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ABSTRACT 
One of the primary challenges in unconventional gas/oil reservoirs is characterization and modeling. 
There are different models for describing the production in an unconventional reservoir (e.g., dual 
porosity, triple porosity, etc.). This paper generalizes the solution for a multi-porosity model (MPM). This 
model assumes there are multiple fracture groups in the reservoir and each type of fracture group has 
varying properties. Different MPMs are considered and an appropriate measure for selecting the best 
model that describes production data using any known reservoir properties is discussed. The MPM is 
used to characterize and evaluate a horizontal well in an unconventional reservoir with multistage 
fracturing. 
 
After selecting the best model, sensitivity analysis can be performed to determine the primary parameters 
affecting production. These parameters can be estimated by matching the MPM to the well’s production 
history. The MPM uses rate data, no pressure data is necessary, which makes it a perfect tool for 
analyzing daily production or public production data collected daily or monthly. This data is used to history 
match the MPM by minimizing the weighted root mean squared (RMS) between the model and the true 
production data. 
 
Most reservoir models have the inherent flaw of generating non-unique solutions, with more than one 
correct answer. A plausible solution to this challenge could be achieved by randomizing the input 
variables and generating a statically probability of a unique solution. 
 
Two wells in the Eagle Ford, oil/condensate window, have been analyzed using the proposed MPM. The 
MPM was validated through history matching and used for forecasting production. The recent production 
data is compared to the model’s predictions. 
 
INTRODUCTION 
Fractures contribute to production significantly by providing the primary pathways for hydrocarbon 
migration in oil and gas reservoirs. These fractures can exist naturally or can be induced by a hydraulic 
force. In the case of unconventional reservoirs (shale), these hydraulic fractures are the primary driving 
mechanism in hydrocarbon production. Unconventional reservoirs are characterized by ultralow 
permeability, high organic content, multiple porosity types, complex fluid storage, and flow mechanisms. 
Additionally, unconventional reservoirs tend to be naturally fractured, micro or macro fracturing, caused 
by hydrocarbon expulsion or geological forces, and contain secondary or induced porosity in addition to 
their original primary porosity. 
 
It is essential to have an accurate computational model to help design stimulation treatments that can 
maximize production from an oil and/or gas well in a fractured reservoir. A computational model generally 
refers to a mathematical model that simulates the behavior of a system, such as the production from an 
oil and/or gas well, and allows the behavior of the stimulated system to be analyzed. However, fractured 
oil and gas reservoirs can be challenging to characterize and model because such reservoirs comprise 
the combination of interacting natural reservoir media and the fractures contained therein, each of which 
has different parameters, such as porosity and permeability (Serra et al. 1983; McNealy 2013).  



 
 

 
Fractured reservoirs can be characterized using a multiple porosity model. For example, a triple porosity 
model can be used to represent one fracture system and two matrix systems or one matrix system and 
two fracture systems, each having different properties (Abdassah and Ershaghi 1986). First, Warren and 
Root (1963) solved this problem, assuming sugar cube idealization of the fractured reservoir, as shown in 
Figure 2. They also extended this model to well test analysis and introduced it to the petroleum literature. 
Their model was primarily developed for transient well test analysis in which they introduced two main 
dimensionless parameters, the storativity of the fractures system and fracture-matrix interporosity flow. 
The analytical solution in Laplace space and the approximation solution of the flow in log-log plots were 
introduced by Cinco-Ley and Meng (1988). They assumed pseudo steady state flow between the matrix 
and fracture systems.  
 
Different techniques have been recently proposed in literature for modeling fractured reservoirs. 
Microscale multiphase flow is suggested to model the complex dynamics in an unconventional reservoir 
(Alfi et al. 2014; Yan et al. 2013). Shabro et al. (2011) combined a pore-scale model with a reservoir 
simulation algorithm to predict gas production in gas-bearing unconventional reservoirs. There are some 
issues that hinder these models from being practical, (i.e., lack of data to initialize these models, 
complexity of tuning and history matching them, and they are also computationally expensive to run). The 
latter issue can be mitigated by using some model order reduction techniques as proposed in the 
literature (Gildin et al. 2013; Ghasemi and Gildin 2014; Ghasemi et al. 2015). 
 
