VIBRATION PROBLEMS IN OIL WELLS
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ABSTRACT

The dynagraph animater is a device whereby we reproduce in miniature what
happens at the pump as disclosed by the dynagraph. Guided by the dynagraph,
we construct charts upon a cylindrical surface so that when viewed, while,
rotating, through a fixed slot the motion of the rod system of the well and
the pump action become animated - that is, they come to 1ife and move, though
on a reduced scale, quite as in the actual pumping well. Even blind men say,
"I see" - meaning "I understand" - and so the animater was devised to aid the
imagination in comprehending the complicated behavior of the enormous rod sys-
tem and clarify our thinking on difficult problems.

INTRODUCTION

Every dynamic system has a definite fundamental natural frequency of vibration.
This is true because all materials possess mass and elasticity and, therefore,
are subject to vibration. Sometimes these vibrations are essential and desir-
able, sometimes of no consequence, and sometimes they are troublesome and not
wanted. Usually it is desirable to know what the natural frequency of a system
is, so that the design or operation, or both, may be governed to make use of or
to avoid these vibrations as best suits the purpose.

It is apparent that in every-day engineering practice vibration problems are not
given the consideration which is their just due. This is largely due to the fact
that vibration problems have not been very well understood in the past. This

need no longer be true; for the great work of Timoshenko, Vibration Problems in
Engineering, is quite simple and clear. His exposition of the theoretical
mathematics involved is unusually complete, and Teaves Tittle to be desired. Most
vibration problems need only a wise application of the theory for their solution.
It is the purpose of this paper to encourage a wider application of this
engineering aspect to problems in the petroleum industry, and to present certain
definite information for ready reference to that end.

PENDULUM FORMULA

For the purpose of clarity in following the discussion, some of the fundamental
principles of vibration will first be reviewed. In order to get at the simplicity
of the problem, we must go to simple illustrations and analogies. First, the

fact must be kept in mind that all vibrations, regardiess of their nature,

have their root in the fundamental principle that pure vibrations are simple
harmonic motion. Hence, any simple harmonic motion may be used for a study of

the fundamental principles. The simple pendulum serves this purpose admirably.
The formula for the time of one complete vibration of a simple pendulum is

given by:
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t= 2’*"21;“ (1)

where:
t = the time, in seconds.
1 = the length, in feet, from the support of the
center of gravity.
g = the acceleration of gravity, in feet per second

per second
The frequency (f) per second is:
=1
f t

The frequency (F) per minute is :
F. 60 60

= Ef_=‘:r___
g
29 g

= 53.8 for g = 32,2 ft. per sec. per sec. (2)

Thus we see, for a fixed value of g, the time and the frequency are a function
of the square root of the length 1. In the general equation for vibrations,

we have: _
s
t = 2m Kg (3)
where:
W = the weight, in pounds.
K = the spring constant of the system defined as the force

necessary to produce a deflection of unit distance or
the couple necessary to produce a deflection of one
radian.

In the case of the simple pendulum for small displacements, the sine of the
angle is numerically equal to the angle expressed in radians, and then:
_ M
A (4)

When this is substituted in the general equation (3), W disappears, and we
have equation (1).

In the case of a concentrated weight suspended from a spring, the value of

W equals the deflection of the spring (by definition of K) due to the weight W.
K

If the deflection is represented by d, then:

t= 2’”‘/—%— (5)

This shows that the period of this system is equal to that of a simple
pendulum whose length 1 is equal to the deflection d of the spring due to
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the weight W. This regards the spring as being of very small mass as com-
pared to the total mass.

Thus knowing the deflection of such a system, its period may be calculated
by substituting a simple pendulum whose length 1 is equal to the deflection
d of the system.

In the case of a string of sucker rods, the weight is not concentrated, but
distributed along its entire length. The motion of each section of the rods
is different from the motion of every other section and, hence, this formula
does not apply. It has been suggested that this formula be applied to deter-
mining the frequency of sucker rods by substituting their elongation due to
their own weight in the simple pendulum formula. It is here pointed out that
this result will be about 10 per cent in error for the reason just disclosed.

VELOCITY OF STRESS TRANSMISSION

There is another method which does apply, and has to do with the velocity of
stress transmission in steel, which is another way of saying the velocity of
sound.

