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INTRODUCTION  
Design and diagnostic tools are an integral part of the modern rod pumping industry. 
Various quantities such as axial load and buckling tendency are of significant interest to 
ensure optimum operating conditions. As an example, Figure 1 shows a sample output 
from a design program predicting rod pumping system performance. The axial load vs 
measured depth curves are used to determine whether the rods are overloaded on the 
upstroke or buckled on the downstroke.  

Such plots provide definite value at the design stage, yet the reports in the printed 
documents are rather limited. Only one specific pumping mode is typically reported and 
the detailed behavior of the rod stress during the pumping cycle is not included for obvious 
reasons. During actual operation in the field the pumping mode can change, sometimes 
many times a day. Close monitoring of the rod stress then becomes an essential tool that 
may be utilized to “zoom into” the system and to detect problems early. 

DYNAMIC VERSUS STATIC 

Static considerations play an important role in the selection of the pumping mode. For 
example, [1] provides a formula for the critical compressive load to buckle a slender rod. 
The approach is based on Euler’s work on stability in the 18th century. Yet every rod 
pumping system is naturally dynamic and buckling occurs when the rod string is in motion. 
Reference [2] presents an interesting example demonstrating limitations of Euler’s 
method. Figure 2a shows a classical setup of a slender column of length 𝑙𝑙 that can buckle 
under the influence of force P acting vertically. An example of such a force would be 
gravity. In this case Euler’s method is applicable and yields the critical buckling force as 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝜋𝜋2𝐸𝐸𝐸𝐸 (4𝑙𝑙2)⁄ , where EJ is the bending stiffness of the column. 

Figure 2b shows a similar situation but now compressive force P “follows” the angle of 
rotation φ. Axial load would be an example of such a force. It turns out that Euler’s method 
fails in this case. That is, no other form of equilibrium other than the vertical shape of the 
column can be found. One could then argue that the rod can’t lose stability no matter what 
the value of P is. This would be wrong, however, and the correct interpretation of the 
result is that Euler’s method is inapplicable for this setup. The right approach is to consider 
small oscillation of the column around the equilibrium, i.e., consider the dynamics of the 
system. Reference [2] then shows that 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 20.19𝐸𝐸𝐸𝐸/𝑙𝑙2, which is significantly higher 
than in case 2a. 

 

 



FULL CYCLE ROD STRESS 

 
Every pumping cycle produces literally a mountain of information that can be utilized by 
the controller. Given a stream of surface cards, i.e., two synchronized sequences of load 
and position data, a wave equation solver calculates a set of intermediate cards starting 
at the polished rod and then going all the way to the downhole pump. Using the rod string 
parameters, load values can be converted to rod stress S. Essentially, S(x, t) is a matrix 
that shows how stress varies with measured depth x and time t. An appropriate Goodman 
diagram may then be applied to every x to decide whether the rod is overloaded at this 
depth. 

While all such computations can be done at the controller for every pumping cycle, 
transmission of all the data to the user would be impractical. Instead, we have developed 
a cloud-based interface that receives just the surface cards from a device in the field. 
Stress computations are then performed only for the pumping cycles selected by the user 
via web interface. Animation of the results has also been implemented. Such level of 
detail provides a comprehensive and instructive look at the stress and buckling of the 
entire rod string. It is a new tool offering simple and intuitive diagnostics of the rod 
pumping system. 

 

 

 

Figure 1 – Axial Load and Buckling Tendency plot by predictive software for a sample 
well.  



 
 
 

Figure 2a (left) – buckling of a slender rod of length 𝑙𝑙 under the influence of vertical load 
P. 

Figure 2b (right) – buckling of the same rod under force P “following” the angle of 
rotation φ. 
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