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ABSTRACT 

Several methods of calculating downhole dynamometer cards from sur- 
face dynamometer cards have been presented in the literature. Each of the 
methods requires knowing the viscous damping coefficient. This paper presents 
a non-iterative method for finding this term. A new method for calculating-a 
downhole dynamometer card is also presented. This method is faster and more 
accurate than the fourier analysis and the finite difference method using the 
second order damped wave equation. 

In Gibb's patentI, two methods of determining the damping coeffi- 
cient are presented. One is empirically based and the other is an equation 
that requires knowledge of the pump horsepower. But to calculate the pump 
horsepower the damping coefficient must be known. Therefore, an iterative 
procedure is required. This paper presents a non-iterative method for calcu- 
lating the viscous damping coefficient. 
ented by Everittz 

An improvement of the method pres- 
is suggested and comments on variable damping are made. 

A coupled set of first order linear differential equations is solved 
using finite differences to obtain a pump card. A cyclic boundary condition 
called the wrap around is used to eliminate problems associated with the end 
points. The wrap around condition eliminates iterating and allows for direct 
solution. 

DAMPING COEFFICIENT 

Importance 

The intent of this section is to present a method derived for calculating 
the damping coefficient of the damped wave equation. The damping term is 
necessary to accurately calculate the forces and displacements down the rod 
string. The character of both the surface and downhole dynamometer cards is 
greatly affected by damping. An incorrect damping term could result in an 
erroneous diagnosis. 

Damping in a sucker rod string results from a combination of many fac- 
tors. In this study, the assumption is made that all of the real damping 
forces can be treated by using the viscous damping term. For this to be true 
an equivalent amount of energy must be removed by the viscous damping term as 
is removed by the actual forces. 
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Previous Work 

In Gibb's patent, two techniques for determining the damping coefficient 
were presented. One method was empirically based on field damping measure- 
ments. In the other technique, Gibbs assumed the integrated average velocity 
of the sucker rod is equivalent to the root mean square velocity of the 
polished rod in simple harmonic motion. Using this assumption, an equation to 
calculate the damping term was presented. In Everitt's thesis, a similar 
equation was presented to calculate the damping term with variable density 
rods. This equation is: 

(550)(144g,)(PRHP-HP,,,)T2 
C= 

J- 
. ..( 1) 

2n (xPiAiXi)S2 

As Everitt pointed out, the hydraulic horsepower must be known to calcu- 
late the damping coefficient. Hydraulic horsepower can be calculated from: 

-~ 

HPhyd =7.36E-06 Q SG L, . ..(2) 

where the production rate at the pump, Q, is given by: 

Q=.1484 A, S, SPM E, . ..(3) 

To calculate the production at the pump the stroke length at the pump is 
needed. The stroke length comes from the pump card. To calculate the pump 
card the damping coefficient is needed. Therefore, the algorithm presented by 
Everitt involved an iterative process to determine the damping coefficient. 

Methods Developed 

A non-iterative technique for finding the viscous damping coefficient is 
presented next. An improvement of Everitt's method is suggested and comments 
on variable damping are made. 

Curve Generation 

The work performed at the pump is the movement of fluids through the 
pump. Hydraulic-horsepower is defined by K. E. Brown3 as the "power required 
to lift a given volume of fluid vertically, through a given distance in a 
given period of time". Using Equations (2) and (3) the hydraulic horsepower 
is calculated. 

Work is also defined when a force causes a displacement. Power is 
defined as the amount of work per unit time. The power at the pump can be 
obtained by integrating the downhole dynamometer card. This integration is a 
summation of the forces and displacements at the pump for a complete pumping 
cycle. 

The viscous damping term is assumed to account for all energy dissipation 
in the system. If there were no energy losses the area of the surface card 
would equal the area of the downhole card. For a sucker rod system at a given 
time there normally is a power loss from the surface to the pump. This means 
there is a unique damping term for that system and time. If a damping term 
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is used that is smaller than the actual damping, the effect is to add power to 
the system. If the damping term used is larger than the actual damping, then 
too much power is being removed from the system. 

The effect of increasing or decreasing the damping term on the area of 
the card is dramatic. The effect of varying the damping term on the stroke 
length is not very significant. With this in mind, it is possible to calcu- 
late the pump horsepower by two different methods. The first method is to 
integrate the area of the pump card to obtain a pump horsepower. The second 
method is to use the stroke length to calculate the pump flow rate. With the 
flow rate, the hydraulic horsepower can be calculated from Equation (2). By 
varying the damping coefficient and calculating the resultant pump horsepower 
by each method, a plot of pump horsepowers versus the damping coefficient is 
generated. 

