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ABSTRACT 

The dynagraph animater is a device whereby we reproduce in miniature what 
happens at the pump as disclosed by the dynagraph. Guided by the dynagraph, 
we construct charts upon a cylindrical surface so that when viewed, while, 
rotating, through a fixed slot the motion of the rod system of the well and 
the pump action become animated - that is, they come to life and move, though 
on a reduced scale, quite as in the actual pumping well. Even blind men say, 
“I see” - meaning “I understand" - and so the animater was devised to aid the 
imagination in comprehending the complicated behavior of the enormous rod sys- 
tem and clarify our thinking on difficult problems. 

INTRODUCTION 

Every dynamic system has a definite fundamental natural frequency of vibration. 
This is true because all materials possess mass and elasticity and, therefore, 
are subject to vibration. Sometimes these vibrations are essential and desir- 
able, sometimes of no consequence , and sometimes they are troublesome and not 
wanted. Usually it is desirable to know what the natural frequency of a system 
is, so that the design or operation , or both, may be governed to make use of or 
to avoid these vibrations as best suits the purpose. 

It is apparent that in every-day engineering practice vibration problems are not 
given the consideration which is their just due. This is largely due to the fact 
that vibration problems have not been very well understood in the past. This 
need no longer be true; for the great work of Timoshenko, Vibration Problems in 
Engineering, is quite simple and clear. His exposition of the theoretical 
mathematics involved is unusually complete, and leaves little to be desired. Most 
vibration problems need only a wise application of the theory for their solution. 
It is the purpose of this paper to encourage a wider application of this 
engineering aspect to problems in the petroleum industry, and to present certain 
definite information for ready reference to that end. 

PENDULUM FORMULA 

For the purpose of clarity in following the discussion, some of the fundamental 
principles of vibration will first be reviewed. In order to get at the simplicity 
of the problem, we must go to simple illustrations and analogies. First, the 
fact must be kept in mind that all vibrations, regardless of their nature, 
have their root in the fundamental principle that pure vibrations are simple 
harmonic motion. Hence, any simple harmonic motion may be used for a study of 
the fundamental principles. The simple pendulum serves this purpose admirably. 
The formula for the time of one complete vibration of a simple pendulum is 
given by: 
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t = 27: J i j-- 
where: 

t = the time, in seconds. 
1 = the length, in feet, from the support of the 

center of gravity. 
g = the acceleration of gravity, in feet per second 

per second 

The frequency (f) per second is: 

The frequency (F) per minute is : 

F= !$""- 

J 
7- 

277 y 

= ?+!I for g = 32,2 ft. per sec. per set, (2) 

Thus we see, for a fixed value of g, the time and the frequency are a function 
of the square root of the length 1. In the general equation for vibrations, 
we have: 

w 
t= J- 21 Kg (3) 

where: 

W = the weight, in pounds. 
K = the spring constant of the system defined as the force 

necessary to produce a deflection of unit distance or 
the couple necessary to produce a deflection of one 
radian. 

In the case of the s imple pendulum for small displacements, the sine of the 
angle is numerically equal to the angle expressed in radians, and then: 

(4) 

When this is substituted in the general equation (3), W disappears, and we 
have equation (1)0 

In the case of a concentrated weight suspended from a spring, the value of 
W equals the deflection of the spring (by definition of K) due to the weight W, 
R 
If the deflection is represented by d, then: 

t= 2+ (5) 

This shows that the period of this system is equal to that of a simple 
pendulum whose length 1 is equal to the deflection d of the spring due to 

270 SOUTHWESTERN PETROLEUM SHORT COURSE 



the weight W. This regards the spring as being of very small mass as com- 
pared to the total mass. 

Thus knowing the deflection of such a system, its period may be calculated 
by substituting a simple pendulum whose length 1 is equal to the deflection 
d of the system. 

In the case of a string of sucker rods, the weight is not concentrated, but 
distributed along its entire length. The motion of each section of the rods 
is different from the motion of every other section and, hence, this formula 
does not apply. It has been suggested that this formula be applied to deter- 
mining the frequency of sucker rods by substituting their elongation due to 
their own weight in the simple pendulum formula. It is here pointed out that 
this result will be about 10 per cent in error for the reason just disclosed. 

