CONVERT TO ROD LIFT SOONER- LONG STROKE PUMPING UNITS

Spencer Evans, Joe Calhoun, and Sara Million

Liberty Lift Solutions

Abstract

With the use of mechanical linear long stroke units, having stroke lengths of 288–416 inches, converting wells to rod lift is being done sooner. Rates of 400-900 barrels of fluid per day (BFPD) are being achieved in wells as deep as 10000 feet measured depth (MD). This helps to eliminate running multiple electric submersible pumps (ESP) to draw down a well into the 400-500 BFPD range.

This paper will discuss the history and demand of linear long stroke pumping units in the market today, challenges operators are facing using other forms of artificial lift in this specific volume range, as well as discuss case studies and real results about the wells highlighted in this document. This will also cover the technologies being utilized such as pumping unit selection, bottom hole assembly (BHA) and pump configurations, rod designs, and optimization with VSD Zone Control.

Introduction

The technology of linear long stroke units has been around for quite some time, they have become more prevalent in recent years. These units originated in the early 1980s by Jerry Lang and Gordon Lively in East Texas¹. In the past 40+ years, the primary push for these units has been to lift fluid from deeper wells, maximize downhole component life, and improve efficiencies. Initially, some of the early versions of these units did not bode well with operators due to the lack of safety mechanisms on the units and limited qualified service/repair professionals to maintain units. However, the industry has since seen many improvements in both areas; safety features have been improved significantly, and the amount of trained service professionals has grown. The primary push for these linear long stoke units in our industry today is driven by higher production demands in horizonal well applications.

Stoke length trends have been steadily increasing over the past decade, as seen in figure 1. This growth in stroke length is primarily due to many horizontal wells coming off initial high-volume forms of lift, and in need of rod lift sooner in their lifecycle. This is where large conventional beam units and linear long stroke units start to become more common. The main take-away from the graph in figure 1, is that the demand for high volume rod lift has never been greater than it is today, and we continue to see this trend into the future.

In an effort to convert to rod lift sooner, operators have explored several options. The two main options being large conventional beam pumping units paired with fiberglass

sucker rods and linear long strokes with steel sucker rods. As seen in figure 2, operators have been able to achieve notable production numbers (300-400 BFPD) utilizing beam pumping units (ranging from 640s-1280s). In order to achieve these production rates with larger beam units, it is important to consider that these units must run fast (7-10 SPM) to achieve this level of production. Running much slower than the conventional units (2.5-4.0 SPM), linear long stokes can achieve 400-700 BFPD depending on wellbore conditions. The benefit of utilizing this long and slow stroke allows the operator to optimize pump efficiency and extend downhole component life by reducing cycles on the system. This production range (400-700 BFPD) can represent a grey area for operators as seen in figure 2. Do they run another ESP or gas lift system knowing their run times or efficiencies could be compromised? Linear long stroke units present another alternative allowing operators to maintain production and/or system longevity.

So, why make this push to rod lift sooner instead of opting to run another ESP or gas lift system? ESPs commonly perform poorly in low volume lift applications, and they can present many challenges (300-500 BFPD range). Although, operators are converting to that 2nd or 3rd ESP above this volume range, it doesn't take long to draw the well down to a range where issues may be present. The main challenge here is high OPEX and CAPEX costs. There are high upfront costs with ESPs. The initial ESP can utilize a 450-475 HP motor, and the second ESP using a 300-350 HP motor, which can lead to high energy costs. Operators can save on energy costs with linear long stroke units; the highest horsepower requirement with these systems is 150 HP. Converting wells to rod lift can be expensive initially, however, one thing to consider is that the operator is converting the well to a form of lift that will last throughout the well's life.

Considering gas lift is another alternative, but long compressor lead times and limited infrastructure availability is a challenge that many operators face regularly. Injection gas distribution is another important factor when deciding between gas lift and rod lift. Having the flexibility to remove 400-700 BFPD wells off gas lift, and then utilize the injection gas on higher priority wells, is a strong differentiator for operators.

General Design

Linear long Stroke Pumping units have had significant advancements in their technology since initial inception. With the integration of new safety features and the increase of structural capacity and stroke lengths, the capability to increase fluid production, via a rod lift system, has expanded considerably. These units have a variety of stroke lengths from 288 inches to 416 inches, with structural ratings reaching up to 60,000 pounds (Refer to Table 1). It should be noted that most high-volume applications, require these units to stroke at faster speeds. This necessitates the installation of a VSD to achieve these higher speeds due to inherent mechanical characteristics of the units.