10 

-1 

0 0.5 1 1.5 2 2.5 3 

DIMENSIONA!. DAMPING 

Figure 1 - Solution for the Damping Coefficient 

By definition, the damping coefficient where the two curves intersect is 
the correct one. A simple algorithm was developed to find the point where the 
curves cross. The validation of this method is presented later. 

I+&3 Velocities -- 

The method presented by Gibbs and Everitt to calculate the damping coef- 
ficient involved using an average velocity. An expression for the average 
velocity was obtained by assuming simple harmonic motion for the polished rod. 
This velocity was then assumed to be equivalent to the root mean square veloc- 
ity. 

In the solution presented in this work, the velocities at each node for 
each time in the cycle are calculated. Therefore, an average velocity can be 
found for the rod string during a complete period. This average velocity can 
then be used in Equation (1) in place of the root mean square velocity to 
calculate the damping coefficient. 
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C= 
(550)( 144g,)(PRHP- HP&T 

(ZPiAiXt)S 
y (node averaged) . . I 

To check the validity of the calculation procedure, data generated from a 
design model with a known damping coefficient was run on the diagnostic model 
presented in this work. The damping coefficient used to generate the data was 
input as the correct value in the diagnostic model. The damping coefficient 
was then calculated from Equation (4). The damping coefficient calculated was 
within 1% of the actual value. Using the actual node averaged velocities 
improves the method presented by Everitt. 

& & Down Damoinq 

In several of Gibbs' papers covering his diagnostic and predictive pro- 
grams, the ability to vary the damping coefficient on the upstroke and down- 
stroke is mentioned. This topic has been discussed but no formal - 
presentation in the literature was found. A predictive model was modified to 
allow for varying the damping coefficient on the upstroke and downstroke. 
Using the surface card generated from this model as input, attempts were made 
to calculate the damping coefficients. The velocities were averaged for the 
upstroke and the downstroke, and used in a modified Equation (4). A problem 
in splitting the upstroke and downstroke at the pump prevented obtaining sat- 
isfactory results with this method. 

An attempt was made to use the curve generation technique to solve for 
the upstroke and downstroke damping coefficient. However, accurately split- 
ting the horsepower at the pump into upstroke and downstroke values prevented 
adequate solutions. 

During the attempts to calcuate upstroke and downstroke damping coeffi- 
cients, a problem was identified with using iterative techniques to find the 
solution. Figure 2 illustrates this problem. 

Each line on Figure 2 represents the pump horsepower corresponding to a 
set of upstroke and downstroke damping coefficients. An infinite number of 
lines could be generated which would form a surface of damping coefficients 
for various pump horsepower's. Regardless of what the damping coefficient 
actually is, a finite amount of horsepower is delivered to the pump on each 
pumping cycle. for any given horsepower, there is an infinite combination of 
upstroke and downstroke damping coefficients that will give that horsepower. 
It would be possible to converge on several possible combinations of damping 
coefficients using an iterative technique. A further constraint is needed to 
enable calculation of up and downstroke damping. More work is needed to 
further define the concept of variable damping. 
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Pump Horsepower 

Figure 2 - Up & Down Damping Curves 

TWO EQUATION DIAGNOSTIC MODEL 

Formulation of Reduced Order Differential Equations 

The one dimensional damped wave equation is a second order linear hyper- 
bolic differential equation which describes the longitudinal vibrations in‘a 
long uniform rod. This equation, with the proper boundary conditions, can be 
used to describe the motion of a sucker rod string. From a description of the 
physical system (a sucker rod string), a set of coupled first-order linear 
differential equations can be derived. By reducing the order of the differen- 
tial equation, 'solution times are accelerated. - 

Using a free body diagram as shown in Figure 3 and Newton's second 
an analysis of the forces acting on the sucker rods is performed. 
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Figure 3 

Sf x*x 

- Free Body Diagram 

From Newton's second law, If =ma: 

-- 

f ,,,,-fx-fD+fw=mdg . ..(5) 

The force f X and fcx+Awj are tension forces in the directions shown. 

