping units, rod strings and plunger sizes. Thus, these two important nondimensional parameters, N/N_0' and F_0/Sk_r , allow correlation of a whole group of pumping installations without having to consider individually an infinite number of cases.

NOMENCLATURE

In comparing the formulas for calculating peak polished rod load, minimum polished rod load, and peak torque for both the conventional and the API methods, the following nomenclature will apply:

- PPRL = peak polished rod load in pounds MPRL = minimum polished rod load in pounds
- PT = peak torque in inch pounds
- W_{ra} = weight of the rod string in air, pounds
- W_{rf} = weight of the rod string in fluid, pounds
- L = pump depth in feet
- S = polished rod stroke in inches
- N = pumping speed in strokes per minute
- A_p = full plunger area in square inches
- $A_r = average area of the rod string, square inches$
- $F_0 = .433L(A_p) = total weight of fluid$ in pounds based on full plungerarea

- k_r = spring constant of the rod string in pounds per inch
- G = modifying factor for conventional units to correct for the deviation from simple harmonic motion, usually has a magnitude of about 1.05 for conventional crank balanced units and a value of 1 for air balanced units.
- G_1 = same as G above except that it applies to the upstroke on special geometry units only, usually has a magnitude of about 0.93.
- G_2 = same as G above except that it applies to the downstroke of special geometry units only, usually has a value of 1.2
- F_i = peak polished rod load less the weight of the rod string in fluid, pounds
- F_2 = weight of rod string in fluid less the minimum polished rod load, pounds
- T = crank torque without correction factors, inch pounds
- $T_a = torque adjustment constant$

PEAK POLISHED ROD LOAD

The most widely used conventional method of predicting peak polished rod load is shown in two forms in equations (1), (2), and (3) below for conventional units.

For those who prefer to express fluid load as a function of net plunger area:

$$PPRL = .433L(A_p - A_r) + W_{ra} + W_{ra}$$
(SN²/70,500) (1)

Another approach which gives identical results defines fluid load as a function of full plunger area:

$$PPRL = .433(A_p) + W_{rf} + W_{ra} \times (SN^2/70,500)$$
(2)

$$PPRL = F_{o} + W_{rf} + W_{ra} \times (SN^{2}/70,500)$$
(3)

For units with special geometry:

$$PPRL = F_{o} + W_{rf} + .6W_{ra|} \times (SN^{2}/70,500)$$
(3a)

For air balanced units:

$$PPRL = F_{o} + W_{rf} + .7 W_{ra} X (SN^{2}/70,500)$$
(3b)

By inspection it is obvious that while the conventional method of predicting peak polished rod load does consider the acceleration of the rod string, it does not take into account the harmonic effects of a vibrating rod string.

The API method for predicting peak polished rod load is as follows:

$$PPRL = W_{rf} + (F_1/Sk_r) \times Sk_r \qquad (4)$$

The term F_1/Sk_r is a nondimensional parameter taken from a curve in API-RP-11L which plots F_1/Sk_r against N/N₀ for a series of values of F_0/Sk_r . These curves take into account the effect of rod string harmonics as well as the normal acceleration effects. The API method does not introduce any modifying factors to take into account units with special geometry.

MINIMUM POLISHED ROD LOAD

The conventional formula for minimum polished rod load for conventional geometry units is:

$$MPRL = W_{rf} - W_{ra} (SN^2/70,500)$$
(5)
For units with special geometry:
$$MPRL = W_{rf} - 1.4 W_{ra} \times (SN^2/70,500)$$
(5a)

For air balanced units: $MPRL = W_{rf} - 1.3 W_{ra} \times (SN^2/70,500)$ (5b)

Here again the deceleration of the rod string is considered but the dynamic effects are not.

The API method for predicting minimum polished rod load is:

 $MPRL = W_{rf} - (F_2/Sk_r) \times Sk_r \qquad (6)$ The term F_2/SK_r is a nondimensional parameter taken from a curve in API-RP-11L which plots F_2/Sk_r against N/N₀ for a series of values of F_0/Sk_r .

These curves do consider the normal deceleration effects plus the effects of rod harmonics.