It is important to acknowledge that each unit presents its own set of advantages and constraints. For relatively shallow applications, such as those around 5000 feet, 550

BFPD can be yielded with a unit that has a structural capacity of 36,000 pounds and a stroke length of 288/291 inches. Conversely, with a unit featuring a higher structural capacity of 55,000 pounds and a stroke length of 416 inches, production rates exceeding 650 BFPD can be achieved at depths nearing 9000 feet, depending on wellbore conditions. This scenario requires greater horsepower than smaller long stroke units and can require the utilization of tubing pumps in a 2-7/8-inch tubing application.

Having comprehensive, and accurate, data gathering is imperative to formulate the most effective and efficient Rod Lift System design tailored for current well conditions. This holds especially true when transitioning to a high-volume system employing a linear long stroke unit. Beyond conventional input parameters needed to create a software rod design, it is also important to account for historic well data encompassing corrosion, solids, gas/fluid production, and pump intake pressures/fluid levels. With this data, consideration must also be given to the primary goal. Is the objective to maximize production rate or to optimize system longevity? Pursuing higher production rates at increased speeds may potentially compromise the longevity of downhole components, whereas prioritizing longevity may impede top-end production rates.

Once the goal is outlined and a design is being finalized it is crucial to carefully select the down hole equipment: BHA, gas separator, and downhole pump design. Inadequately sized BHA and downhole pump configurations can significantly limit highvolume production and cause premature system failures. Table 2 displays the typical downhole pump lengths and bore diameters with corresponding base level constraints.

Once operational, adequate well spacing can enhance pump efficiency while mitigating the risk of pump tagging, which can cause premature pump damage. By leveraging a VSD and dyno cards, optimal system performance can be ensured. Continuous monitoring of the system design against controller outputs and ensuring proper well spacing are imperative. With VSD zone-control enabled, a system can be optimized for increased pump fillage by slowing down and speeding up at different portions of the stroke. Zone-control should also be utilized if running the unit at increased speeds.

Case studies

Case Study #1 - 320-550-416 (Lea County, NM)

This operator struggled to keep ESP's running due to solids and gas interference. The operator elected to run a 416 inch long stroke unit at a faster speed (4.5SPM) in order to maintain a high production rate. The target production for this well was 800+ BFPD and had a pump intake pressure (PIP) over 1600psi. The well had 5.5" production casing with 2-7/8" production tubing. It was converted to rod lift using a 320-550-416 unit, High Strength Rods (86 Taper) with 1.625" sinker bar, a 2.25" tubing pump and packer style BHA for the initial installation. The pump was set at 9000ft Measured Depth (MD). Side loads near surface were over 500lbs and less severe downhole. In the first month, an average of 850 BFPD was achieved with the pumping unit stroking at 4.5 SPM. This well produced steadily for three months before a sucker rod failure (operator

was pleased with this performance because of the high initial production rates). The failure occurred near the top of the $\frac{3}{4}$ " sucker rod taper. The operator decided to reduce the length of the $\frac{3}{4}$ " taper, extend the 7/8" taper and slow the unit down to 3.8-4.0SPM. The well continued to produce over 500 BFPD and the failure rate was reduced.

Case Study #2 - 320-550-416 (Lea County, NM)

This operator's goal was to eliminate the need to run a 3rd Electric Submersible Pump (ESP) and maintain a production goal of 450-500 BFPD with a PIP at 400-450psi. The well had 5.5" production casing with 2-7/8" production tubing. It was converted to rod lift using a 320-550-416 unit, High Strength Rods (878 Taper) with 1.00" sinker rods, a 1.75" insert pump and packer style BHA. The pump was set at 10,150ft MD. Sideloads peaked at 375-400lbs near surface and the well maintained a 6-degree tangent to 9000ft MD. In the first month, an average of 465 BFPD was achieved with the unit stroking at 3.7SPM. In the first four months the system maintained an average of 450 BFPD.