The force due to the weight of the rod element is fu. The viscous damping 

force is given by fD. The force due to the weight of the rods can be 
expressed as the mass times the acceleration from gravity. Rewriting the mass 
of the rods as, 

m~~ArAx 

144gc 
. ..(6) 

and substituting into Equation (2) gives: 

f 
pA,Axg pA,Axdv 

x+*x-fx-fD+ 144g = 144g, St 
. . I 

c 

The viscous damping force is used to describe the effects of lost energy. 
Doty and Schmidt4 showed that other forces dissipated energy. However, by 
assuming the dissipation is due to viscous damping, non-linearities are 
avoided in the differential equation. In field practice this assumption-has 
proved adequate. _ 

C.E. Crede5 defines viscous damping as "the dissipation of energy that 
occurs when a particle in a vibrating system is resisted by a force that has a 
magnitude proportional to the magnitude of the velocity of the particle and 
direction opposite to the direction of the particle." Therefore, the damping 
force is proportional to the velocity of the rod. Gibb's presented a damping 
term in his patent that is dimensionally consistent and when multiplied by the 
velocity of the rod approximates the viscous damping effects. This term is 
given by: 
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where 

s..(8) 

4.42E-02L(PRHP-HPhyd)T2 
I/= 

(xAiXi)S2 
. ..(9) 

Using the definition of viscous damping and Gibb's damping term, the vis- 
cous damping force is written as: 

f,=cnxpA,du 
144g,Jt 

..( 10) 

Substituting Equation (10) into Equation (7) gives: 

A,Ax dv 
f 

PA, du 
~~,~-~f~-cAx~~+pA,ax~= -- p 144g, 2t 

. ..(I 
c c 

1) 

The definition of the first forward difference of F at x is: 

f . -f. 
F,= 

J .x+Llx J x . ..(12) 
Ax 

t3y definition the first forward difference is an approximation of the 
first derivative of the function with some associated error. For purposes of 
this work the finite difference error will be dropped from the derivation of 
the equations. Dividing equation 8 by Ax gives: 

PAr 
F/-c- 

144gcv+ 
Arx y PArcl _ 

p 144g, f 
. . 

144gc 
03) 

Equation (13) is one of the partial differential equations that will be cou- 
pled to solve for the pump dynamometer card. The term 

PArg 

144gc 

is the static weight of the rods. Since this term is constant, its effects 
can be dropped at this point of the derivation and superimposed on the final 
calculated forces. Equation (13) can then be written as: 

PA, Arx 
F./-c- V'P144g,% . * 9 

144gc 

The second equation is derived using Hooke's Law: 

14) 
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f=EArg . . . (15) 

Differentiating this equation with respect to time yields the following: 

,(16) 

Recognizing that 

is equal to 

the second equation of the coupled set is: 

F,=EA,v, . ..( 17) 

Equations (14) and (17) when coupled together represent the system of 
first order differential equations needed to solve the problem. Using these 
two equations and the proper boundary conditions allows for direct calculation 
of the forces and velocities. Displacements are then found by integrating the 
velocities. These equations allow for variation in rod diameter and density. 
The equations are a reduced order form of the second order one dimensional 
damped wave equation. 

Boundary Conditions 

The task of solving these two first order linear differential equations 
involves starting from some condition in time and space and advancing the 
solution in space for all times. Each of the differential equations have two 
independent variables with respect to time and space. Therefore, to obtain a 
solution two boundary conditions and two initial conditions are ordinarily 
required. The two boundary conditions are provided by the surface dynamometer 
card and can be represented as: 

F(O,t) and u(O,t) 

By arbitrarily setting the origin at the polished rod, the surface dyna- 
mometer card supplies a complete cycle of forces and displacements. Initial 
conditions are not required because only periodic solutions are considered. 
The assumption that the pumping unit is at steady state insures the deriv- 
atives of the forces and displacements with respect to time do not change from 
period to period. 
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Discrete Analogs 

To implement these equations into a numerical algorithm suitable for com- 
putation on a digital computer, it is necessary to transform the continuous 
functions to discrete analogs using the methods of finite difference calculus. 
The derivations of finite difference analogs for derivatives of functions is 
well know and well documented in many excellent texts on numerical methods. 
The discretized form of equations (14) and (17) is given by the following 
equations: 

f (i.j)=f (i-l.j)+ 
[ 

I~~~~2~r(y”,j+~~-v~i,j-~~)]+c~v~i.j) *“(18) 

Ax [f((-l,j+l)-f(i-l.,-l)l+V(,-l,j) 
v(i.l) = EA,zAt 

Stability Criterion -- 

Everitt, Knapp8, and Hornbeck' show that for the undamped wave equation 

a 
,a2u d2u -=- 

ax2 dt2 
. . * (20) 

the condition necessary for stability of the finite difference analog is: 