PEAK TORQUE

The conventional method of calculating peak torque for units with conventional geometry is:

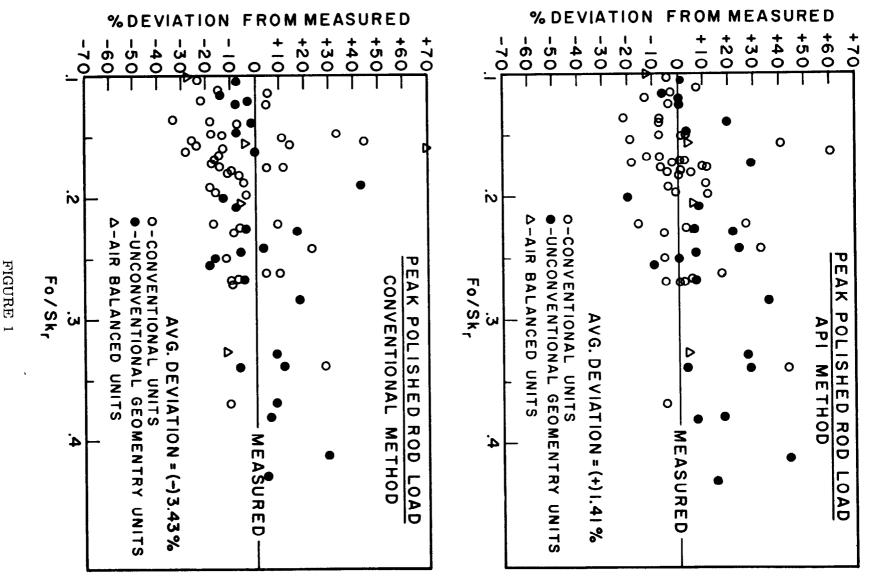
PT	=	(PP	RL) - (MPRL)	Х	
		S2 X	G			(7)
For	units	with	special	geometry	y:	

 $PT = (PPRL) \times (G_1) - (MPRL) \times (G_2) \times S/2$ (8)

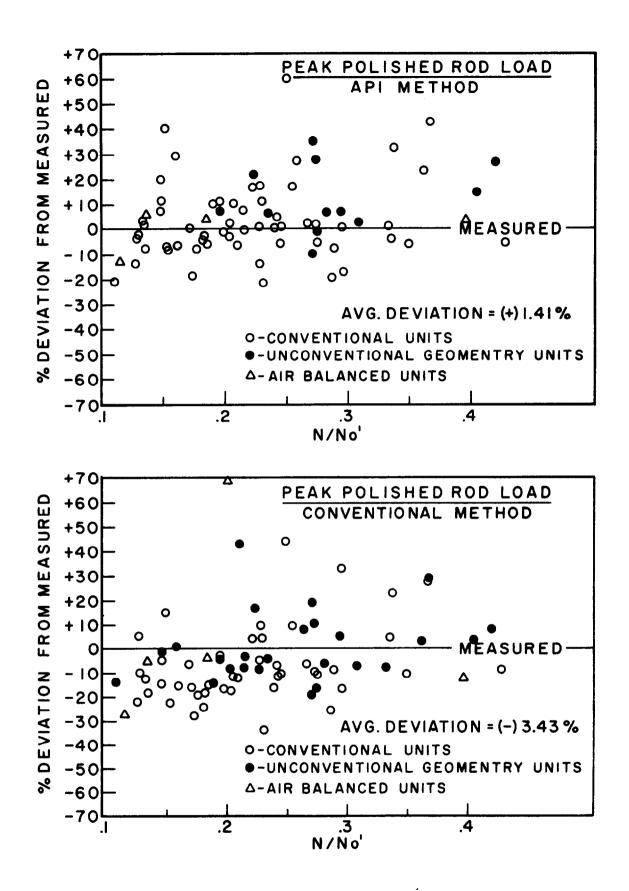
The API method for calculating peak torque is:

 $PT = (2T/S^2k_r) \times Sk_r \times T_a$ (9)

The factor $2T/S^2k_r$ is taken from a curve in API-RP-11L which plots $2T/S^2k_r$ against N/N₀ for various values of F_0/Sk_r . T_a is a torque adjustment factor.


Both the conventional and the API methods of calculating peak torque assume that the peak and minimum polished rod loads occur at a crank position which results in an optimum mechanical advantage. Thus, the assumption is that the peak and minimum polished rod loads for conventional units occur at the 75° and 285° crank positions. As is commonly known, this is not always the case. When these loads do come at positions on the crank cycle other than these assumed positions, then errors of considerable magnitude may result regardless of the method of calculation used.

