LEVERAGING BIG DATA TO IDENTIFY UNDERUTILIZED PUMPING UNITS

Scott K. Averett, Austin J. Moran and Steve Gault Oxy

Abstract

Re-utilization of artificial lift equipment and parts is a common practice among operators and service providers across the industry. It is common practice for operators to resize artificial lift equipment at failure or proactively as economics allow. As an operating company, we have found it valuable to build processes to track both inactive inventory and underutilized active assets, which can generate cash savings and value in artificial lift projects.

In this paper, we share how we leveraged our internal data to classify and rank our pumping unit population of over 7,000 wells in the Permian Basin. We developed an application using an industry standard relational database system and visualization software. As a result, the company has deferred purchasing new pumping units for the last three years.

Introduction

Occidental's Permian EOR business unit operates 7,481 beam-pump units across 86,000 square miles of the Permian Basin. This is a large population of assets that we track using well information and asset management software.

In 2016, a cross-functional team undertook a project to utilize our big data set and identify the population of beam pumping units that were underutilized in their current situations. Screening beam pumps for better utilization was not new to the organization, but an evergreen and widely accessible inventory visualization tool was.

A Method to Screen Underutilized Beam Pumping Units

At our company, active beam pumping unit inventory is tracked with an industry-standard well management system, which holds well-specific information such as gearbox size, unit type, rod material type, depth of the pump, daily production volumes, and other details.

The API RP 11L3 standard (see Table 1) was used as a model to develop fit-for-purpose estimates of the minimum size equipment to move a known volume from a given depth. Scenarios characteristic of our beam-pumped well population were ran in rod design software to generate unit sizes for the range of conditions in our fields. We used polished rod velocity as a primary reference variable to evaluate if the design inputs were generating reasonable unit size outputs. We also leveraged the operational experience of the group and used a certain amount of "reasonable judgment" to analyze the results.

The outputs, called Fit-for-Purpose (FFP) Tables (see Table 2), were categorized by depth and total fluid produced, similar to the API RP 11L3 tables. The results were optimized according to the following criteria: a correctly sized pumping unit would operate at maximum stroke length, would run 19 hours a day, and would be at least 80% efficient. We felt that with these specifications, the resulting FFP tables would provide reasonable reference points to compare with our current installations.

First, we needed to evaluate our dataset to determine what percentage of the well population had sufficient data for the analysis. We determined that we would need at least the following data in the system to make the comparison:

Pump depth

Total daily production volume

Rod string material (steel, fiberglass, etc.)

Unit type (conventional, special geometry, etc.)

Unit gearbox torque rating (912, 640, etc.)

After a data review, we confirmed that this information was being populated into the database tables, and that the tables were connected to our relational database system. However, not all of the 7,481 beam pump units had data for all five columns; only 4,024 wells, or 60%, did. This highlighted an opportunity to improve the data integrity of our system, which is an ongoing process. In the interim, we agreed that a 4,000+ well dataset was large enough to proceed with the evaluation.

The FFP tables were used as a standard for which gear box size could be used. Because most of the wells were less than 7,000 ft long and did not produce large volumes, structure rating was not a significant factor in our final outputs. Once a unit has been identified for a specific application, a detailed analysis should be conducted to confirm the design is within the appropriate parameters.

The FFP tables were then uploaded to our relational database system, which allows us to match our well information software (populated with active well data) to the unit size listed in the FFP table in Figure 1.

It also allowed us to script supplementary logic to screen data and evaluate other components of the system, such as the prime movers that power the pumping units. This required us to pull in some additional data specific to sizing the motors. The additional data included:

Polished rod horsepower (PRHP)

Motor horsepower (HP)

Motor Type – (NEMA D, NEMA B, etc.)

Our motor population consists primarily of NEMA D (96%) and NEMA B motors. To script the logic, we referenced three methods for sizing NEMA D motors (see Figure 2). The logic of implementing the three methods followed the flowchart shown in Figure 3.

The first method is the "two times polished rod horse power (PRHP)" method, shown in Equation 1.

Motor Size (HP) =
$$2 x PRHP$$
 (1)

The limitation of this method was that the last value for PRHP in the data table was collected from the most recent card. Due to the pump-off frequency, this method could have data points that were not reflective of the current value for this variable, thereby introducing error into the evaluation. To reduce that error, the flow chart was later modified to consider only the remaining two methods.

Those methods were: the Lufkin Motor Sizing Method (Chilingarian, 1987), which used the formulation for NEMA D motors shown in Equation 2. This formulation is an evaluation of the hydraulic requirements of the system.