Additionally, an analytical model of fractured reservoirs has been suggested, assuming the reservoir has 
homogeneous permeability and the fractures are uniformly distributed. In other words, to avoid having two 
partial derivatives in one equation (making the equation underdetermined), one of the variables, pressure 
or flow rate, can be made constant. This can be considered a significant difference between an analytical 
solution and a numerical solution. That is, in a numerical solution, both variables can change over time; 
but, during a single time step, one must be constant.  
 
Dual porosity was proposed by Bello (2009) to model hydraulically fractured reservoirs. The author 
assumed linear flow in the reservoir matrix and fractures and identified five different flow regimes in the 
lifetime of a well. Al-Ahmadi and Wattenbarger (2011) and Dehghanpour and Shirdel (2011) suggested a 
triple porosity model, wherein not only induced hydraulic fractures are considered, but also a network of 
natural fractures connected by main hydraulic fractures are assumed. Tivayanonda (2012) compared 
single, dual, and triple porosity models and suggested a guideline for interpretation of the results. 
 
MPMs proposed in this study were developed to model naturally and hydraulically fractured reservoirs 
with multi-scale fractures. This model is based on an analytical solution of a fractured reservoir in Laplace 
transform. It allows for either linear or radial flow. Also, one can easily consider any number of fractured 
media with different porosity in the model.  
 
After obtaining a proper model, it is advantageous to match the model to the actual reservoir production 
history, referred to as history matching. History matching, however, can be a nonlinear problem and 
mathematically accurate models might have multiple solutions (Kalakkadu et al. 2013). Therefore, there is 
a need for improved methods and systems for determining reservoir properties and fracture properties in 
wells, such as oil and gas wells.  
 
Conventional models typically rely on well pressure for history matching and determining reservoir 
properties. There are different web services that provide well production information that can be used in 
the MPM. The data from these sources can be used to determine a flow rate, but it typically does not 
provide the daily pressure data for the well, which can be a requirement in some computational models. 
 
This paper suggests a new approach to generalize the fractured reservoir and for the MPM to be used for 
determining reservoir and fracture properties from data sources where daily and/or monthly rates are 
available, but the flowing pressure is not available. This allows a well engineer to compare wells in terms 
of the number of open fractures, porosity, and permeability close to the wellbore. In the new workflow, 
one can start with a generalized fractured model and run the assisted history match to match the model to 



 
 

the existing production data, then the best model will be selected based on statistical analysis of the 
results. After obtaining this model, one can perform more analysis of the solution to investigate the non-
uniqueness of the solution. This workflow is illustrated and discussed in detail later. 
 
This work is organized as follows.  
 

 First, the mathematical model and proposed MPM are discussed.  
 Second, this model is discussed in addition to some sensitivity analysis with respect to different 

parameters in the model. These results are used in the following section for assisted history 
matching of the model to production data.  

 Third, the statistical methods are discussed to select the best model from all possible solutions. 
The best model is then used to analyze two production wells in the Eagle Ford and to identify the 
reservoir and fracture properties.  

 Finally, the non-uniqueness of the solution is discussed and an approach to investigating the 
trend of the solutions is discussed. 
 

UNCONVENTIONAL RESERVOIR MODELING 
Modeling unconventional reservoirs with conventional models can present several challenges. Some of 
these challenges include determining properties and scale of fractures and the reservoir, understanding 
the interaction between the fractures and the matrix, secondary and/or tertiary fracturing and porosity not 
available in the model, lack of pressure data during production, computational resources, and the time 
necessary to process the model. Using an analytical dimensionless rate, constant pressure solution can 
resolve several issues and these models typically are magnitudes faster and less resource intensive than 
numerical models.  
 
In general, MPMs can be solved considering multiple media with different permeability and porosity. 
Figure 2 is a schematic perspective view of an exemplary triple porosity model. In this model, multiple 
differential forms (one for matrix and one for fracture) of diffusivity equations should be solved 
simultaneously at any point in the reservoir model. 
 
There are different types of flow with respect to spatial derivative or time derivative. With respect to time, 
the flow solution in each media can be transient or pseudo-steady state flow. With respect to spatial 
derivative, the solution can be linear in Cartesian coordinates or radial in cylindrical coordinates.  
 
In general, one can convert the time and production data to dimensionless time and rate by defining the 
following time and pressure variables, given it is slightly compressible fluid [for derivation and description, 
refer to Bello (2009)] 
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The analytical dimensionless rate solution for linear flow constant bottomhole pressure (BHP) in the 
Laplace domain is as follows 
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where ݂ሺݏሻ is the function derived based on different flow regimes in a reservoir, which is explained in 
detail at the end of this section. 
 