Case Study #3 – 320-550-416 (Winkler County, TX)

This operator's goal was installing a rod lift system after the first ESP failed, maintain steady production, and focus on longevity of the downhole components. The pump was set at 8950ft, 1300ft above the Kickoff Point (KOP). For this design, the production goal was 500+ BFPD with a PIP at 600psi. The well had 5.5" production casing with 2-7/8" production tubing. It was converted to rod lift using a 320-550-416 unit, High Strength Rods (86 Taper) with 1.625" sinker bar, a 2.25" tubing pump and packer style BHA. Sideloads peaked at 250-300lbs near surface and deviation was minimal throughout the well. In the first month, an average of 500 BFPD was achieved with the unit stroking at 2.6SPM. This well continued to maintain an average production rate of 350-450 BFPD for over 2.5 years before its first intervention. Post intervention, the pump was lowered to 10,200ft (landed at the KOP).

Case Study #4 – 320-500-366 (Yoakum County, TX)

This operator had an ESP landed in a 45-degree tangent section with the ESP intake at 5380' MD. The goal was to replace the ESP and land the intake of the rod pump as close to the original intake depth, while still maintaining production with a low PIP (230psi). Before the ESP failure, the well produced an average of 350-375 BFPD, but the rod lift production goal was 400+ BFPD. The well had 5.5" production casing with 2-7/8" production tubing. It was converted to rod lift using a 320-500-366 unit, KD sucker rods (88 Taper) with 1.50" sinker bar above the KOP and 1" guided rod below the KOP. A 2.00" insert pump and packer style BHA was used. Sideloads were 225-250lbs near surface, but over 300lbs at the KOP and above the pump set depth. Since the pump was set below the KOP and at a 45-degree inclination, sinker bar was used above the KOP to keep the upper 1" sucker rod taper in tension. In the first month an average of 400+ BFPD was achieved with the unit stroking 3.6 SPM. The well settled out producing a constant 250-300 BFPD throughout the next 10 months after install.

Conclusion

Linear long stroke pumping units have proven to be a tested alternative in uplifting wells of varying volumes. While high-volume ESPs and gas lift systems will always have a place in the industry, linear long stroke units prove to be a viable alternative in applications with volumes of 400-900 BFPD. With adequate selection for both the pumping unit and downhole components, operators have the flexibility to chase max volumes or increase system longevity, based on their goal for the system.

References

1. Lang, Jerry M, and Gordon R Lively. *Well Pumping Unit with Counterweight*. 19 Jan. 1988.

Figure 1. Stroke Length Trends 2015-2023

Data is the <u>average</u> stroke length pumping unit installed by Liberty Lift Solutions in the given year. This shows an increasing trend for longer stroke lengths over an eight-year period. Increasing by an average of 98 inches from 2015 to 2023.

Figure 2. Rod Lift Production Trends by Unit Size (7000-10500ft)

Data is based on 160 rod designs performed by Liberty Lift Solutions, of which 130 were installed. The dark blue bars represent production averages using an all steel sucker rod string for each unit size. The light blue bars represent production averages using a fiberglass/steel sucker rod string for each unit size. The blue circle highlights the average production ranges that linear long stroke units are capable of.

* Data collected within the last 18 months

Reducer (lbs)	Structure (lbs)	Stroke Length (in)	Max SPM Range w/ VSD*	Max Production Range** (~5,000)	Max Production Range** (~9,000')
250,000	30,000	288	4.75-5.25	500	NA***
320,000	36,000	291	4.75-5.25	500	NA***
320,000	50,000	306	4.25-4.75	650	550
320,000	50,000	366	4.0-4.5	800	550
500,000	60,000	366	4.0-4.5	800	600
320,000	55,000	416	3.8-4.3	975	650-850

Table 1. Typical Linear Long-Stroke Pumping Unit Specifications

Table displays the technical specifications for the six most common linear long stroke units available in the current North American market. Also highlighted is the max production rate by unit by depth.

*Average SPMs are estimated based on well conditions

**Max production range estimated based on producing well data

***May not be applicable for high production ranges in deviated wells

Table 2. Operations

Unit Stroke Length	291"	306"	366"	416"
Max Insert Pump Diameter	2"	2"	2"	1.75"
Tubing Pump Diameter	2.25" or greater	2.25" or greater	2.25" or greater	2" or greater
Pump Length	36'	40'	42' (caveat for the 2")	47'
Polished Rod Length	36'	40'	46'	50'

Table displays the API pump length, type, and bore size that is compatible with each linear long stroke unit. Note that the 2" tubing pump for a 416" stroke length unit is a special Non-API pump design. Also highlighted are the recommended polished rod lengths for each unit.