Ax 2 F-1 I1 . . 
aAt 

.(21) 

A formal mathematical presentation of stability is not made. In prac- 
tice, the algorithm has been shown stable when the criterion described above 
has been met. The velocity of force propagation a can be written as: 

a=Jm) . . 423) 

By substituting-Equation (23) into Equation (21) the stability criterion 
can be expressed as: 

At2JgkJ . . . (24) 

Wrap Around Condition 

A problem exists in handling the end points in Equations (18) and (19) 
when using central differences in time. 
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v(i.i) = EA,2At Ax [f(i-1. j+l) -f(i-l.j-l)l+V(i-l.j) . ..(19> 

A surface dynamometer card provides the boundary conditions and is com- 
posed of force and displacement data for one cycle. The discrete points from 
the surface dynamometer card are numbered from 0 to N. However, when using 
central differences in time the points -1 and Ntl are needed at the respective 
endpoints. This problem is handled by wrapping the endpoints around. This 
condition can best be explained by Figure 4. 

Figure 4 - The Wrap Around 

where: 

v(x, -l)=v(x,N) f(x*- l>=f(x,N) 

v(x,N+ l)=v(x,O) f(x,N+ l>= f(x,O) 

MODEL VALIDATION 

The algorithms presented were programmed in Fortran 77 for use on per- 
sonal computers. The resulting computer program can generate a pump-dynamome- 
ter card when given a surface dynamometer card. The program handles various 
geometry pumping units, rod strings of different diameter and composition and 
can calculate the damping coefficient. 

To test the validity of the algorithms and the resulting computer pro- 
gram, test cases were run and compared against other standards. These stan- 
dards are a finite difference predictive model and a finite difference 
diagnostic model. The finite difference predictive model was originally 
presented by Gibbs. 8 The finite difference diagnostic model was presented by 

ifference predictive model is referred to as PRED, Ever- 
is referred to as DCARD, and the finite difference diag- 
in this work is referred to as DIAG. 

Everitt. The finite d 
itts diagnostic model 
nostic model presented 
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Predictive Model Comparison 

PRED is used to design new pumping unit installations. By inputting 
desired pumping unit dimensions, rod dimensions, and by defining a pump bound- 
ary condition the model generates a surface dynamometer card. The pump bound- 
ary conditions such as a full pump, loose anchor, or fluid pound define the 
shape of the pump dynamometer card. To validate DIAG using PRED, the 
following steps were taken: 

1. Set a pump boundary condition and choose appropriate data for PRED 
and generate a surface dynamometer card. 

2. Use the surface dynamometer card from PRED as input to DIAG to calcu- 
late the pump dynamometer card. 

3. Compare the pump card from DIAG with the pump card from PRED. 

By going through this procedure a “loop” is completed. You define a pump 
card and calculate a surface 
calculate the pump card. If 
models and computer programs 
described in Table 1. 

card from it. ' You then' take the surface card.-and 
the two pump cards are the same the mathematical 
can be considered valid. Test Case #l is 

The assumption that the polished rods velocity is equal to 6% second 
simple harmonic motion allev 1 ates the need for pumping unit dimensions when 
using PRED to test DIAG. AC ual pumping unit kinematics were also used but 
showed very little difference. Figure 5 represents the surface card generated 
by PRED. Figure 6 is the comparison of the actual pump dynamometer card from 
PRED and the one calculated from DIAG. As can be seen the calculated pump 
card from DIAG compares excellently with the one from PRED. 

Table 2 shows the data that was used to generate the surface card for 
Test Case #2. Figure 7 is the surface card for this data and Figure 8 is a 
comparison of the pump cards. Again, the match is good. Other pump condi- 
tions were tested with equally good results. An observation was made when 
testing DIAG using PRED as the input regarding the number of cycles and 
elements needed for convergence in PRED. Besides comparing the general shape 
and size of the pump dynamometer cards the area was also calculated for each 
and compared. It was observed that differences in area could be significant 
if large element sizes and few cycles were used. The element size used in 
PRED had to be less than 75 feet and the number of cycles greater than 10 for 
the differences in the area of the pump cards to be less than 1%. In general 
practice, this kind -of accuracy would not be needed to do diagnostic work. 
However, it does become critical when calculating the damping coefficieht. 

