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INTRODUCTION 
 
Many oil and gas companies rely on natural intelligence, resident knowledge, and rules-

based logic to optimize production. This is especially true for fields where electric 

submersible pumps (ESP) make up a considerable proportion of production.  The nature 

of ESP artificial lift systems makes them well suited for greater remote monitoring, 

enhanced automation, and implementation of machine learning (ML) for autonomous 

optimization. Extensive use of electrical surface controls integrated with downhole 

sensors provides an ideal operating environment to implement Artificial Intelligence (AI) 

through machine learning to achieve autonomous full self-pumping (FSP) operation. 

However, most operating companies stop short of using automation and machine learning 

to its full potential.  

 

This paper will present a case study of the demonstration, refinement, and deployment of 

a machine learning algorithm to optimize multiple ESP wells in the Permian Basin. The 

paper will discuss key learning points on how to effectively implement, refine, and deploy 

a machine learning optimization model at scale. The overarching goal of the paper is to 

assist operators in their digital journey with proposed best practices and considerations 

for effective field implementation.   

 

For any operator, the path to a fully mature AI-driven artificial lift solution is a long and 

exciting journey. The journey requires the operator and its partners to navigate numerous 

roadblocks and challenges as their oilfield becomes increasingly digital. The digital 

maturity framework presented in this paper has proved to be useful to compress timeline 

and resources needed for technical development and implementation change 

management.   

 

The framework is a 2-variable matrix clarifying completion of important milestones for 

both Maturity of Solution Capability and Solution Implementation as defined below and 

visualized in Figure 1. 
 

Progression of Capability Maturity 

• Measure – Solution collects quality, timely, and complete data necessary for 

intelligent optimization 



• Optimize – Solution increases quality and speed of decision making to maximize 

desired result(s) 

• Automate – Solution provides autonomous action involving experts by exception 

 

Progression of Implementation Maturity 

• Develop – Solution is created and operates in a controlled environment meeting 

criteria for a Minimum Viable Product (MVP) 

• Demonstrate – Solution is released to a small, real-world environment and 

operates under the care of domain experts 

• Refine – Solution undergoes iterations of improvement with collaboration 

between domain end-users and developers 

• Deploy – Solution is scaled and transitions into workflows of core business 

 

A key step in the transition is implementing an ML model developed and deployed at 

scale (across multiple users, wells, fields, basins, etc.).  For the scope of implementing 

a ML inference model to source setpoint recommendations to optimize a well producing 

with an ESP, the capability and implementation maturity paths are defined as follows: 

 

Maturity of Solution Capability 

• Measure – Predefined sensor and telemetry data are collected in a timely, 

consistent, and holistic manner 

• Optimize – Key artificial lift tuning parameters, including ESP frequency and well 

flowing tubing pressure (FTP), sourced from a ML inference model 

• Automate – ML model setpoint recommendations autonomously write to field 

control devices 
 

Maturity of Solution Implementation (Measure & Optimize Capabilities) 

• Develop – Configure field data capture, create ML inference model that 

autonomously generates setpoint recommendations of ESP frequency and well 

FTP with a User Interface (UI) 

• Demonstrate – Employ ML capabilities on a subset of wells producing in the 

Midland Basin 

• Refine – Improve ML model with reinforcement and feedback from domain 

experts and enhance UI 

• Deploy – Distribute solution at scale across the field and transition into core 

business 

 

A previous paper (SPE-214731-MS) was presented in 2023 that focused on the Develop 

and Demonstrate phases of the implementation process for an AI-based ESP 

optimization solution. This paper focuses on the subsequent Refine and Deploy phases 

of the implementation process.  

 



CASE STUDY BACKGROUND 

 

Once developed, the machine learning inference model was demonstrated in the field 

and produced setpoint recommendations for approximately 60 wells, roughly 25% of Vital 

Energy’s Midland Basin ESP program. During the demonstration phase, core capabilities 

could be observed at scale in the field environment to be refined with feedback provided 

by production engineers and ESP technicians.  