*Information based on 2.875" tubing

Case Study #1: Lea County XL 320-550-416 Rod design for Case Study #1

	INF	UT DATA				c	ALCULA	TED RE	SULTS		
Strokes per minute: 4.2 Pump int. pr. (psi): 1632 Yun time (hrs/day): 24.0 Fluid level 100 Uting pres. (psi): 50 Stuf.box fr. (bs): 100 Sasing pres. (psi): 50 Stuf.box fr. (bs): 100 Polt. nd. diam : 5" Pel.nd. diam : 5"				Production rate (bfpd): 857 Peak pol. Oil production (BOPD): 86 Min. pol. Strokes per minute: 4.2 MPRL/PF System eff. (Motor->Pump): 37% Permissible load HP: 171,1 Unit struc Envid load en ump (Pp) 9022 PRMP / F					I. pod load (lbs): rod load (lbs): PRL: ct. loading: PLHP:		
Fluid Properties		Motor & P	ower Meter		Fluid load	tvd (ft from surfac	e): 473	19	Buoyant rod weig	ht (lbs):	18847
Water cut: Water sp. gravity: Oil API gravity: Fluid sp. gravity:	90% 1 35.0 0.985	Power meter Elect. cost: Type: Size:	s.06/KWI NEMA D 150 hp	н	Polished rod HP: Prime Mover Speed Variation Speed variation not considered			7	N/No: .162 , F Motor Loading:	o/SKr: .	13 67%
Pumping Unit:Lit	berty XLLS (XL320-550-41	6)		Toroup a	naturin and electric	init.	BALAN	NCED		
API Size: R-320-55	50-416 (Unit II	: LSLIB4)	-,		consump	tion	icity	(Min 1	Torq)		
Crank hole number Calculated stroke I Crank rotation with Max. cb weight (M	r: ength (in): well to right: lbs):	# 1 (out 416 CCW Unknow	of 1) 1		Peak g'bo Gearbox le Cyclic load Counterba Daily elect Monthly el Electr.cos Electr.cos	k torq. (M in-Ibs): ading: I factor: ilance weight (M Ibs r.use (Kwh/Day): ectric bill: I per bbl fluid: I per bbl fluid:	k.	221 69.1 1.04 25.2 1430 \$261 \$0.1 \$1.0	% 2 17 00 01		
Tubing And Pum	p Informatio	n			Tubing, F	ump And Plunge	r Calcula	tions			
Tubing O.D. (in): Tubing I.D. (in): Pump depth (ft): Pump conditions: Pump type:	2.875 2.441 9000 Full Tubing 2.25	Upstr. rod-fl. d Dnstr. rod-fl. d Tub.anch.dept Pump vol. effic	amp. coeff.: amp. coeff.: h (ft): iency:	0.100 0.100 9000 85%	Tubing str Prod. loss Gross pun Pump spa Minimum J Recomme	etch (in): due to tubing streto np stroke (in): cing (in. from bottos sump length (ft): nded plunger length	ch (bfpd): n): n (ft):	.0 0.0 407.0 43.9 48.0 6.0)		
Rod string design	n	r unp meaon (03).	0.0	Rod string	stress analysis (service fa	ctor: 1)			
Diameter (in)	Rod Grad	le Length (ft)	Min. Te Str. (ps	n. Fric. i) Coeff	Stress Load %	Top Maximum Stress (psi)	Top Mini Stress (mum psi)	Bot. Minimum Stress (psi)	# Gu	ides/Ro
+ 1 + 1 0.875 0.875 0.875 0.875 0.875 0.75 0.75 0.75 0.75 0.75 0.1625 +requires simble co	LL HS LL HS LL HS LL HS LL HS LL HS LL HS LL HS LL HS Flexbard uplings. @ st	40(132) 50(237) 55(70(30(185(50(C 50(c 50(c 50(0 14000 0 3880 on eleva	0 0.2 0 0.25 0 0.25 00000000000000000000000000000000000	82.6% 79.0% 78.5% 70.9% 54.6% 74.6% 73.1% 64.3% 73.8% 8 (for 1.25 sinke	48747 46531 47873 44447 34375 31839 41276 39556 31655 16011 r bar) or 1 (for other s	1541 1385 1696 1612 8928 6872 7461 5550 -832 -834 -834 -834 -834	84114432	13991 13301 16713 10104 8184 6409 7110 1185 587 0		0 4 4 0 4 4 4 0 4 0 4 0 4 0
NOTE: Displayed both	tom minimum str	ess calculations d	o not include b	uoyancy effe	cts (top minimu	m and maximum stres	ses always in	nclude bui	oyancy).		
Prostanting of the second seco						Mmy	hh	- -			