Motor Size (HP) =
$$\frac{Total Fluid x Depth}{56000}$$
 (2)

The minimum motor size method (Gault) uses Equation 3 to determine the minimum motor horsepower required to start a pumping unit in motion from idle.

Motor Size (HP) =
$$\frac{Gearbox Torque Rating}{20}$$
 (3)

This calculation implies that a smaller motor may not generate enough startup torque to start a pumping unit from a standstill, so all motors should be at least this powerful. The horsepower results of these two methods may not match a standard motor size, so the results are rounded up to the next standard size.

Of the motors screened, 94% defaulted to the minimum recommendation based on the gearbox limitations of the minimum motor size method. This sizing logic allows us to set a reference point for horsepower requirements for each beam pump unit in our active population and compare them with the motor horsepower of what is currently installed.

We found there were 1,471 units and 2,979 motors out of our 7,481 Permian EOR active beam pumps that were at least two sizes larger than required at the current production levels. This allowed us to take the next step, which was to compile a list of underutilized assets.

Tools to Visualize Utilization

To optimize utilization of these assets, our team developed tools to visualize the utilization of this inventory in a Data Visualization Web Player (see Figure 3). For each asset, we determined the utilization ratio for the pumping unit (Equation 4) and motor (Equation 5). The larger the number, the more underutilized the asset is under current conditions.

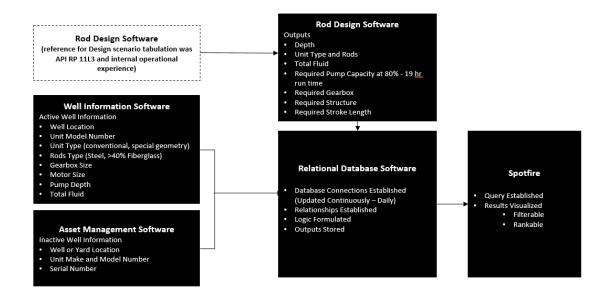
Pumping Unit Utilization Ratio =
$$\frac{Installed Unit Size}{Fit For Purpose Unit Size}$$
(4)

Motor Utilization Ratio =
$$\frac{Installed Motor HP}{Minimum Required Motor HP}$$
(5)

Within this visualization tool, our entire active and inactive beam and motor inventory can be filtered by field, size, utilization ratio, etc.

These tools are evergreen and can be referenced by each asset team or staff member in the organization when considering equipment requirements for future business activities.

Organizational Results


Since 2015, the active underutilized inventory has dropped to 1,078 units from 1,471 units. Over that period, our Permian EOR business unit has utilized approximately 300 pumping units for new drills, lift revisions, and other activities. This initiative has allowed us to defer purchasing new pumping units for two years (see Figure 4), thereby reducing operating expenses. It is our recommendation to utilize software applications and methods like these to manage and evaluate your large artificial lift datasets to optimize inventory.