The assumption is also made that there is no fluid pound or gas interference. This is not the usual case, but it would be difficult to include these factors in any mathematical formulation.


API-RP-11L does not include a peak torque prediction for units with special geometry,

Another assumption that the API method makes is that the mechanical efficiency of the pumping unit is 100 per cent. Some conventional methods of calculating peak torque make this same assumption although at least one major manufacturer uses a mechanical efficiency of 93 per cent. Values tabulated in this paper for the conventional method, however, assume 100 per cent mechanical efficiency so that they will be on a comparable basis with the API method. It could be argued at length as to just what the mechanical efficiency of a pumping unit, from the polished rod to the slow speed gear, should be; however, it definitely is not 100 per cent. An efficiency of 93 per cent seems reasonable when comparing the mechanism of a pumping unit with similar types of machinery. It is recommended that the API consider a mechanical efficiency factor in future revisions of API-RP-11L.

Still another assumption that both the API method and the conventional method make in predicting peak torque is that the pumping unit is always perfectly counterbalanced. This is a very naive assumption to say the least! Of the 77 wells listed in Table 1, the average increase in actual torque on the gear reducer over what it would have been with perfect counterbalance was 19.7 per cent. Some units were overloaded

GOILE

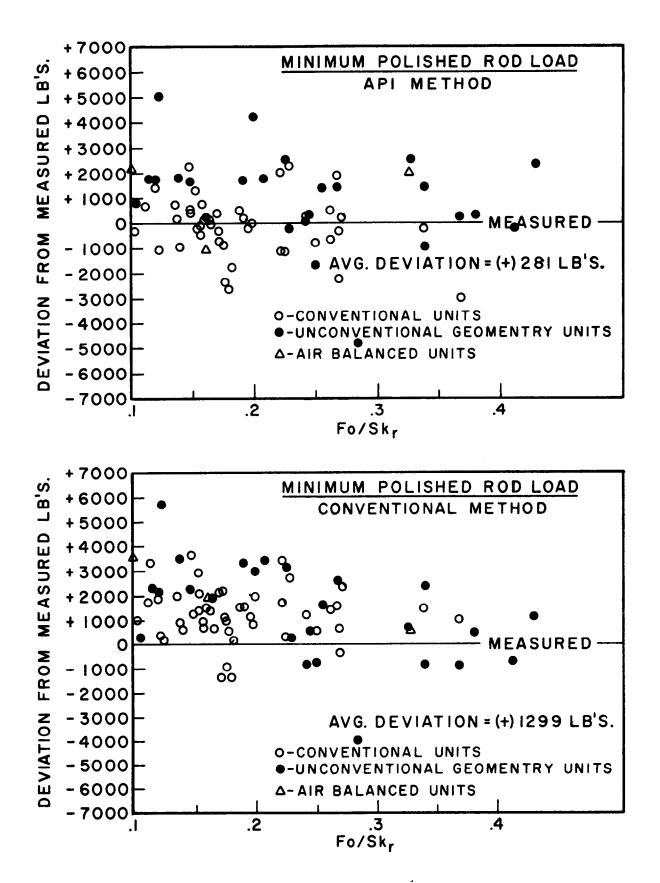
well over 50 per cent with respect to gear reducer torque due to an out-of-counterbalance condition. It is regretfully true that many operators do not fully appreciate the real importance of correct counterbalance as a most important influence on the torque imposed on a gear reducer. An out-of-counterbalance condition should always be considered, if we are to be realistic, in determining the size of the pumping unit reducer no matter which method of calculation is used. It is, therefore, recommended that a multiplying factor of 1.2 always be applied to the calculated required torque before the final selection of the pumping unit reducer is made. This recommendation will not necessarily result in a larger gear reducer than would have been selected previously, but it may do so, depending upon where the calculated torque, as modified, falls.