troke Statistics	
Position	Load
404.6 [in]	29,532 [lb]
Peak Load	Min Load
35,053 [lb]	11,271 [lb]
Pump Fillage 93.2 [%]	Fill Base [%]
Pumping Speed	Net Stroke
4.51 [SPM]	389.63 [in]
Gross Stroke 418.03 [in]	Gas Stroke 28.40 [in]
Polished Rod Power	Fluid Production
70.41 [hp]	883.79 [BPD]
Oil Production	Water Production
88.38 [BPD]	795.42 [BPD]
Intake Pressure	Fluid Load
950.53 [psi]	11,721.29 [lb]
Downstroke Friction [%]	Upstroke Friction [%]
20	15

Case Study #2: Lea County XL320-550-416

Rod design for Case Study #2

	CALCULATED RESULTS										
Strokes per minut Run time (hrs/day Tubing pres. (psi) Casing pres. (psi)	kes per minute: 3.9 Pump int. pr. (psi): 410 time (hrs/day): 24.0 Fluid level 10 ng pres. (psi): 180 (ft over pump): 921 ng pres. (psi): 70 Stuf.box fr. (lbs): 100 Pol. rod. diam. 1.5" 100 100 100		Production rate (bfpd): Oil production (BOPD): Strokes per minute: System eff. (Motor->Pump): Permissible load HP: Fluid load on pump (Ibs): Eluid lead on fpump (Ibs):			465 Peak pol. ; 98 Min. pol. r 3.9 MPRL/PPF 33% Unit struct 10342 PRHP / PL		ad (lbs): i (lbs): g: ght (lbs):	43275 13717 0.317 79% 0.50 21353		
Mater ent	709/	Deves meter	Detect	_	Polished	od HP.	79.6	5 1	1/No: .16 , Fo	SKr: .1	51
Water sp. gravity: Oil API gravity:	1.09	Elect. cost: Type:	S.06/KWH NEMA D		Required p (speed	Required prime mover size (speed var. not included)		BALAN (Min T	ICED org)		
Fluid sp. gravity:	1.0324				NEMA D motor: Single/double cyl. engine: Multicylinder Engine:			125 100 125	HP HP HP		
Pumping UnitLit	berty XLLS (X	L320-550-416)		Torque an	alysis and elect	ricity	BALAN	ICED		
API Size: R-320-55	50-416 (Unit ID	LSLIB4)			consump	tion	and a second	(Min T	orq)		
Crank hole numbe Calculated stroke Crank rotation with Max. cb weight (M	r. length (in): nwell to right lbs):	# I (out of 416 CCW Unknown	1)		Peak g'box torq. (M in-Ibs): Gearbox loading: Cyclic load factor. Counterbalance weight(M lbs): Daily electr.use (KwhDay): Monthly electric bill Electr.cost per bil fluid: Electr.cost per bil fluid:			248 77.5 1.05 28.5 1749 \$320 \$0.22 \$1.0	74 1 126 74		
Tubing And Pum	p Information				Tubing, P	ump And Plunge	r Calculati	ions			
Tubing O.D. (in): Tubing I.D. (in): Pump depth (ft): Pump conditions: Pump type: Plunger size (in):	2.875 2.441 10150 Full Insert 1.75	Upstr. rod-fl. da Dnstr. rod-fl. da Tub.anch.depth Pump vol. efficie Pump friction (Ib	mp.coeff.: (mp.coeff.: ((ft): 101 ncy: 85% s): 200	0.100 0.100 50 6	Tubing stretch (in): .0 Prod. loss due to tubing stretch (bfpd): 0.0 Gross pump stroke (in): .393.2 Pump spacing (in, from bottom): .47.9 Minimum pump length (ft): .47.0 Recommended plunger length (ft): 6.0						
Rod string design				Rod string	stress analysis	(service fa	ctor: 1)				
Diameter (in)	Rod Grade	e Length (ft)	Min. Ten. Str. (psi)	Fric. Coeff	Stress Load %	Top Maximum Stress (psi)	Top Minin Stress (j	mum psi)	Bot. Minimum Stress (psi)	# Gu	ides/Rod
+ 1 + 1 0.875 + 1	LL HS LL HS LL HS LL HS LL HS	1400 925 6325 1500	140000 140000 140000 140000	0.2 0.25 0.25 0.25	95.8% 82.4% 98.8% 38.6%	54972 48019 55727 18196	17592 14029 16543 -1456	2	14505 13092 443 -255		0 4 4 4