 
 

There are two dimensionless parameters used in any analytical solution. These parameters help interpret 
different flow regimes in a reservoir. The first one is storativity ratio, ߱௜, which relates the total expansion 
in the fracture network to the total expansion in the system. This parameter accounts for the amount of 
fluid in a fracture system and is defined as 
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where ߶௜ and ܿ௜ are porosity and compressibility in media ݅, respectively. The second parameter is 
interporosity flow, ߣ௜, that describes the fracture-matrix interaction and is defined as 
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where ݇௜ is the permeability of the ith fracture, ܭி is the permeability of the main fracture, ܣ௖௪ ൌ  ி݄ isݔ2
cross-sectional area at well face, ݄ reservoir thickness, and ݔி fracture half-length. 
 
In Equation 6, ߪ is the shape factor that reflects the geometry of the matrix elements and controls the flow 
between porous media; for example, if the reservoir model is composed of slabs, as shown in Figure 2, 
then ߪ ൌ   .ி is the main fracture spacing distanceܮ ி, whereܮ/12
 
Starting from the innermost fracture, and assuming the flow is from reservoir matrix to the natural 
fractures, and then from those to the main fractures (hydraulic fractures), until it gets to wellbore, ݂ሺݏሻ can 
be found as 
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where ܨ௜ for slab matrix blocks is defined as 
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The model can be one of several models—dual, triple, or generally multi-porosity. In the dual porosity 
model, there is only the hydraulic fracture. In the triple porosity, natural fracturing and hydraulic fractures 
exist. In the quad porosity model, there are two types of natural fractures and hydraulic fractures, and so 
on. It should be noted that each of these models includes the matrix properties in addition to fracture 
properties. 
 
SENSITIVITY ANALYSIS 
One of the primary tasks after obtaining a model is to determine the importance of each parameter in the 
model. This can help improve not only the understanding of the model, but also helps provide some 
intuition in terms of determining whether a reservoir is profitable. 
 
A sensitivity analysis should be performed on the important parameters in the model separately. 
However, one should keep in mind that some parameters might be related proportionally or inversely; 
thus, the results will be related. In the sensitivity analysis, one parameter is changed at a time in specific 
range, and the output of the model is compared for different values. Although this approach is useful, 
another approach was chosen, a tornado chart (for the sake of space), to compare the significance of 
each parameter in the model.  
 
In a tornado chart, the model is run by assuming a set of values for each parameter that are typical 
values for a specific case. Then, each parameter is changed by relatively the same amount (e.g., േ10%), 



 
 

and the new value of the output is compared with the base case. This comparison is usually shown as a 
horizontal bar for each value. For example, a tornado chart for triple porosity model is shown in Figure 3. 
To generate this figure, each parameter was varied	േ10%, except permeabilities that were changed one 
order of magnitude, and cumulative production was compared with the base case. The difference for 
each is shown as a bar in Figure 3.  
 
As it can be seen, the reservoir porosity, permeability, pressure drawdown, and thickness have the 
largest effect on production and fracture half-length. On the contrary, fluid pressure/volume/temperature 
(PVT) [e.g., viscosity and formation volume factor (FVF)] also have great impact on the production. 
Conversely, the fracture porosity does not play that significant of a role. It is believed to be because of the 
small volume of the fractures compared to total stimulated volume (SRV) of the reservoir. 
 
MPM WORKFLOW 
In general, an MPM can be solved considering multiple media with different permeability and porosity. In 
this case, multiple differential equation forms of diffusivity equations are solved with proper boundary 
condition at wellbore and fractures.  
 
MPMs appear to cover a wide range of unconventional models. This case study investigates the results of 
this model in a new workflow for unconventional reservoir to determine its accuracy. 
 
To understand the process used for the MPM workflow, Figure 4 was developed. The first step is to 
import reservoir data to initialize the model. The production data in the form of oil rate, gas rate, or barrel 
of oil equivalent (BOE) are needed for history matching the model. This data also includes reservoir 
properties, such as average reservoir pressure, average formation volume factor, and viscosity. The initial 
estimation for reservoir permeability and initial hydraulic and natural fractures properties are also 
included. If the initial estimation for the fracture parameters is not accurate enough, the production from 
the model will be very different than true production data. One should modify these parameters to achieve 
the model output close to real production data to obtain a more reliable solution after history matching.  
 