	ROD NO. 76			PUMP DEPTH 5000+			PRODU 50			
PUMP DIA.	STROKE	SPM	PPRL	MPRL	STRESS	PT	PRHP	CBE	PROD UNANCH.	WRF
1.25	192.	13.7	19556.	387.	32539.	918.	47+1	9717.	490.0	7839
1.25	216.	12.2	19452.	991.	32367.	993.	47+6	9717.	491.0	7839
1.25	240.	11.2	19264.	1177.	32053.	1093.	47.8	9717.		7839
1.25	300.	9.1	18517.	2019.	30810.	1302.	46.3	9717.	493.2	7839
1.50	64.	25.1	19893.	1969.	33101.	268.	32.7	10420.	461.4	7918
1.50	74.	23.3	19581.	1736.	32581.	326.	34.0	10420.		7918
1.50	86.	21.1	19323.	1709.	32151.		34.2	10420.	467.7	7918
1.50	100.	19.1	19201.	1477.	31949.	469.	34.0	10420.	470.4	7918
1.50	120.	15.9	18671.	1832.	31067.	540.	32.1	10420.	475.6	7918
1.50	144.	13.1	18265.	2667.	30391.	595.	30-8	10420.	480.0	7918
1.50	168.	11.3	18020.	3144.	29984.	660.	30.7	10420.		7918
1.50	192.	10.1	17685.	3448.	29425.	729.	30+1	10420.	484.3	7918
1.50	216.	9.0	17416.	3842.	28979.	790.	30.3	10420.	486.0	7918
1.50	240.	8.1	17198.	4238.	28616.	850.	30+8	10420.	487.3	7918
1.50	300.	6.5	16854.	4618.	28044.	1019.	30.5	10420.	489.9	7918
1.75	48.	26.6	19532.	3458.	32499.	186.	27.5	11245.	445.9	8005
1.75	54.	24.5	19115.	3403.	31805.	209.	28.0	11245.	450.0	8005
1.75	64.	21.9	19069.	3108.	31729.	252.	27.5		454.8	8005
1.75	74.	19.9	19096.	2931.	31774.			11245.		
1.75	86.	16.0	19096.	1523.	31774.	303.	27.3	11245.	458.8	8005
1.75	100.	15.6	18888.	2705.	31428.	372.	27.6	11245.	462.7	8005
1.75	120.	12.3	18888.		30499.			11245.		8005
1.75	144.	12.3	18063.	3651.		499.	24.1	11245.	474.4	8005
1.75	168.	8.9		4029.	30054.	564.	24.1	11245.	478.3	8005
	192.		17716.	4589.	29477.	611.	24.1	11245.	481.4	8005
1.75		7.8	17400.	5201.	28952.	646.	24.7	11245.	483+8	8005
1.75	216.	6.9	17192.	5426.	28606.	687.	24+9	11245.	485.7	8005
1.75	240.	6+1	17109.	5349.	28468.	750.	24.5	11245.	487.2	8005
2.00	48.	24.4	19556.	4020.	32539.	175.	24.5	12205.	414.9	8114
2.00	54.	22.2	19486.	3860.	32422.	200.	24.7	12205.	422.3	8114
2.00	64.	19+8	19781.	3707.	32913.	252.	25+1	12205.	430.6	8114
2.00	74.	17.8	19685.	785.	32753.	295.	24.7	12205.	437.0	8114
2.00	86.	15-8	19715.	1348.	32803.	359.	24+8	12205.	443.4	8114
2.00	100.	12.6	19176.	4369.	31907.	412.	21.7	12205.	455+0	8114
2.00	120.	10.3	19086.	4356.	31757.	501.	21.5	12205.	463.4	8114
2.00	144.	8.5	18809.	4845.	31297.	579.	21.4	12205.	469.9	8114
2.00	168.	7.2	18471.	5549.	30733.	624.	21.4	12205.	474.5	8114
2.25	64.	18.4	20824.	2457.	34649.	250.	23.2	13287.	397.8	8232
2.25	74 -	16.4	20705.	1347.	34452.	288.	23.3	13287.	407.9	8232
2.25	86.	13.9	20763.	4242.	34548.	340.	23.1	13287.	420.7	8232
2.25	100.	10.9	20423.	4927.	33982.	412.	19.8	13287.	437.4	8232

Table 1: API RP 11L3 – Beam Pumping Unit Sizing Table

	100%	80%			Stroke	
	Pump	Pump	Gear		Length (inches)	
Depth	Capacity	Cap.	Box	Structure		
4000	25	20	57	89	48	
	50	40	80	90	48	
	75	60	114	95	54	
	100	80	114	95	64	
	200	160	228	109	86	
	300	240	320	133	100	
	400	320	456	143	120	
	500	400	640	173	100	
	600	480	640	200	120	
5000	25	20	57	109	48	
	50	40	80	109	48	
	75	60	80	119	54	
	100	80	114	119	64	
	200	160	228	143	86	
	300	240	320	173	100	
	400	320	456	173	120	
	500	400	640	256	120	
	600	480	912	256	144	
6000	25	20	57	133	48	
	50	40	80	133	48	
	75	60	80	133	54	
	100	80	114	143	64	
	200	160	160	173	86	
	300	240	320	200	100	