NOTE: Displayed bottom minimum stress calculations do not include buoyancy effects (top minimum and maximum stresses always include buoyancy).

lo Malfunction unning, Fillage Yell State Elapsed Time day 09 : 11 : 17 ▶ Start Stop	Remainin N/A	ig Down Time	Equipment Loading Gerbox Loading (%) Structure Loading (%) Highest Loaded Rod Taper	Rod Number 1	Current N/A 130 % 87
Operational Status	Today ()	Yesterday	Production Status	iav ())	(esterday
Cycles (c/day)	0	0	Oil (bbl/day)	120	144.4
Run Time (hh:mm:ss)	20:38:25	24:00:00	Gas (mcfd)	18	21.6
Peak Load (lbs)	39900	39900	Water (bbl/day)	254.9	306.9
Minimum Load (lbs)	14790	14900	Total Fluid (bbl/day)	374.9	451.3
Pumping Unit Speed (avg)	3.7	3.7			Current
		Current	Instantaneous (bbl/day)		459.1
Pumping Unit Speed (SPM)		3.7	Pump Leakage (bbl/day)		32.5
Fluid Load (lbs)		14130	Pump Fillage (%)		93
Last Stroke Peak Load (lbs)		39553			
Last Stroke Min Load (lbs)		15601			

Case Study #3: Winkler County XL 320-550-416

Rod design for Case Study #2

INPUT DATA						CALCULATED RESULTS							
Strokes per minut Run time (hrs/day Tubing pres. (psi) Casing pres. (psi)	e: 2.8): 24.0 50 50	Pump int. pr. (Fluid level (ft over pump Stuf.box fr. (lb Pol. rod. dian	(psi): 600): 1516 ps): 100 n. 1.5"	5	Production rate (bfpd): Oil production (BOPD): Strokes per minute: System eff. (Motor->Pump): Permissible load HP: Fluid load on pump (lbs):		Production rate (bfpd): 505 Peak pol. Oil production (BOPD): 152 Min. pol. Strokes per minute: 2.8 MPRL/PP System eff. (Motor->Pump): 43% MPRL/PP Permissible load HP: 114.1 Unit struc Fluid load on pump (lbs): 12851 PRHP / P			Production rate (bbd): 505 Peak pol. pod load (lbs): 4 Oil production (BOPD): 152 Min. pol. rod load (lbs): 1 Strokes per minute: 2.8 MIR.UPPRL: 0 System eff. (Motor->Pump): 43% Unit Struct. loading: 7 Permissible load HP: 114.1 Unit Struct. loading: 7 Fluid load on pump (lbs): 12851 PRHP / PLHP: 0			42312 15080 0.356 77% 0.47
Fluid Properties		Motor & Pow	ver Meter		Fluid level	tvd (ft from surfac	ce): 742	9	Buoyant rod wei	ight (lbs): o/SKr: 1	20020		
Water cut: Water sp. gravity: Oil API gravity:	70% 1.04 42.0	Power meter Elect. cost: Type:	Detent \$.06/KWH NEMA D		Required p (speed	rime mover size var. not included)	53.	BALANCED (Min Torq)					
Fluid sp. gravny:	0.9727				NEMA D m Single/dou Multicyling	iotor: uble cyl. engine: der Engine:		7 7 7	5 HP 5 HP 5 HP				
Pumping Unit:Lil API Size:R-320-55	oerty LiftSolutio 0-416 (Unit ID Cl	ns (XL 320-55 USTOM	50-416)		Torque ar consumpt	alysis and elect	ricity	BAL/ (Min	ANCED Torq)				
Crank hole numbe Calculated stroke Crank rotation with	r: length (in): i well to right	# 1 (out of 416 CCW	1)		Peak g'box torq.(M in-Ibs): Gearbox loading: Cyclic load factor:			22 71 1.0	8 4% 73 7				
Max. cb weight (M	lbs):	Unknown			Counterbalance weight(M lbs): Daily electr.use (Kwh/Day): Monthly electric bill: Electr.cost per bbl fluid: Electr.cost per bbl fluid:			11: \$2 \$0 \$0	32 071 134 448				
Tubing And Pum	p Information				Tubing, Pump And Plunger Calculations								
Tubing O.D. (in): Tubing I.D. (in): Pump depth (ft): Pump conditions: Pump type: Plunger size (in):	2.875 U 2.441 D 8950 Tr Full Tubing Pr 2.25 Pt	lpstr.rod-fl.dar Instr.rod-fl.dar ub.anch.depth (ump vol.efficie ump friction (lbs	np.coeff.: 0 np.coeff.: 0 (ft): 895/ ncy: 85% s): 200.). 100). 100). 100 0	Tubing stre Prod. loss o Gross pum Pump spac Minimum p Recommen	etch (in): due to tubing stret ip stroke (in): ing (in. from botto ump length (ft): nded plunger lengt	ch (bfpd): m): th (ft):	.0 0.0 359 26.9 47.0 6.0	.8)				
Rod string desig	n				Rod string stress analysis (service factor: 1)					_			
Diameter (in)	Rod Grade	Length (ft)	Min. Ten. Str. (psi)	Fric. Coeff	Stress Load %	Top Maximum Stress (psi)	Top Mini Stress	mum (psi)	Bot. Minimum Stress (psi)	# Gu	ides/Rod		
+ 1 + 1 0.875 0.875 0.75 @ 1.625	LL HS LL HS LL HS LL HS LL HS C (API. SB)	800 1700 2500 1350 2000 600	140000 140000 140000 140000 140000 90000	0.2 0.25 0.25 0.2 0.2 0.2 0.2 0.2	90.8% 83.8% 91.0% 68.3% 89.4% 90.6%	53747 49750 52879 39827 48719 21202	1932 1645 1706 9909 9064 1330	7 2 9 9	16685 13455 11168 7521 4453 -96		0 4 4 0 0 0		