Diagnostic Model Comparison 

The finite difference model of this paper was compared to the finite 
difference model DCARD from T. A. Everitt's work. Everitt's model uses a 
discretized form of the second order damped wave equation to solve for the 
pump dynamometer card. In Everitt's thesis, he compared his model very favor- 
ably to an analytical model using the truncated Fourier Series similar to 
Gibb's original model. This model was presented by D. J. Schafer9 and 
modified by J. W. Jennings. 
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The comparisons presented are from the field data that Everitt used to 
compare his model to the analytic model. Tables 3 through 6 describe the data 
sets. The surface and downhole dynamometer cards which correspond to these 
data sets are shown in Figures 9 through 16. DIAG compares excellently with 
DCARD in each of these cases. Though not tested, by inference DIAG should 
also compare well with the analytic method. One area of difference in each of 
the comparisons is at the upper left and lower right of each card. These 
corners represent the beginning of the upstroke and the beginning of the down 
stroke respectively. On each one of these cards DCARD has forces that extend 
beyond those calculated by DIAG. When using the second order damped wave 
equation to calculate displacements, the forces are calculated using Hooke's 
Law. The velocity term necessary for calculating the forces at the pump using 
Hooke's law is found using a second order backward difference. In DIAG the 
forces are calculated from the actual velocities at the pump. Therefore, 
DIAG's method is able to more accurately handle conditions at the corners. 

Damping Coefficient Validation 

The method presented to calculate the damping coefficient was tested 
using the predictive model. A surface card was created with a known damping 
coefficient. This surface card was then used as input into DIAG. By generat- 
ing curves of pump horsepower defined by the area of the dynamometer card and 
hydraulic horsepower the correct damping coefficient is found. An example is 
presented in Figure 17. 

The data used to generate these dynamometer cards is identical to Test 
Case #l. The damping coefficient calculated was accurate within 0.25%. The 
number of points used to create the curves in this example was 20. Using only 
three points the damping coefficient is calculated to within 2% of the actual 
value. A converged answer from the predictive model is essential to accu- 
rately calculate the damping coefficient. Element size needed to obtain a 
converged answer was between 50 and 75 feet. The number of cycles needed was 
between 10 & 15. In field practice this error is not introduced with an 
actual dynamometer card. 

CONCLUSIONS 

1. 

2. 

3. 

4. 

5. 

The following conclusions can be made as a result of this work: 

By reducing the order of the second order damped wave equation a coupled 
set of first order differential equations is used to accurately solve for 
a pump dynamometer card. 

When solving Equations (14) and (17) using finite differences, the end 
points can be accurately handled without additional iterations by using 
the cyclic boundary condition presented. 

The viscous damping term used to account for energy dissipation can be 
accurately obtained using the curve generation technique presented. 

When solving for different damping terms on the upstroke and downstroke, 
an infinite number of solutions is possible using iterative methods. 

The predictive model requires rod lengths of 50 to 75 feet and 10 to 15 
cycles to obtain a converged answer. This is apparent when solving for 
the damping coefficient using a surface card generated from the predic- 
tive model. 
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NOMENCLATURE 

u - Velocity of force propagation In the rods, ft/sec 

A, - Rod cross-sectional area,in2 

A, - Plunger cross-sectional area.in* 

c - Damping coefficient,sef-l 

E - Young's modulus of elasticity, psi 

E, - Pump efficiency, fraction 

f - Tension force acting on rod elements, lbf 

fD - Damping force, lbf 

I" - Buoyant weight of rod element, lbf 

9. - Units conversion factor, (lbm-ft)/lbf-sec2) 

HP,,, - Hydraulic horsepower, hp. 

L - Total length of rod string, ft. 

L, - Fluid level or net lift, ft. 

Q - Pump production rate, BPD 

s - Polished rod stroke, ft. 

SG - Specific gravity of fluid, fraction 

S” - Net pump stroke, in 

SPM - Pumping speed, strokes/min 

t - Time, set 

T - Period of pumping cycle, set 

Ll - Rod displacement, ft. 

Wb - buoyant weight of total rod string, lbf 

X - Axial distance along the rod string, ft. 

v - Velocity of rod element, ft/sec. 

P - Rod density, lbm/ftS 
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Table 1 Table 2 
Description of Test Case II 

Rod Data 

Description of Test Case #2 

w 

01075 
0.750 

' I 

Rod Data 

9OP 
Iiaterial 
Steel 

3000 Steel 
4000 Steel 

55% 
a:750 

!.emup 
3310 

Material 
Steel 
Steel 

Plunger Diameter: 
Pumping Speed: 
Stroke Length: 
Pump Condition: 

Downhole, Data 
1.5 in. Pump Depth: 
8 SPM Fluid Level: 
54 in. Fluid Gravity: 
full pump 

Elasticitr 
30.5*E6 
30.5'E6 

POSITION (m.) 