VELOCITY OF STRESS TRANSMISSION 

There is another method which does apply, and has to do with the velocity of 
stress transmission in steel, which is another way of saying the velocity of 
sound, 

If a sudden force be applied to the fixed end of a rod (fixed at one end only) 
that force is transmitted to the other end of the rod at the speed of sound in 
the form of a longitudinal wave. At the free end of the rod that wave is 
reflected and returns, but loses phase by one-half a wave. At the fixed end 
it is reflected without loss of phase, so that the rod contains only one-quarter 
of a wave length; hence, the length of the rod is one-quarter of a wave length. 
It is fundamental, of course, that the frequency is the velocity of stress 
transmission divided by the wave length: 

F = ; 

(6) 
where: 

V = velocity of stress transmittion, in feet per 
second, 

L = length of wave. 

But L is 4D, where D = length of rod. 
Hence: 1, 

Newton has shown that the velocity of stress transmission is: 

V 4 
E 

= a (7) 

where: 

E = modulus of elasticity, 
d = density, mass per unit volume. 

In applying this to a rod string, fundamental units must be used. 
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Thus: 

E = 29,0( 

d= 

91 

\Jr = weight p 
D= length o 
a = area, in 

But: 

!%- = 3 8 for all 
a l 

This reduces to: 

v = J 29,( 
Changed to feet 

15,800 ft. 

F = 

Equation (8) gi 
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vibrations follow some other law. This force is commonly called the dis- 
turbing force, and more often is not a force due to harmonic motion. In 
the instance cited above it is a pure sine function; whereas in most mech- 
anical problems it is an impure sine function, or a series of timed impulses. 
An excellent example of this is to be found in cable tooling, wherein the 
driller uses a very unsymmetrical motion (a very impure sine function, if 
you please) to produce a large vibration of the tools. 

Again, if the timed impulses occur at intervals exactly equal to the natural 
frequency of the system, these are then known as "first-order" vibration. 
When the frequency of the impulses has exactly one-half the frequency of the 
system, the impulses are known as "second-order" vibration; one-third, "third- 
order," etc. 

Obviously, other things being equal, the first-order vibration will be most 
severe, since energy is added to each wave. It is worthy of note that, as the 
frequency ofthe disturbing force becomes greater than the natural frequency 
of the system, its capacity to magnify vibrations very quickly disappears 
entirely. If, however, the frequency of the disturbing force is non-synchronous, 
then the impulses sometimes interfere with the vibrations, or rather start a 
second train of waves out of phase which partially interfere with the pre- 
viously-excited waves. 

DYNAMOMETER CARDS 

Fig. 1 illustrates a series of curves, using depth for abscissa and frequency 
per minute for ordinates , showing the frequencies which are in synchronism 
with the natural frequency of the system based upon formula (8). 

The dotted lines are first, second, third, etc., order frequencies as indicated. 
Approximately half-way between these curves are solid-line curves which are 
non-synchronous, or l+, 2+, 3+, etc., order vibrations. 

The dynamometer card from a pumping well records the forces occurring in the 
system. These forces are the sum total of all forces including those due to 
the vibration of the rods. It is sometimes a difficult matter to separate or 
isolate the forces due to vibration. Perhaps it will be less confusing to an 
understanding of this matter to start from the opposite end, i.e., to start with 
simple vibrations, and develop them into a dynamometer card. Fig. 2 A shows a 
simple train of two complete waves, as shown by the solid line, plotted against 
equal intervals of time. If these two waves were exactly contained in one cycle, 
that cycle could be represented by folding one wave back upon the other, as 
indicated by the dotted line, thus making a continuous curve which would repeat 
itself cycle after cycle. This is accomplished in the dynamometer by reversing 
the motion of the card; however, the motion of the card represents equal dis- 
placements, and not time. The displacement at the beginning and end of the stroke 
is much smaller for equal intervals of time than at mid-stroke. 
Fig. 2 B shows the distortion of the wave due to the non-uniform motion of the card. 
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If a dynamometer card were taken from a string of rods suspended in a dry 
hole, and if the number of strokes per minute were exactly one-half the natural 
frequency of the rods, it would have the appearance of Fig. 2 B. 

