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ABSTRACT 
Crude-oil pipelines are the foundation of the liquid energy supply. Reliability of the pipelines are critical to 
the safe movement of the crude and pipeline maintenance plans. The degradation process of pipelines is 
complex, because (a) its deterioration is non-stationary and (b) operational environments vary dramatically 
by location. In this paper, we use a data-driven prognostic approach to model the degradation process of 
pipeline systems. We model the degradation process, a non-stationary Gamma process, with covariates 
and use the Expectation-Maximization (EM) algorithm for parameter estimation. The proposed approach is 
illustrated with a real case study by analyzing the annual wall thickness decrement of in-service pipelines. 
The results indicates that the proposed model is suitable for pipeline operators to identify the thickness 
deteriorating condition and the model is also flexible for stationary case without covariates. 
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1. INTRODUCTION 
In oil and gas industry, pipelines function as blood vessels and their failures could lead to unacceptably low 
safety levels for the public, environmental damage and monetary losses. Pipelines in the system are easily 
affected by the surrounding environment, construction errors, natural disasters and human activities. 
Different kinds of defects, such as corrosion, crack and mechanical damage may result in reduced strength 
in pipeline segments. For these defects, the nature of the growth mechanisms are time-dependent. With 
the use of suitable degradation model, the probability of failure can be estimated for pipelines with particular 
types of defect. Corrosion is a major integrity threat to oil and gas pipelines. Degradation analysis for metal 
loss corrosion defect is a vital part of pipeline integrity management [1]. The major concern of pipelines 
operators is the need to evaluate the pipelines’ current reliability and also the time-dependent change in 
reliability. 
 
The reliability-based pipeline corrosion management typically includes periodic inspections to detect and 
size corrosion, building the corrosion growth model based on the inspection results and mitigation of the 
defects [2]. The corrosion growth modeling plays an important role in the pipeline corrosion management 
in that it is crucial to the development of staged maintenance strategies that meet the safety and resource 
constraints. For a given operation lifetime, corrosion is of critical interest in maintenance optimization. For 
this reason, analyzing pipeline wall thickness data to develop the thickness degradation model can identify 
the deteriorating process. Given the failure wall thickness threshold, we can then optimize inspection 
interval, plan the replacement strategy to ensure safe operation and minimize the cost. 
 
Degradation model are usually developed based on degradation data or prior understandings of physics 
behind degradation processes of a specific system. Two common categories of degradation models are 
data-driven approach and physics-based modelling approach [3]. A power law is applied to model the loss 
of wall thickness with the time of exposure in [4]. Since it is hard to capture the failure mechanisms or 
physical phenomena of a complex system, the data-driven methods are becoming increasingly popular in 
applications. In Data-driven models, stochastic processes models and artificial intelligence models are 
widely used in characterizing degradation in different industrial applications. Stochastic processes models 
can take into account the temporal variability of a degradation process, and therefore are very suitable and 
realistic methods. Two stochastic processes, namely Gamma process and Markov process, are commonly 
used to characterize the growth of corrosion defect on pipelines [2, 5-7]. For example, the homogeneous 
Gamma process was presented [2, 5] to model the growth of defect depth. The homogeneous and non-
homogeneous Markov processes were used [6, 7] to model the growth of pitting corrosion. Note that for 
simplicity the corrosion growth was assumed to be a time-independent random variable as opposed to a 
stochastic process. 
 



In this paper, we apply the non-stationary Gamma process with covariates to model the wall thickness of 
corroding pipelines. In real-world application, non-stationary Gamma process with covariates is more 
suitable to deal with the heterogeneity problem. It assumed a monotone increasing shape function and 
random rate parameter. Expectation-Maximization (EM) algorithm is efficient for parameter estimation and 
is also the natural choice for missing data problem. For a special case, when the wall thickness degradation 
path has independent decrement in each time interval among different units, the proposed approach will 
be simplified to a stationary case and the basic maximum likelihood method can be used to estimate the 
parameters.  
 