If a sudden force be applied to the fixed end of a rod (fixed at one end only)
that force is transmitted to the other end of the rod at the speed of sound in
the form of a Tongitudinal wave. At the free end of the rod that wave is
reflected and returns, but Toses phase by one-half a wave. At the fixed end

it is reflected without loss of phase, so that the rod contains only one-quarter
of a wave length; hence, the length of the rod is one-quarter of a wave length.
It is fundamental, of course, that the frequency is the velocity of stress
transmission divided by the wave length:

_ vV
F=ET (6)
where:
V = velocity of stress transmittion, in feet per
second.
L = Tength of wave.

But L is 4D, where D = length of rod.
Hence:
o=

D

Newton has shown that the velocity of stress transmission is:

_|E
v g (7)
where:

E = modulus of elasticity.

d = density, mass per unit volume.

In applying this to a rod string, fundamental units must be used.
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vibrations follow some other law. This force is commonly called the dis-
turbing force, and more often is not a force due to harmonic motion. In

the instance cited above it is a pure sine function; whereas in most mech-
anical problems it is an impure sine function, or a series of timed impulses.
An excellent example of this is to be found in cable tooling, wherein the
driller uses a very unsymmetrical motion (a very impure sine function, if
you please) to produce a large vibration of the tools.

Again, if the timed impulses occur at intervals exactly equal to the natural
frequency of the system, these are then known as "first-order" vibration.

When the frequency of the impulses has exactly one-half the frequency of the
system, the impulses are known as "second-order" vibration; one-third, "third-
order," etc.

Obviously, other things being equal, the first-order vibration will be most
severe, since energy is added to each wave. It is worthy of note that, as the
frequency ofthe disturbing force becomes greater than the natural frequency

of the system, its capacity to magnify vibrations very quickly disappears
entirely. If, however, the frequency of the disturbing force is non-synchronous,
then the impulses sometimes interfere with the vibrations, or rather start a
second train of waves out of phase which partially interfere with the pre-
viously-excited waves.

DYNAMOMETER CARDS

Fig. 1 illustrates a series of curves, using depth for abscissa and frequency
per minute for ordinates, showing the frequencies which are in synchronism
with the natural frequency of the system based upon formula (8).

The dotted lines are first, second, third, etc., order frequencies as indicated.
Approximately half-way between these curves are solid-line curves which are
non-synchronous, or 1%-, 2%-, 3%, etc., order vibrations.

The dynamometer card from a pumping well records the forces occurring in the
system. These forces are the sum total of all forces including those due to

the vibration of the rods. It is sometimes a difficult matter to separate or
isolate the forces due to vibration. Perhaps it will be less confusing to an
understanding of this matter to start from the opposite end, i.e., to start with
simple vibrations, and develop them into a dynamometer card. Fig. 2 A shows a
simple train of two complete waves, as shown by the solid line, plotted against
equal intervals of time. If these two waves were exactly contained in one cycle,
that cycle could be represented by folding one wave back upon the other, as
indicated by the dotted 1ine, thus making a continuous curve which would repeat
itself cycle after cycle. This is accomplished in the dynamometer by reversing
the motion of the card; however, the motion of the card represents equal dis-
placements, and not time. The displacement at the beginning and end of the stroke
is much smaller for equal intervals of time than at mid-stroke.

Fig. 2 B shows the distortion of the wave due to the non-uniform motion of the card.
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If a dynamometer card were taken from a string of rods suspended in a dry
hote, and if the number of strokes per minute were exactly one-half the natural
frequency of the rods, it would have the appearance of Fig. 2 B.

The net area of the card is zero, since no work is done. The horizontal line
would represent the weight of the rods, but in a pumping well the force necessary
to 1ift the fluid is also recorded in addition to the force due to vibration.

In Fig. 2 C the dotted-line parallelogram represents the forces necessary to
1ift the fluid only. When these forces are added to the forces of vibration,

a card is produced of the form shown by the solid-line curve in the same figure.
In an actual dynamometer card, forces of friction and other disturbances due

to many factors are superimposed upon this curve, They distort it, but do not
alter its general form. We are not here concerned with the magnitude of the
forces, but rather with the contour of the card. Cards of this contour can be
identified quite readily as second-order vibrations.
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Dynamometer cards of this class are shown at D and E in Fig. 2. The
vibrations superimposed upon these cards are perhaps due to the vibration of
the tubing or to a delayed action of the traveling valve, or the reaction of
fluid waves in the tubing. This impulse peaks about in the middle of the up-
stroke, and the waves from this impulse are damped out rather quickly. The
characteristic small loop at the end of the upstroke has degenerated into a
1ittle tail due to interference or, rather, the superimposition of the impulse
wave. It can be readily seen that a loop would be formed if this impulse
wave was eliminated. In the case of the end E an impulse appears also, but
it is not of sufficient magnitude to prevent the formation of the Toop. The
rods left the hanger on the downstroke; and, of course, the dynamometer had
to stop at zero. On the upstroke the load for a time went beyond the scale
of the instrument. In Fig. 3 a card is developed for the third-order vi-
brations by the same procedure as in Fig. 1. The steps A, B, and C in Fig. 2
. S 3 1