The net area of the card is zero, since no work is done. The horizontal line 
would represent the weight of the rods, but in a pumping well the force necessary 
to lift the fluid is also recorded in addition to the force due to vibration. 
In Fig. 2 C the dotted-line parallelogram represents the forces necessary to 
lift the fluid only. When these forces are added to the forces of vibration, 
a card is produced of the form shown by the solid-line curve in the same figure. 
In an actual dynamometer card, forces of friction and other disturbances due 
to many factors are superimposed upon this curve. They distort it, but do not 
alter its general form. We are not here concerned with the magnitude of the 
forces, but rather with the contour of the card. Cards of this contour can be 
identified quite readily as second-order vibrations. 

OEPTH 3,050Ft. F=70 

Second Order-Two Waves. 

FIG. 2 
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Dynamometer cards of this class are shown at D and E in Fig. 2. The 
vibrations superimposed upon these cards are perhaps due to the vibration of 
the tubing or to a delayed action of the traveling valve, or the reaction of 
fluid waves in the tubing. This impulse peaks about in the middle of the up- 
stroke, and the waves from this impulse are damped out rather quickly. The 
characteristic small loop at the end of the upstroke has degenerated into a 
little tail due to interference or, rather, the superimposition of the impulse 
wave. It can be readily seen that a loop would be formed if this impulse 
wave was eliminated. In the case of the end E an impulse appears also, but 
it is not of sufficient magnitude to prevent the formation of the loop. The 
rods left the hanger on the downstroke; and, of course, the dynamometer had 
to stop at zero. On the upstroke the load for a time went beyond the scale 
of the instrument. In Fig. 3 a card is developed for the third-order vi- 
brations by the same procedure as in Fig. 1. The steps A, B, and C in Fig. 2 
correspond to the same steps in Fig. 1. 

The small loop at both ends of the card is quite characteristic. The area 
of the card is concentrated in the center of the card, whereas in the second 
card the area of the card was concentrated at the beginning of the stroke. 
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Third Order-Three W~VCS. 

FIG. 3 
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VIBRATION PROBLEMS IN OIL WELLS 
-.~-___ 

Fig. 4 (A, II, ant1 C) shows the dedopmcnt of a 

fourth-order card as brfnre. C in the same figure shows 

the effect of a slightly different phasr angle. The char- 
acteristics of this card are that the load at the end of 
the upstroke is as great as at the hcginnjn~ of the stroke. 

It is unfortunalr that an exact fourth-order card was 
not available; however, card D is just a littlc fasttr than 
the fourth-order, and card E is a little slower. This 
shifts the phase angle, but does not wholly destroy the 
card. In the actual card the fact must be kept in mind 
that the timr clement on the upstroke is not of necessity 
the same as on the dowcstroke. This depends upon the 

21.8 S.P.M 
DEPTH 2.800Ft.F=84 

13.4 S.P.M 
DEPTH 4,ZOOFt F=56 

II II 
E 
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45 //- - -- 7 90 

G ./ 315 24 ‘c,” 
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Fourth Ordrr-Four Waws. 

FIG. 4 

degree of counterbalance. In cards of the higher orders 
this uneven motion tends to distort the shape of the card 
because of the greater number of \vavcs in the card. 

Fig. 5 (A, B, and C) shows the development of a 
fifth-order card. The finish of the upstroke is usually 
higher than the beginning. The examples given at D 
and E are not exact fifth-order cards and are, therefore, 
somewhat out of phase with the theoretical card; yet 

their form can be recognized. 
While it is possible to develop the cards for the sixth-, 

seventh-, eighth-order, etc., it is deemed sufficient 
here simply to show only examples of these cards as 
taken by the dynamometer. I’ig. 6 is such an exhihit, 
and needs no further comment. 