The remainder of this paper is organized as follows. Section 2 will briefly introduce the non-stationary 
Gamma process with covariates and the implementation of parameter estimation. Computational study is 
presented in section 3. Section 4 concludes the paper and states the future work. 
 
2. MODEL DEVELOPMENT 
2.1 Non-stationary Gamma Process With Covariates 
Degradation of a system often processes a monotone, nondecreasing degradation path and independent 
increments [8]. Gamma process has both properties so that it is considered to be suitable for degradation 
modeling. Suppose 𝜂ሺ∙ሻ is a monotone increasing function with 𝜂ሺ0ሻ ൌ 0. The process ሼ𝑌௧; 𝑡  0ሽ is called 
a Gamma process when it has independent and Gamma distributed increments, i.e. ∆𝑌௧ ൌ 𝑌௧ା௦ െ 𝑌௦  is 
independent of 𝑌௦, and ∆𝑌௧ follows 𝐺𝑎𝑚𝑚𝑎ሺ𝜂ሺ𝑡  𝑠ሻ െ 𝜂ሺ𝑠ሻ, 𝛾ሻ. In our proposed model, in order to capture 
heterogeneities within a population, a random effects model [9] is introduced by assuming rate parameter 
𝛾 follows 𝐺𝑎𝑚𝑚𝑎ሺ𝑘, 𝜆ሻ. Besides, in reality, the exact form for shape function is hard to determine without 
any prior knowledge, so a semi-parametric method is used in [9] to estimate the shape parameters instead 
of assuming a parametric form of the shape function, like an exponential law or power law. First, estimate 
every ∆𝜂 nonparametrically, and then fit the estimates to get a plausible parametric form of 𝜂ሺ∙ሻ. 
 
We consider 𝑛  pipeline segments and the cumulative wall thickness decrement of these pipelines is 
recorded periodically at time point 𝒕 ൌ ሼ𝑡, 𝑡ଵ, ⋯ , 𝑡ሽ. 𝒀 ൌ ൛𝑌,௧బ, 𝑌,௧భ, ⋯ , 𝑌,௧ൟ is the cumulative decrement of 
wall thickness for the 𝑖௧  unit, where we suppose 𝑡 ൌ 0 and 𝑌,௧బ ൌ 0. Throughout the paper, we shall 
denote 𝜂 ൌ 𝜂൫𝑡൯, ∆𝜂 ൌ 𝜂൫𝑡൯ െ 𝜂൫𝑡ିଵ൯ , ∆𝑌, ൌ 𝑌,௧ೕ

െ 𝑌,௧ೕషభ
 for 𝑡, 𝑡ିଵ ∈ 𝒕 and 𝒀 ൌ ሼ𝒀: 𝑖 ൌ 1, ⋯ , 𝑛ሽ. In this 

random effects model, the log-likelihood function [10] for the 𝑛 units is  

 𝑙𝑛 𝐿ሺ𝜽|𝒀ሻ ൌ ∑ ൣ𝑘 𝑙𝑛 𝜆  𝑙𝑛 𝛤ሺ𝜂  𝑘ሻ െ 𝑙𝑛 𝛤ሺ𝑘ሻ െ ሺ𝜂  𝑘ሻ 𝑙𝑛൫𝜆  𝑌,௧൯൧
ୀଵ  

  ∑ ∑ ൣ൫∆𝜂 െ 1൯ 𝑙𝑛 ∆𝑌, െ 𝑙𝑛 𝛤൫∆𝜂൯൧,
ୀଵ


ୀଵ  (1) 

where 𝜽 ൌ ൫𝜂, 𝑘, 𝜆; 𝑗 ൌ 0, ⋯ , 𝑚൯  is the parameter vector. Since analytically maximizing (1) is almost 
impossible, EM algorithm will be applied to estimate the parameters, presented in the next section. For a 
special case, assuming the shape function has a linear form with time 𝑡, which means 𝜂ሺ𝑡ሻ ൌ 𝑎𝑡  𝑏 and 
the rate parameter 𝛾 is unknown number, the model will be simplified to a stationary case which means 
every ∆𝑌,~𝐺𝑎𝑚𝑚𝑎൫𝑎൫𝑡 െ 𝑡ିଵ൯, 𝛾൯. Basic MLE method can solve the parameter estimation problem. 
 