The small loop at both ends of the card is quite characteristic. The area
of the card is concentrated in the center of the card, whereas in the second
card the area of the card was concentrated at the beginning of the stroke.
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VIBRATION PROBLEMS IN OIL WELLS

Fig. 4 (A, B, and €) shows the development of a
fourth-order card as before. € in the same figure shows
the effect of a slightly diffcrent phase angle. The char-
acteristics of this card are that the load at the end of
the upstroke is as great as at the beginning of the stroke.

It is unfortunate that an exact fourth-order card was
not available; however, card D is just a little faster than
the fourth-order, and card E is a little slower. This
shifts the phase angle, but does not wholly destroy the
card. In the actual card the fact must be kept in mind
that the time element on the upstroke is not of neccessity
the same as on the downstroke. This depends upon the
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Fourth Order—Four Waves.
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degree of counterbalance. In cards of the higher orders
this uneven motion tends to distort the shape of the card
because of the greater number of waves in the card.

Fig. 5 (A, B, and C) shows the development of a
fifth-order card. The finish of the upstroke is usually
higher than the beginning. The examples given at D
and E are not exact fifth-order cards and are, therefore,
somewhat out of phase with the theoretical card; yet
their form can be recognized.

While it is possible to develop the cards for the sixth-,
seventh-, eighth-order, ete., it is deemed sufficient
here simply to show only examples of these cards as
taken by the dynamometer. Fig. 6 is such an exhibit,
and needs no further comment.
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At speeds other than that of an exact order, the card
is modified by a change in phase angle. Let us suppose
that we start with an exact-order card such as the secc-
ond-order, and gradually diminish the speed until the
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third-order is reached. We should find that the sccond-
order card form persisted in a modified form until the
speed was the natural frequency divided by 2.4. For the
want of a better terminology, let us call this the “ 2.4
order.” At about the “ 2.5 order ” the third-order form
would begin to make its appearance. This form becomes
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Also the loop at the beginning of the upstroke is usually higher than the loop
at the end of the upstroke.

The card D in Fig. 3 is quite characteristic. The loop at the beginning of

the upstroke is distorted by small disturbance, which may be engine impulse.
There appear to be about 11 of these waves in the card, which corresponds to

the number of explosions of the engine per revolution of the well crank. Card

E is almost an exact duplicate of the theoretical card. Card F shows sufficient
damping to prevent entirely the formation of the Tloop at the end of the upstroke,
and maintain a higher load at that point rather than at the beginning of the
upstroke. This card shows that the general form of a theoretical card is
maintained.

Fig. 7 shows a series of cards from the second to the third order. These cards
are all from the same well. It is not difficult to follow this transition.
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Fig. 8 shows the transition from a third order to the
fourth order. The exact fourth-order card is missing in
this series. This exact fourth-order card would no doubt
have the appearance of theoretical card as shown in
Fig. 3 C. The last card shown is a “ 3.4-order ” card
from another well.

Max Load
Rods & Fluid (
Being Lifted Walking Beam
Trav. Valve Decelerating
Ciosing _ Recoil r

Polish Rod Down Polish Rod Up

Trav. Valve
(\ Counter Balance

Walking \ Stand Valve
Beam Decelerating

Stending Valve
Taking Over Load

Rods & Plunger Falling

Mi
Load Increase inLood Through Fiuid

1":6950#

Figure 9 - Typical pumping cycle as represented on a dynamometer card.
Various phases of polish rod travel and operation of the mechanical sub-
surface pump are readily identified.
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Ficure () Graph is typical of gas pounding, but also presents confusing problem in analysis.
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Ficure 1]  This graph and Ficure 12 show how vapor interference progresses by
degrees until the pump is completely vapor locked.
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Fisure 12 This graph was recorded 25 minutes after the one in Figure 7]
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Ficure 13 Graph illustrates pounding liquid.
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Ficure 14 An example of excessive plunger load
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Ficure 16 . Graph taken after making pumping cycle changes,
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