+requires slimhole couplings. @ stress calculations based on elevator neck of 7/8 (for 1.25 sinker bars) or 1 (for other sinker bars). NOTE: Displayed bottom minimum stress calculations do not include buoyancy effects (top minimum and maximum stresses always include buoyancy).

roke Statistics	
Position	Load
54.8 [in]	31,644 [lb]
Peak Load	Min Load
34,404 [lb]	15,036 [lb]
Pump Fillage 96.6 [%]	Fill Base [%]
Pumping Speed	Net Stroke
2.57 [SPM]	391.29 [in]
Gross Stroke	Gas Stroke
405.07 [in]	13.76 [in]
Polished Rod Power	Fluid Production
37.65 [hp]	504.82 [BPD]
Oil Production	Water Production 378.62 [BPD]
Intake Pressure	Fluid Load
413.53 [psi]	14,011.05 [lb]
Downstroke Friction [%]	Upstroke Friction [%]

Case Study #4: Yoakum County XL 320-500-366

Rod design for Case Study #2

INPUT DATA						CALCULATED RESULTS					
Strokes per minute Run time (hrs/day): Tubing pres. (psi): Casing pres. (psi):	: 3.6 24.0 50 50	Pump int. pr. Fluid level (ft over pump Stuf.box fr. (li Pol. rod. dian	(psi): 230 b): 449 bs): 100 h. 1.5"		Production Oil product Strokes pe System eff Permissible Fluid load	rate (bfpd): ion (BOPD): r minute: . (Motor->Pump): a load HP: on pump (lbs):	479 72 3.55 33% 126.8 6483	Peak Min. MPR Unit PRH	pol. pod load pol. rod load (L/PPRL: struct. loading: P / PLHP:	(lbs): (lbs): :	31165 8972 0.288 62% 0.33
Fluid Properties		Motor & Pov	ver Meter		Fluid level	tvd (ft from surfac	e): 4830	Buoy	ant rod weight	t (Ibs):	15510
Water cut: Water sp. gravity: Oil API gravity:	85% 1 35.0	Power meter. Elect. cost: Type:	Detent \$.06/KWH NEMA D		Polished ro Required p (speed	od HP: rime mover size var. not included)	42.1 Bi (ALANCE Min Torq	к.079, нол D)	SKr: .04	13
Fluid sp. gravity:	0.9775				NEMA D m Single/dou Multicylind	notor: ble cyl. engine: er Engine:		60 HP 50 HP 60 HP			
Pumping Unit:Lib API Size: R-320-50	erty XL LS (XL) 0-366 (Unit ID: L)	320-500-366 SLIB3))		Torque an consumpt	alysis and electr ion	ricity B (ALANCE Min Torq	D)		
Crank hole number: Calculated stroke le Crank rotation with Max. cb weight (M I	ngth (in): well to right: bs):	#1 (out of 366 CCW Unknown	1)		Peak g'box torg (M in-lbs): 186 Gearbox loading: 58.2% Cyclic load factor: 1.045 Counterbalance weight(M lbs): 20.07						
					Daily electr Monthly ele Electr.cost Electr.cost	use (Kwh/Day): ctric bill: per bbl fluid: per bbl oil:		904 \$1654 \$0.113 \$0.755			