2.2 Parameter Estimation Using EM Algorithm  
For random effects model, the 𝛾’s are considered as missing data[9]. The EM algorithm is a natural choice 
for missing data problem. The algorithm iteratively applies two steps, that is, the expectation step(E-step) 
and the maximization step(M-step). Denote 𝐷௦௦ ൌ ሼ𝛾; 𝑖 ൌ 1, ⋯ , nሽ as missing dataset, 𝐷 ൌ 𝒀 ∪ 𝐷௦௦ as 
complete dataset. Given the complete dataset, the log-likelihood function, up to a constant, can be shown 
as 

𝑙𝑛 𝐿ሺ𝜽|𝐷ሻ ൌ  ൣ∆𝜂൫𝑙𝑛 ∆𝑌,  𝑙𝑛 𝛾൯ െ 𝑙𝑛 𝛤൫∆𝜂൯൧



ୀଵ



ୀଵ

 

  ∑ ൣ𝑘 𝑙𝑛 𝜆  ሺ𝑘 െ 1ሻ 𝑙𝑛 𝛾 െ 𝑙𝑛൫𝛤ሺ𝑘ሻ൯ െ 𝜆 𝛾൧

ୀଵ . (2) 

Further denote 𝛉ሺேሻ ൌ ൫𝜂
ሺேሻ, 𝑘ሺேሻ, 𝜆ሺேሻ൯ the estimated parameters at the 𝑁௧  EM algorithm, at ሺ𝑁  1ሻ௧ 

iteration, by considering the missing data as random variables, the EM algorithm evolves as follows [9]. 



(1) E-step: Compute the 𝑄-function  

 𝑄൫𝜽ห𝜽ሺேሻ൯ ൌ 𝐸ൣ𝑙𝑛 𝐿ሺ𝜽|𝐷ሻ ห𝜽ሺேሻ, 𝒀൧ ൌ ∑ ∑ ൣ∆𝜂൫𝑙𝑛 ∆𝑌,  𝜈
ሺேሻ൯ െ 𝑙𝑛 𝛤൫∆𝜂൯൧

ୀଵ

ୀଵ  

  ∑ ൣ𝑘 𝑙𝑛 𝜆  ሺ𝑘 െ 1ሻ𝜈
ሺேሻ െ 𝑙𝑛൫𝛤ሺ𝑘ሻ൯ െ 𝜆 𝜔

ሺேሻ൧
ୀଵ  (3) 

where 𝜈
ሺேሻ ൌ 𝐸൫𝑙𝑛 𝛾 ห𝜽ሺேሻ, 𝒀൯ ൌ 𝜓൫𝜂

ሺேሻ  𝑘ሺேሻ൯ െ 𝑙𝑛൫𝜆ሺேሻ  𝑌,௧൯, 𝜓ሺ∙ሻ is the digamma function; 

and 𝜔
ሺேሻ ൌ 𝐸൫𝛾ห𝜽

ሺேሻ, 𝒀൯ ൌ
ఎ

ሺಿሻାሺಿሻ

ఒሺಿሻା,
. 