The next step is to match the model with the production data using assisted history matching. During this 
step, one of the MPMs is selected, for example, triple porosity. A computer program is used to minimize 
the error between the model output and the true measured data. This is an iterative process and, upon 
the end of this regression, reservoir parameters can be estimated. Early production data can be noisy and 
inaccurate. Also, the recent production is more important in terms of forecasting future production. One 
should weigh the data points accordingly before running assisted history matching. The error is calculated 
as a root-mean-squared rate according to the following formula 
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where ݔ is a set of all unknown reservoir parameters, ܳ௠௢ௗ௘௟ሺݔሻ is the value calculated by a computational 
model, ܳ௔௖௧௨௔௟ሺݔሻ is the actual value of production derived from historical data, and ܹ is the weighting 
matrix influence of a data point on the error, which affects the history match. An initial weight matrix is an 
identity matrix; however, the diagonal elements corresponding to noisy data or outliers are set to very 
small values. 
 
The error function in Equation 10 is quadratic with some inequality constraints for each parameter. This 
function can be minimized using automated regression routines that can handle constraints. This paper 
used a nonlinear solver function, where the solution converges with good initial estimation.  
 
The assisted history matching should be accomplished for all the relevant MPMs, (i.e., dual, triple, and 
quad porosity models). After gathering all the history matching results of different models, one should 
compare them using statistical tools to select the best model that captures the production data. The 
typical tests are Akaike information criteria (AIC), Baysian information criteria (BIC), F-testing, etc. 
 
The AIC parameter is calculated using the following formula 
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where ݊ is the number of data points, ܴܵܵ is the sum of squared residual as defined in Equation 10 , and 
݇ is the number of parameters used in the model (i.e., ܭ௠, ,௙ܭ	  ி, etc.). The models can be alsoܭ
compared using an F-test, which can be calculated according to the following formula 
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where ݊ is the number of data points, ܴܵܵଵ and ܴܵܵଶ are the sum of squared residuals for the first and the 
second model, respectively, and ݌ଵ and ݌ଶ are the number of parameters in the first and the second 
model, respectively. 
 
It should be noted that the F-test is a comparison between two nested models to determine if the model 
with more parameters yields a significantly lower error. Models with more parameters can result in a 
better fit to the actual data, but can add complexity to the task of resolving a unique solution.  
 
Ultimately, after selecting the best model, one can investigate the non-uniqueness of solutions from 
history matching and find a trend in the parameter solutions. This process is necessary because the 
system of equations used to define the model is nonlinear and the nonlinear regression used in history 
matching can yield non-unique solutions. This nonlinear problem is anticipated to generate multiple local 
minima solutions and it is anticipated that only one local minima solution yields the lowest error or best 
history match to the actual production. Non-unique solutions can be problematic because different 
parameter combinations can result in solutions that satisfactorily match the historical data, but yield 
different values for the iteratively computed parameters in a model, such as matrix permeability, main 
hydraulic fracture permeability, porosity etc. For example, there is an inverse relationship between a 
hydraulic fracture’s length and permeability, which can be observed in a dimensionless fracture 
conductivity equation. 
 
Understanding these relationships and the impact that false solutions can have on forecasting actual well 
production are the reasons why a probability distribution on the initial guess of the unknown parameters is 
necessary. This can be accomplished by randomly initializing all of the parameters with a uniform 
distribution and finding all of the local minima, which can quantify the extent of any non-unique solutions. 
Without using a uniform random sampling on the initial unknown parameters, it is possible that some local 
minima will never be detected. 
 
Knowledge and experience in a specific reservoir are necessary to set limits on the range of values that a 
property can have. For example, in the Eagle Ford, it is expected that the permeability of the matrix will 
be between 10 milidarcies (md) and 10 nanodarcies (nd). If the model outputs a matrix permeability of 1 
darcy (D) and still yields a low error, it is safe to assume that the results of the model are not valid. This 
validation should be applied to all of the properties being solved for to help ensure the validity of the 
results. 
 
CASE STUDY RESULTS 
Production data for two adjacent wells (Wells 1 and 2) in the Eagle Ford, oil/condensate window, are 
available. The goal is to analyze these two wells with the proposed MPM to estimate some unknown 
reservoir and fracture parameters. The MPM results were validated through history matching and by 
comparing recent production data with the model’s forecasting results. 
 
The initial parameter estimation is the same for both wells. Figure 5 and 6 show a comparison of three 
exemplary models (e.g., dual, triple, and quad porosity) with the corresponding historical production data 
for Well 1. Differences in the models can be observed, for example, in the slope of the data and the 
accuracy of the history matching.  
 