Tubing And Pump	Information				Tubing, Pump And Plunger Calculations						
Tubing O.D. (in): Tubing I.D. (in):	2.875 U 2.441 D	pstr. rod-fl. dar nstr. rod-fl. dar	np. coeff.: 0 np. coeff.: 0	0.100 0.100	Tubing stre Prod. loss (Gross pum	tch (in): due to tubing streto p stroke (in):	sh (bfpd):	.0 0.0 361.7			
Pump depth (ft): Pump conditions: Pump type: Plunger size (in):	5300 Tu Full Insert Pu 2 Pu	ib.anch.depth (imp vol. efficie imp friction (lb:	(ft): 530 ncy: 80% s): 200.	0 ; .0	Pump spacing (in: from bottom): 31.9 Minimum pump length (ft): 39.0 Recommended plunger length (ft): 4.0						
Rod string design	Ded Crede	Length	Min Ton	- Exis	Rod string	stress analysis (service facto	or:1)	Minimum	40.44	las/Dad
Diameter (in)	Rod Grade	(ft)	Str. (psi)	Coeff	Load %	Stress (psi)	Stress (psi) St	ress (psi)	# Guid	esinod
+ 1 @ 1.5 + 1	LL KD T/2.8 C (API. SB) LL KD T/2.8	3750 800 750	125000 90000 125000	0.25 0.2 0.25	74.8% 86.2% 30.3%	39553 20383 11713	11551 1589 -2261		2545 -493 -255		4 0 4

+requires slimitede couplings. @ stress calculations based on elevator neck of 7/8 (for 1.25 sinker bars) or 1 (for other sinker bars). NOTE: Displayed bottom minimum stress calculations do not include buoyancy effects (top minimum and maximum stresses always include buoyancy). NOTE: Sinker bars should not be placed where the inclination is more than 4 degrees.

8 ≡

225 250 275 300 325 350

No Malfunction		Equipment Loading		Current	Surface and Downhole Cards
Running Fillage Auto		Gearbox Loading (%)		NA	36000
Well State Elipsed Time Remaining Down Time 13 day 00 : 56 : 09 N/A		Structure Loading (%)	Rod Nur	102 mber %	3400
▶ Start ■ Stop		Highest Loaded Rod Taper		1 110	
Operational Status Today ⊙	Yesterday	Production Status	Today 🛞	Yesterday	
Cycles (c/day) 0	0	Oil (bb/day)	54.4	147.2	18000
Run Time (http://www.st) 08:54:28	24:00:00	Ges (motd)	6.5	17.5	16000
Peak Load (bs) 31599	31874	Water (bbl/day)	115.7	312.8	= 14000
Minimum Load (bit) 7172	6719	Total Ruid (bbl/day)	170.1	460	
Pumping Unit Speed Avg. (SPM) 3.5	3.5			Current	8000
	Current	Instantaneous (bbl/day)		471	6000
Pumping Linit Speed (SPM)	3.5	Pump Leakage (bbl/day)		25	4000
Fluid Load (Ibs)	12438	Pump Fillage (%)		88	200
Last Stroke Peak Load (Ibs)	30900				0
Last Stroke Min Load (Ibs)	7886				-7000
E LED Status					-6000 - 25 50 75 100 125 150 175 200