(2) M-step: Update 𝜽ሺேାଵሻ ൌ ൫𝜂
ሺேାଵሻ, 𝑘ሺேାଵሻ, 𝜆ሺேାଵሻ൯ by maximizing the 𝑄-function over 𝜽, we have 

 𝑙𝑛 𝑘 െ 𝜓ሺ𝑘ሻ ൌ 𝑙𝑛 𝜔ഥሺேሻ െ �̅�ሺேሻ (4) 

 𝜆ሺேାଵሻ ൌ
ሺಿశభሻ

ఠഥ ሺಿሻ  (5) 

 ∆𝜂
ሺேାଵሻ ൌ 𝜓ିଵ ቀ�̅�ሺேሻ 

ଵ


∑ 𝑙𝑛 ∆𝑌,


ୀଵ ቁ (6) 

where 𝑘ሺேାଵሻ is the solution for (4),  ωഥሺேሻ and νതሺேሻ are the means of 𝜔ଵ
ሺேሻ, ⋯ , 𝜔

ሺேሻ and 𝜈ଵ
ሺேሻ, ⋯ , 𝜈

ሺேሻ, 
respectively and 𝜓ିଵሺ∙ሻ is the inverse digamma function. Therefore, 

 𝜂
ሺேାଵሻ ൌ ∑ ∆𝜂

ሺேାଵሻ
ୀଵ  (7) 

Finally, the EM algorithm terminates when the increment of the log-likelihood value is smaller than a given 
criterion 𝛼. 
 
3. COMPUTATIONAL STUDY 
We applied the presented approach to analyze the pipeline wall thickness data from a pipeline operation in 
Montana. There are 6 pipeline segments distributed in Montana. The wall thickness of each pipeline 
segment is measured daily from December 2015 to February 2019. Since the pipeline degrades slowly, we 
use the yearly average wall thickness to represent the degradation level in year 2016-2018. Table 1 shows 
the yearly thickness data from 2016 to 2018. We calculated the annual degradation decrement from year 
2016 and converted the unit from millimeter per year into milli-inch per year(mpy) (shown in Table 2).  
 
First, we apply the random effects model. We get ∆𝜂ଵ ൌ 1.138, ∆𝜂ଶ ൌ 0.999 and 𝑘 ൌ 8.556, 𝜆መ ൌ 7.654. Using 
the estimated parameters, we can obtain the 95%  confidence variance bound paths and simulated 
realizations of estimated model compared with the six sample paths as shown in Figure 1. Real data has 
been mostly covered by the variability bounds. Thus, the estimated degradation model has reasonable 
goodness-of-fit. Next, we relax the Gamma process to stationary case, the numeric result shows that the 
annual thickness decrement follows 𝐺𝑎𝑚𝑚𝑎ሺ1.024, 0.993ሻ. By applying a Kolmogorov-Smirnov test, the p-
value is 0.925, which means the obtained distribution can fit the sample data well as shown in Figure 2. 
From this real case study, we can see the non-stationary Gamma process with covariates can not only 
characterize the heterogeneities between different units in different time intervals, but also be flexible for 
simple stationary case.  
 
4. CONCLUSION 
This paper provides a data-driven prognostic method for analyzing the pipeline wall thickness data. The 
non-stationary Gamma process with covariates is shown to be reasonably satisfying to characterize the 
degradation behavior of the pipelines corrosion. EM algorithm is efficient to estimate the parameters for 
random effects model by assuming the rate parameters as missing data. In addition, the proposed method 
is flexible to model the stationary case. Therefore, we can optimize maintenance strategies to ensure safe 
operation and minimize the cost based on the estimated model, which is the direction for future exploration. 
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Table 1. Yearly average thickness data from 2016 to 2018 (mm) 

Units 2016 2017 2018 

1 12.930651 12.834149 12.806557 

2 9.0725522 9.0319358 9.0219283 

3 10.105685 10.10539 10.074024 

4 9.2760896 9.2423857 9.2335435 

5 12.893054 12.865728 12.853616 

6 11.788882 11.769629 11.763282 

Table 2. Annual degradation decrement data since 2016 (mpy) 

Units 2016 2017 2018 

1 0 3.80219850 4.889317 

2 0 1.60028372 1.994581 

3 0 0.01165216 1.247451 

4 0 1.32793311 1.676317 

5 0 1.07666410 1.553869 

6 0 0.75854495 1.008631 

  
 

Figure 1. Annual degradation decrement and simulated Gamma process plot  



 

Figure 2. Empirical CDF and estimated Gamma distribution CDF 

 