Table 2: Example of Fit-for-Purpose Output Table

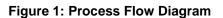


Figure 2: Flowchart for Calculating Pumping Unit Motor Sizes

pi to vesico totro Q	Automation		Current			Pumping Unit	Current Motor	Motor		
90LDSMTH UEVELLAND	Name	Pumping Unit	Unit Size	Pump Depth	Total Fluid	Utilization	Size	Utilizatio +	W	
WOLAND FARMS	RSAU-1101		228	4673	5	4.0	60	4.0	97 %	
NORTH CONDEN	FSAU-132	AMER C-320-305-100 (KB&KLB-99-43)	320	4478	7	4.0	60	3.0	94 %	
DST_CENTER_NAME	GLDU-0662C	LUF C320-298-100 (T.F.=47.48/100)	320	6373	26	4.0	60	3.0	94 %	
ge to search in fail 0.	SELU-361	LUFKIN M320D-305-120 (120108MR)	320	4842	35	4.0	60	3.0	89 %	
ADDIS A WELL #3 (APO)	HTBOYD-001	LUFKIN M456D-256-120 (120108MR)	456	5028	63	4.0	60	2.4	100 %	
DEDAR LAKE UT-OPER EXP+REV DENTRAL ROBERTSON CLFK UT	NCOWU-1070	LUFKIN A456D-305-144	456	4412	39	4.0	60	2.4	83 %	
DOGDELL CANVON REEF UNIT	GLDU-0195C	LUFKIN M456D-305-168 (168108MRO)	456	6129	9	5.7	60	2.4	94 %	
E F COWDEN & GRAI BURG	GLDU-0383A	AMER C-458-305-144 (KB&KLB-117-53)	456	6254	45	4.0	60	24	94 %	
erent Unit Sce	FU-0022	LUF C456-365-120 94110B&94110C	456	6308	31	4.0	60	2.4	94 %	
pe to search in fait (C)	HOLINGS-111	1 PARKERSBURG 120-456DNL-32-85	456	5151	7	4.0	60	2.4	100 %	
Alt) 4 values	CRCU-1260	AMER C-456-305-144 (KB&KLB-117-53)	456	6932	15	5.7	60	2.4	86 %	
120	RSAU-1061	LUFKIN M456D-365-144 (TF+65.8/144)	456	4508	19	57	60	24	97 %	
65	RSAU-1131	LUFKIN M456D-365-144 (TF=65.8/144)	456	4712	8	8.0	60	2.4	97 %	
	WILLU-125	LUFKIN M456D-304-144 (TF=65.8/144)	456	5185	26	5.7	60	2.4	88 %	
	DU-2947	LUF C458-304-144 (T.F.=68.45/144)	456	4899	43	4.0	60	2.4	53 %	
ament Mutur Sae 8 Inde hi search in Ind 0	MFU-247	T36F168-4BXL-D640G2KB (KB-117-53)	640	4753	56	4.0	60	15	76 %	
N Construction of the second s	MFU-261	T36F168-4BXL-D640GZKB (KB-117-53)	640	4631	35	5.6	60	1.5	76 %	
10 10	FSAU-084	LUFKIN M640D-305-168 (168108MRO)	640	4394	24	8.0	60	15	94 %	
60	MFU-715	T36F144-4BL-D640GZKB (KB-117-53)	640	4611	7	8.0	60	1.5	76 %	
75. 1 100 I	IGOE SM-004	T36F144-4BL-D640G2KB (KB-117-53)	640	4994	57	4.0	60	1.5	100 %	
125	HTBOYD-065	AMPSCOT C-640-365-144 (A118-55)	640	5090	17	5.6	60	1.5	100 %	
olor Utilization Ratio	JG8SAU-260	LUFKIN C640-365-168 94110B893110C	640	3990	48	8.0	60	1.5	95 %	
250	NCOMU DEA		040	4204	1 CP	4.0	00	1.5	02 W	
mping Unit Utilization Ratio		2. Once filtere	d the eat o	fmotors			underutiliz	red well a		
1% 100 %	1. Motor size can be filtered	can be ranked by underutilization				3. Selecting a underutilized well above displays recommended minimum motor size IFIF For Purpose Motor Sizes Automation Name Min Motor Size (FP Motor Size				
otal Plant 360	cuir be mitered	here	here							
Bescharged 3. ∨	here	(>1 indicates degree of			Au					
emian EOR Understillated Beam Uni		underutilization)			HT	HTBOVD-001 25 10				
ment Motor Size: (1 of 12 volves Mere ()		underutilizatio	n)							

Figure 3: Beam Pumping Unit and Motor Inventory Utilization Screen Captures

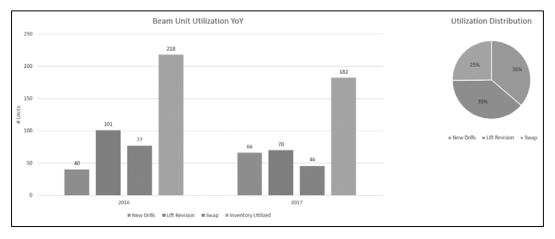


Figure 4: Beam Unit Utilization Categories 2016-2017

References:

- 1. George V. Chilingarian, J.O. Robertson, S. Kumar, 1987: Surface Operations in Petroleum Production, pg. 628, Appendix 14.1 Useful Formulas (Courtesy of Lufkin Industries. Inc.)
- 2. Bob Gault, Sucker Rod Pumping School Manual, 1980, pp. 6-33
- API RP 11L3. Sucker rod pumping system design book. 1st ed. Dallas, Texas; American Petroleum Institute, 1970