 

After approximately 9 months of refinement in the field, the ML inference model entered 

a deployment phase expanding utilization to over 200 wells, more than 80% of Vital’s 

Midland Basin ESP program. From December 2022 to March 2024, the number of ESP 

lifted wells using the ML inference model to optimize setpoints grew from 60 to 217 wells. 

A deployment timeline showing well count using ML model in optimization efforts and 

monthly petrotechnical engagements (accepting or rejecting model recommendations) is 

shown in Figure 2. During this phase of deployment, tangible learnings and results were 

observed in well performance, field oversight, and leading indicators of operating 

expense.  

 

This study focuses on the period with the highest level of petrotechnical engagement and 

implementation of ML sourced setpoint recommendations summarized below:  

 

• Start Date:  12/01/2022 

• End Date: 10/01/2023 

• # Days:  304 

• # Wells:  170 

 

CASE STUDY RESULTS 

 

To measure the quality of ML setpoint recommendations, next-day uplift was calculated 

by comparing the oil volume produced on the day after implementing a ML setpoint 

recommendation to the previous average production.  The calculation provided a range 

of next-day oil gain (or loss) shown in Figure 3. The mean uplift of the program was 

observed to be 2% to 4% after implementation of the ML setpoint recommendation.    

 

To understand if accepting or rejecting the ML recommendation resulted in differential 

performance, a subset of wells with high and consistent optimizer engagement was 

analyzed.  The dataset consisted of 56 wells with a total of 617 engagement actions.  

Engagements were classified as either an “accepted” or “rejected” action, based on if a 

setpoint change honored (or diverted from) the ML recommendation.  A total of 485 

“accepted” actions were observed along with 132 “rejected” actions.  Average oil uplift 

was observed to be ~1.8x higher when ML recommendations were accepted, occurring 

in 78% of engagements, as compared to instances when ML recommendations were 

rejected, occurring in 21% of engagements. See Figure 4. 



 

Field Oversight Impacts (speed of decision-making)  

Another way leveraging Machine Learning in Artificial Lift Optimization decision-making 

proves to add value is by relinquishing the time of domain experts from tedious, daily 

optimization evaluations – allowing them to focus their time and expertise on other 

challenges where it is more valuable. As digital tools evolve through the three levels of 

capability maturity (Measure, Optimize, Automate) operators can more efficiently 

leverage the knowledge of their petrotechnical domain experts. 

 

To estimate the potential impact to field oversight, a baseline for engineering- and 

technician-led optimization was assumed and summarized below. For illustration 

purposes, if one were to assign a “pro forma” cost of petrotechnical-led optimization, say 

$100 / hr, the impact of automating this task can be quantified. 

 

Baseline Assumptions for Illustration Purposes 

• Evaluation frequency:  1-7 eval / well / week 

• Evaluation time:   15-30 min / eval 

• Petrotechnical optimizer “cost”: 100 $ / hr 

 

The machine learning model provided daily setpoint recommendations for each well in 

the study, equating to multiple tens of thousands of distinct setpoint recommendations for 

well-specific operating conditions across the field. The same level of petrotechnical 

oversight would have equated to more than 10,000 people-hours.   

 

The ability to generate setpoint recommendations autonomously quickly outpaced Vital’s 

capacity to execute changes in the field manually.  The experience identified a large 

opportunity to unlock additional value if the ML model were given agency to safety write 

directly to field control devices to remove this bottleneck.   

 

Using the previously introduced assumptions, the potential value added from fully 

capturing daily setpoint recommendations for a single well would equate to $25 / day. 

When extended to the 170 wells in this study, the annualized “size of the prize” 

approaches $1.5 million per annum. 

 

Operating Expense Impacts (quality of decision-making) 

In addition to improving uplift and field oversight efficiency, deploying ML-driven 

optimization at scale can also influence Lease Operating Expenses (LOE) by improving 

ESP run life. With the ability to observe petrotechnical-prescribed telemetry boundary 

limits, the ML model predicts which combination of operating setpoints will adhere to 

these limitations and dynamically confine the decision space of the model as well 

conditions change. This provides the operator and supplier with an additional level of 

proactive protection for their equipment rather than relying on reactive telemetry alarms 

or faults. 