 
 

Visually inspecting the output of the models can be helpful in terms of validating the overall accuracy of 
the output, as each model can use the same input that might have been weighted for various reasons. 
Additionally, the use of a log-log plot can help visualize the slopes of actual and modeled data, and can 
help determine when each flow regime occurred. 
 
Table 1 shows the results of AIC calculation based on Equation 11 for the case study. Here, dual, triple, 
and quad porosity models were compared. It is apparent that, in this example, the best model for this 
particular well would be the triple porosity model because the probability of that model being correct was 
found to be approximately 79.7% (i.e., a higher probability than those for the remaining models). 
 
The results of an F-test for the case study are calculated using Equation 12 and the results are shown in 
Table 2. These results also verify that the triple porosity is superior to either the dual or quad porosity 
models. The P-value is a probability measure of the sum of squares over the degrees of freedom to 
determine the significance of one model compared to the other. 
 
This comparison was conducted in the same manner for Well 2, and the triple porosity model also 
appeared to be the best representative model. 
 
After selecting the triple porosity model and history matching both wells’ production data to the triple 
porosity model, the unknown reservoir parameters are extracted and shown in Tables 3 and 4 for Wells 1 
and 2, respectively. The estimated parameters are close, just as the locations of these two wells are close 
and in the same type of reservoir rock. 
 
Now that the triple porosity model was opted as the best model and parameters were extracted using 
assisted history matching, the production data for Wells 1 and 2 are compared to the model results in 
Figures 7 and 8, respectively. Additionally, the cumulative production data is compared with the triple 
porosity model for both wells, and the results are shown in Figures 9 and 10, revealing that the model 
matches the data accurately.  
 
To validate this model, one can use it to forecast the production and then compare this forecast with 
recent production data that has not been used during history matching process. Because the public data 
was only available for both wells combined, the results from both models were combined and compared 
with recent production data in Figure 11. This figure shows the daily production data that has been used 
for history matching and the monthly production data that are available publicly. As it can be seen, the 
model forecast and cumulative production match very closely.  
 
Figure  shows a distribution of initial parameters in their plausible range. This is a biplot or matrix plot 
showing relationships of each variable to all other variables. Each row header in this example identifies 
the variable for the y-axis along the corresponding row; similarly, each column header identifies the 
variable for the x-axis along the corresponding column. The plots along the diagonal show an initial 
histogram for the variable corresponding to the respective row/column intersections. The histograms in 
this figure illustrate that the initial parameters are close to uniform distribution. 
 
In this figure, five variables were used, namely, kF (main or hydraulic fracture permeability), kf (natural 
fracture permeability), km (reservoir or matrix permeability), Lf (distance between natural fractures), and 
ye (main or hydraulic fracture half-length). However, other variables and numbers can be used in 
accordance with a particular application.  
 
A set of initial values can be chosen based on any information that is available regarding the 
corresponding variable. For example, a model can benefit from (i.e., by becoming more likely to be 
accurate) a set of initial values for a variable chosen from as narrow of a range as possible for that value. 
Also, one can choose any other distribution, such as Gaussian, Poisson, etc., if any a priori information is 
available about the corresponding variable. 
 



 
 

In this case study, 200 initial values were selected for each variable from a range of possible values. 
Assisted history matching of this model using every set of initial conditions can identify values that might 
be more probable than others. This can be identified as a trend.  
 
Figure  shows a matrix plot for the case study and parameters discussed after each set was used for 
initial estimation during history matching and the new parameters were obtained. The histogram for each 
parameter, along the diagonal of the matrix plot, demonstrates the frequency for each parameter.  
 
Further, the two trends between ݇௙ and ܮ௙ and ݇௠ and ܮ௙ in this figure indicate that there can be two 
solutions for a value of ܮ௙. Under such circumstances, one can determine the best option for a particular 
application based on other information available about the project at hand and experience or knowledge 
in the field, etc.  
 
Because a triple porosity model is underdetermined, the solution to the inverse problem is not unique. 
This problem can be avoided by holding some parameters constant. For example, in this case study, a 
more likely value for kf  is approximately 75 md, and approximately 65 hydraulic fractures are open. One 
should remember that sometimes more information is necessary to help determine a unique solution for 
all of the parameters. 
 