Figure 5 - Test Case #I Surface Dynamometer Card 

5000 ft. 
5000 ft. 
1.0 

Figure 6 - PRED & DIAG for Test Case Yl 

Plunger Diameter: 
Pumping Speed: 
Stroke Length 
Pump Condition: 

Downhole Data 

1.5 in. 
16 SPH 
54 in. 
full pump 

Pump Depth: 
fluid Level: 
Fluid Gravity: 

Elasticity 
30.5*E6 
30.5*E6 
30.5*E6 

Figure 7 - Test Case Y2 Surface Dynamometer Card 

9000 ft. 
9000 ft. 
0.9 

Figure 8 - PRED 6 DIAG for Test Case Y2 



Table 3 Table 4 
Description of Belcher 151 Description of Down Y2 

Rod Data Rod Data 

2400 Steel 

Elasticity 
30.5*E6 
30.5fE6 

2 Downhole Data 

B Plunger Diameter: 1.5 In. Pump Depth: 3900 ft. 
Pumping Speed: a SPH Fluid Level: 2850 ft. 
Fluid Gravity: 0.92 

8 
* I 

5 
Pumprng Unit Data 

Unit Design.: M-228-256-120 Stroke Length: 121 in. 
Manufacturer: Lufkin Strut. Unbal.: -3435 
Rotation: 

R 
33.125 

ccw Phase Angle: 
API Dimensions (in.): 

A 
312.0 25i.O Id.0 

24 deg. 

24t.7 
P 

173.75 

Figure 9 - Surface Dynamometer Card for Belcher Y51 

30.5*E6 

Plunger Diameter: 
Pumping Speed: 
Fluid Gravity: 

Downhole Data 
1.5 in. Pump Depth: 3234 ft. 
10 SPM 
0.8 

Fluid Level: unknown 

Unit Design.: 
Manufacturer: 
Rotation: 

2p.o 

‘,I 
Pumping Unit Data 

C-114-143-64 Stroke Length: 64 in. 
Lufkin Strut. Unbal.: 360 
ccw Phase Angle: 0 deg. 

API Dimensions (in.): 
A 

84.0 72 .'062 72I.o 112193 

. I. . . ” 
POSITION (in.) 

Figure 11 - Surface Dynamometer Card for Down #2 

-6” I 
. ” * .I 

POSITION (III.) 

Figure 10 - DCARD K DIAG Cards'for Belcher Y51 Figure 12 - DCARD b DIAG Cards for Down 112 



Table 5 
Description of Hell Yl 

Rod Data 

Y7P w 
4425 Steel 

Elasticity 

E*EE: t 

Unit Design.: 
Manufacturer: 
Rotation: 

R 
33.0 

Downhole Data 
1.5 in. Pump Depth: 6402 ft. 

8 SPM Fluid Level: 5239 

0.91 

Pumping Unit Data 
C-160- 173-64 Stroke Length: 64 in. 

Alten Strut. Unbal.: unknown 

cw Phase Angle: 

A 
API Dimensions (iTn.): 

C 
96.0 86.0 93.0 

Figure 13 - Surface Dynamometer Card for Heil Yl 

Plunger Diameter: 
Pumping Speed: 
Fluid Gravity: 

Figure 14 - DCARD X DRAG Cards for Heil #l 

Table 6 
Description of Cade Y69 

Rod llata 

Y5P 
naterlal 
Steel 

3175 Steel 

‘! Downhole Data 
Plunger Diameter: 2.25 in. Pump Depth: 

Pumping Speed: 7.4 SPM Fluid Level: 

Fluid Gravity: 0.98 

Pumping Unit Data 
Unit Design.: C-228-246-86 Stroke Length: 

Manufacturer: National Strut. Unbal.: 

Rotation: cw Phase Angle: 
API Dimensions (in.): 

R 
42.0 11t.0 

C I 
110.0 110.0 

Figure 15 - Surface Dynamometer Card for 

1 

Elasticify 
30.5*E6 
30.5*E6 

4977 ft. 
unknown 

a2 in. 
920 lbs. 
unknown 

17cf.55 133Po 

Cade 169 

Figure 16 - DCARD & DIAG Cards for Cade Y69 
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Figure 17 - Damping Coefficient Validation 
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