At speeds other than that of an exact order, the card 
is modified by a changr in phase angle. Let us suppose 

that we start with an exact-order card such as the scc- 
ond-order, and gradually diminish the speed until the 

18 306 90 

ia 

15 6 S.P.M S.P.M 

” c ” 
DEPTH 2tfE~OFt.F*84 IOOFt.F*84 

E” 

Fifth Order-Five Waves, 

FIG. 5 

17.7 S.P.M 

DEPTH 2,200Ft.F=106 

6L!! ORDER 
DEPTH 1,260Ft. F-166 

IO” ORDER 

22.9 S.PM 15.4 S.P.M 

DEPTH 1,260Ft. F=l66 DEPTH 1,260FtF=186 

83 ORDER 12 IL! ORDER 

FIG. 6 

third-order is reached. We should find that the sccond- 
order card form persisted in a modified form until the 
speed was the natural frequency divided by 2.4. For the 
want of a better terminology, let us call this the “ 2.4 
order.” At about the “ 2.5 order” the third-order form 
would begin to make its appearance. This form becomes 

SOUTHWESTERN PETROLEUM SHORT COURSE 277 



Also the loop at the beginning of the upstroke is usually higher than the loop 
at the end of the upstroke. 

The card D in Fig. 3 is quite characteristic. The loop at the beginning of 
the upstroke is distorted by small disturbance, which may be engine impulse. 
There appear to be about 11 of these waves in the card, which corresponds to 
the number of explosions of the engine per revolution of the well crank. Card 
E is almost an exact duplicate of the theoretical card. Card F shows sufficient 
damping to prevent entirely the formation of the loop at the end of the upstroke, 
and maintain a higher load at that point rather than at the beginning of the 
upstroke. This card shows that the general form of a theoretical card is 
maintained. 

Fig. 7 shows a series of cards from the second to the third order. These cards 
are all from the same well. It is not difficult to follow this transition. 

28.9 S.F?N 22.7 S.P.U 
OEPTH 4,;:s Ft. Fm56 

A 
DEPTH 4,225Ft; F=56 

“0” 
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I 
EC 

20.7 S.P.M. 
DEPTH ‘$22,5Ft. F- 56 

E 

I I 

,23.5 S.l?M 18.7 S:P.M. 
DEPTH 4,$225Ft. F=56 DEPTH 4,225Ft.f*56 

” F ” 
FIG. 7 
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26.4 S.PU 20.5 S.P.M 

DEPTH 3,050Ft.F-78 DEPTH 3,050Ft.F*78 
,I I@ 
A “c” 

23.3 S.P.M 17. I S.P.M. 

DEPTH 3;?!i,OFt. F=78 DEPTH 4;??,OFt. F= 58 
8 D 

Fig. 8 shows the transition from a third order to the 

fourth order. The exact fourth-order card is missing in 

this series. This exact fourth-order card would no doubt 

have the appearance of theoretical card as showti in 

Fig. 3 C. The last card shown is a “ 3.4-order” card 
from another well. 

Rods 8 Fluid 

Polish Rod Down 

Bea 

Load increase Throuah Fluid 

I I”= 6950 # 

Figure 9 - Typical pumping cycle as represented on a dynamometer card. 
Various phases of polish rod travel and operation of the mechanical sub- 
surface pump are readily identified. 
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EXAMPLES OF MAL-OPERATION 

,/Y/ CB-P 11900 

CB-T 11200 

D 

/I In’ D” I I 

- 30.0 NPV--+ Gas i3 Vapor 1 38.:i2p 
------------- 

- 
I ’ 1 ’ 24 36 ’ 418 ’ ’ 72 

FIGURE 1 () Graph is typical of gas pounding, but also presents confusing problem in analysis. 
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15 

I 

0 

-12 ’ ’ 0 12 ’ ’ 24 ’ 36 ’ ’ 48 ’ ’ 60 ’ ’ 72 

I”IGURF. 1 1 This graph and FIG~HF. 12 show how vapor interference progresses h) 
degrees until the pump is completely vapor locked. 

FIGURE 12 This graph was recorded 25 minutes after the one in I”ICUIZE 1 1 
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FIGURE 13 Graph illustrates pounding liquid. 

' 24 
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36 48 60 
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FIGURE 14 An exampie of excessive plunger load 
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FIGURE 15 Graph in this case was accomplished by the crank-angle method. 
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FIGURE 16 Graph taken after making pumping cycle changes. 
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