CONCLUSIONS 
This paper introduces a new workflow for fast evaluation of unconventional reservoirs. This process is 
based on matching different MPMs, dual, triple, quad, etc., to historical production data (no pressure 
information is necessary). It was suggested that statistical tools, (e.g., AIC, F-test, etc.) be used for 
selecting the best model. After such a selection and history matching, the unknown parameters of the 
reservoir or fractures can be estimated.  
 
This workflow was verified in a case study of two wells in the Eagle Ford shale reservoir. A triple porosity 
model was selected as the best model. It agrees that these wells are located in naturally fractured 
reservoirs. Also, the model forecast recent production data was very close to the public monthly 
production values. 
 
Finally, an approach to investigate non-uniqueness of the history matching solution based on determining 
the final distribution of parameters with respect to each other after history matching was proposed. These 
results were compared in a matrix plot to help determine the final histograms and possible trends 
between parameters.  
 
NOMENCLATURE 
 ሿࢊ࢓Permeability ሾ 	࢑
ࣘ Porosity 
 ሿݐReservoir (SRV) length ሾ݂ 	࢘࢞
 ሿݐSRV half length (main fracture half-length) ሾ݂ ࢌ࢟
 ሿݐSpacing between two adjacent elements (fractures) ሾ݂ ࡸ
 Width ሾ݅݊ሿ ࢝
 ሿݐReservoir thickness ሾ݂ ࢎ
 ሿ݌Oil viscosity ሾܿ ࢕ࣆ
Formation volume factor ሾ ࢕࡮

୰ୠୠ୪

ୱ୲ୠ
ሿ 

 Total compressibility ࢚ࢉ
ઢ࢖ Pressure drawdown between reservoir and bottom-hole 
n Total number of fractures 

 
SUBSCRIPTS 
 Main fracture ࡲ
 Secondary fracture ࢌ
 Matrix (reservoir) ࢓
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Table 1 - Comparing different models’ match based on AIC. 

Model No. of Parameters SSR AIC Correctness Probability (%)

Dual porosity 4 1.9446e5 964.98 9.9 

Triple porosity 6 1.8220e5 960.81 79.7 

Quad porosity 8 1.8161e5 964.88 10.4 

 
Table 2 - Comparing different models’ match based on F-test. 

Comparison F-Test Value P Value 

Dual vs. triple porosity 4.2 1.7% ൏ 5	% 

Triple vs. quad porosity 0.18 83.8 % ൐ 5% 
 

Table 3 - Reservoir parameters for Well 1. 

Matrix 
Permeability 

(nd) 

Hydraulic 
Fracture 

Permeability 
(md) 

No. of 
Hydraulic 
Fractures 

Fracture 
Half-

Length 
(ft) 

Natural 
Fracture 

Permeability 
(md) 

Total No. of 
Natural 

Fractures 

1900 184 60 348 0.8 60*10 
 

Table 4 - Reservoir parameters for Well 2. 

Matrix 
Permeability 

(nd) 

Hydraulic 
Fracture 

Permeability 
(md) 

No. of 
Hydraulic 
Fractures 

Fracture 
Half -

Length 
(ft) 

Natural 
Fracture 

Permeability 
(md) 

Total No. of 
Natural 

Fractures 

2260 86 60 533 0.5 60*18 

 
 
 
 
 
 

 
Figure 1 - Idealization of the heterogeneous porous medium (Warren and Root 1963). 

 



 
 

 
Figure 2 - Triple porosity model (Al-Ahmadi et al. 2011). 

 

 

 

 
Figure 3 - Tornado chart shows sensitivity of different parameters. 

 

 

 

 
Figure 4 - Multi-porosity workflow. 

 



 
 

 
Figure 5 - History matching results compared to daily production rate for different models. 

 

 
Figure 6 - History matching results compared to cumulative production for different models  

(stb vs. days produced). 
 

 
Figure 7 - History matched Well 1 production rate. 

 



 
 

 
Figure 8 - History matched Well 2 production rate. 

 

 
Figure 9 - History matched Well 1 cumulative production. 

 

 
Figure 10 - History matched Well 2 cumulative production. 

 



 
 

 
Figure 11 - Monthly production data compared to history matched model. The triple porosity model shows 

good prediction in this example. 
 

 

 

 
Figure 12 - Cross plot of initial parameters from uniform distribution. 

 



 
 

 
Figure 13 - Parameters extracted from matched triple porosity model to production history. Each history 

match was initiated from a set of uniform distributed points in Figure . 
 