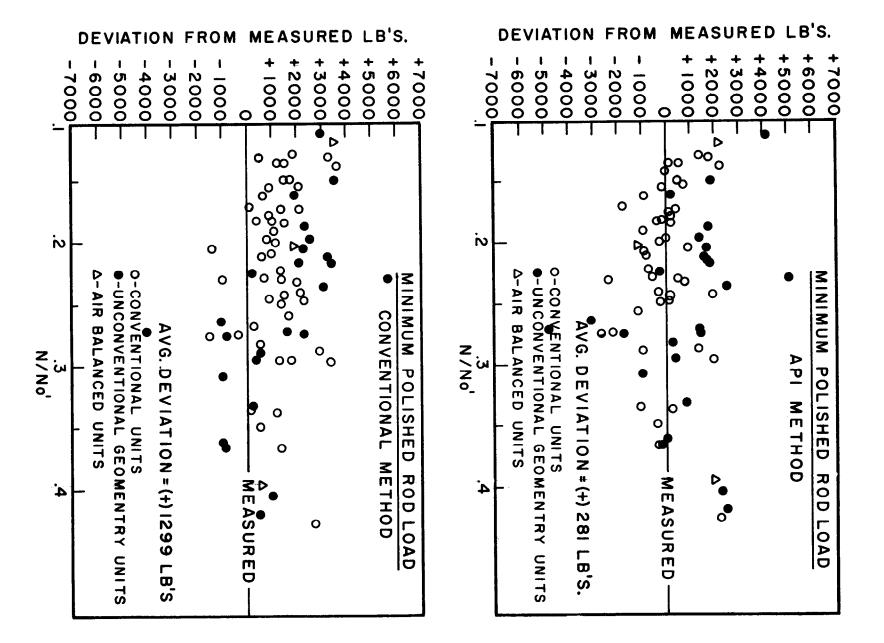
COMPARISON OF PREDICTED AND MEAS-URED LOADS FOR 77 WELLS

In comparing the API method with the conventional method of calculating peak polished rod load, minimum polished rod load, and peak torque, it is meaningful to compare both methods with measured results taken from dynamometer studies recorded over a period of several years. In these studies the peak and minimum loads are taken directly from the dynamometer cards. The counterbalance effect is calculated from the reported position and size of the counterweights. The peak torque on the gear reducer in all cases had been calculated by API-STD-11E using accurate torque factors for the polished rod positions taken at every 15 degrees of crank rotation.

An effort was made in selecting the dynamometer studies, whose results are recorded in Table 1, to cover a wide range of conditions, considering production, depth, pumping speed, and pumping unit size. Dynamometer cards with obvious well abnormalities were not considered. Peak Polished Rod Loads

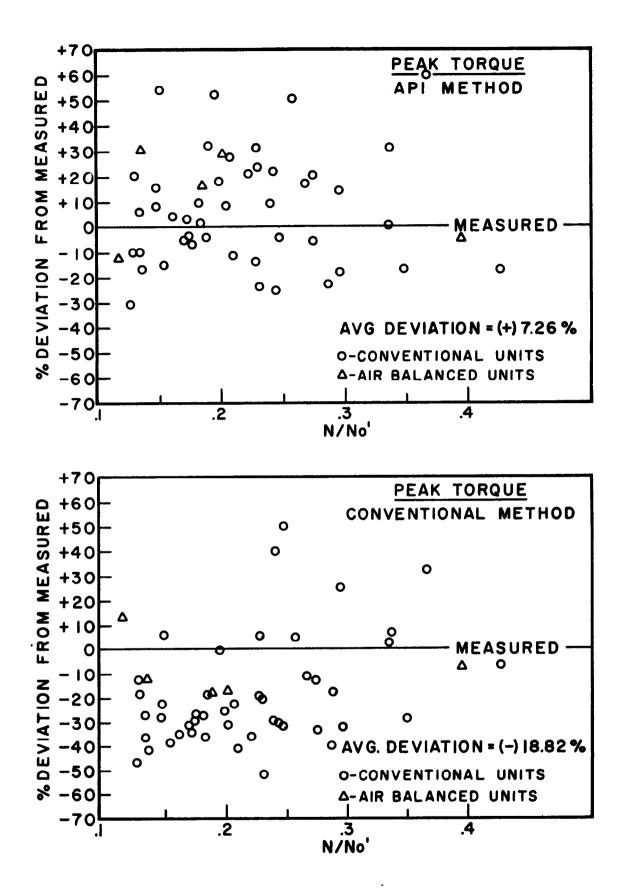
Referring to Figs. 1 and 2, it is noted that strictly from a standpoint of averages, the API method for predicting peak polished rod load is very accurate, predicting loads that average only 1.41 per cent greater than measured. The conventional method predicts peak polished rod loads that average only 3.43 per cent less than measured. While the "average" deviation for both methods is certainly accurate enough, not too much can be said for the range of predicted loads. For the API method (excluding the very extreme deviations), 95 per cent of the wells fall in a range of from -22 per cent to a +32per cent. Similarly, the conventional method predicts loads that are measured to be -30 per cent to a +25 per cent.


It is disappointing in both methods that the range of deviation of calculated from measured is so great. It should not be so surprising, perhaps, if it is considered that so many of the variables that affect well loads are either too complex for mathematical treatment or are variables that depend upon well data that is nearly always unavailable at the time of computation. Minimum Polished Rod Loads


In the calculations for minimum polished rod loads, results show that the API method is definitely superior to the conventional method (Figs. 3 and 4). The API method made predictions that averaged only 281 pounds above measured; whereas, the conventional method predicted minimum loads that averaged 1299 pounds above measured. Once again the range of deviation in both methods was wider than would have been desired.

Peak Torque

Considering the fact that both methods, on an average basis, predict peak loads that deviate from measured only a small amount, and considering the fact that the API method was shown to be considerably more accurate with respect to minimum load, we could expect the API method to be more accurate on a torque comparison. This proves to be the case.


Referring to Figs. 5 and 6, the API method predicts torque values that average 7.26 per cent above measured. The conventional method calculates torques that are 18.82 per cent <u>below</u> measured results. Thus, the API method is more conservative than the older method of calculation. The wide range of deviation from measured in the torque calculations reflects, of course, the wide range of deviations in both the peak and minimum polished rod loads discussed previously.

DEGREE OF DIFFICULTY OF CALCULATIONS

Since the API method takes into account many more variables than does the conventional method, it is more difficult and more time consuming to make the necessary calculations. For one not too familiar with API-RP-11L, or for one who uses it very infrequently, it will take at least three times as long to make the necessary calculations for designing a pumping unit-sucker rod system than does the old conventional way. While it is more accurate, at least to some degree, the increased difficulty in the calculations will limit its universal use unless a computer program is written which will tabulate all the well loads, reducer torques, rod stresses, etc., within some set limits which have been found to be practical. For example, the tabulation would list, say, every 500 ft of depth and in production increments of, say, 100 BPD, all conceivable pumping unit-sucker rod combinations that would satisfy all the limiting conditions of the program. Some of these conditions might be to limit pumping speed to a minimum of 2 or 3 SPM and a maximum of perhaps 20 or 25 SPM. Other limitations would have to be limiting rod stress, a minimum figure for minimum load, etc.

Fortunately, the API has sponsored such a program and is in the process of publishing the results in two different forms. First, it is publishing a series of tabulations as described above in book form (approximately 400 pages). It is also publishing the same information as a bound set of curves. It is the thinking of the members of the API that the tabulation in book form may prove more useful in the selection of new equipment, whereas the curves may be more helpful when pumping units are to be moved from one location to another. This writer believes most production people will want to have access to both publications.

CONCLUSIONS

- 1. API-RP-11L predicts values for peak polished rod load which are slightly more accurate than the more conventional method of calculations.
- 2. API-RP-11L predicts values for minimum load which are much more accurate than conventional methods.
- 3. API-RP-11L predicts gear reducer torques more accurately, due primarily to being able to predict more accurate minimum loads.
- 4. API-RP-11L makes some broad assumptions in predicting peak torque which can cause considerable error in unit selection:
 - (a) The assumption is made that the maximum and minimum loads occur at the 75° and the 285° crank position where the pumping unit torque factors are optimum. Since any calculation for sizing equipment would rarely be made in absence of dynamometer card, this assumption seems valid.
 - (b) A pumping unit efficiency of 100 per cent is assumed. A more realistic value in the 90 per cent-95 per cent range should be introduced.
 - (c) Perfect counterbalance of the pumping unit is assumed. Years of experience have shown that this is unrealistic. Torque calculations for the gear reducer should include a multiplying factor of 1.2 (in addition to the efficiency factor in (b) above) to compensate for out-ofcounterbalance conditions.