 

Though LOE saw improvement over the study's duration, this cannot be solely attributed 

to the deployment of the ML model across the field due to the wide range of external 

influences on these expenses. Rather, ESP run life data was used to determine the 

impact directionally on equipment reliability. 

 

Calculated survival analysis results were completed for 2022 and 2023 ESP run life data 

for all Vital Energy wells produced with ESPs. This period includes a limited view of run 

lives from before and during the ML model deployment. Data sets were censored and 

filtered identically from year-to-year. Key takeaways from this analysis are as follows: 

 

• The analysis shows ESP run lives for all wells improved year-over-year (YOY) 

• There was a 138% YOY increase in the number of running ESP systems 

• YOY comparisons of calculated results show improvements in: 

- % of units failed decreased: 42.7% (‘22) vs. 29.6% ‘(23) 

- Mean time to failure (MTTF) increased: 220 days (‘22) vs. 328 days (‘23) 

- Probability of failure at 90, 180, and 365 days all decreased in 2023 vs. 

2022 

• ESP uptime increased by ~4% in 2023 vs 2022. Figure 5. 

 

In summary, the reliability analysis showed marked improvement in several industry-

standard failure KPI’s from 2022 to 2023, in conjunction with the field-wide deployment of 

the ML model. While these improvements are not the sole result of the ML model 

deployment, the reliability analysis results show no negative impact to ESP run life / LOE, 

after deployment of the machine learning model. 

 

KEY LEARNINGS 

 

New Operating Skillsets 

As the machine learning model is refined, the implementation focus moves to training. 

Training the ML model itself through feedback from domain experts is widely recognized 

as a key to successful implementation. However, an often overlooked but equally 

important training effort involves how humans oversee the ML-driven optimization 

program. This requires a shift in approach and the development of new skillsets 

necessary to supervise autonomous operations, summarized below: 

 

• Learning how to trust the model results and recommendations  

- Becoming comfortable with “unconventional” setpoints 

• Understanding when to use / not use model 

- Understanding what is within the model’s core capabilities 

- Understanding what is outside of the model’s core capabilities 

• Learning how to confine the decision space of the model 



- Through telemetry boundary limits, human optimizers can impart external 

knowledge / constraints, impacting the model’s recommendations (i.e. 

surface facility / water takeaway constraints) 

• Transitioning petrotechnical optimizers to be AI-model supervisors 

- With proper petrotechnical oversight, the ML model is capable of 

implementing human-prescribed operating strategies (i.e. maximizing uplift, 

controlling drawdown, etc.) while discovering novel ways to do so 

• Having greater emphasis toward field custodianship is critical (i.e. repair and 

maintenance, keeping valves calibrated, communications functioning, etc.) 

 

Attitude Shift 

The introduction of ML / AI digital solutions to workflows in the Oil and Gas Industry is too 

commonly met with resistance, stemming from the false narrative that petrotechnical 

professionals will be “replaced” with such tools. Encouraging a shift in mindset is an 

important responsibility in implementation change management. 

 

Implementation success and velocity are improved significantly when the digital solution 

is introduced to the field / optimization technical team as an extension of their own 

capabilities, which will provide them the capacity to direct their time and expertise toward 

challenges where it is most needed. 

 

A new perspective must also be developed regarding “failure”.  Throughout the refine 

phase of digital solution implementation, deliberate effort should be made to identify the 

boundaries of the core capabilities of the solution. Additionally, the nature of ML models 

themselves is one of continuous improvement – benefiting from feedback of both 

successes and failures. Successfully identifying and communicating risk tolerance prior 

to implementation helps to mitigate fear of failure while preserving core business.  

 

Importance of Scale 

Implementing the ML model into an artificial lift optimization program can provide tangible 

value through improving uplift, increasing petrotechnical efficiency, and reducing LOE. 

These benefits are often only realized when implementation is done at scale.  

 

Though results may vary from well to well, incremental improvement (uplift, LOE, etc.) 

averaged across the field can serve as a powerful motivator for organizational buy-in. 

This can result in a compounding effect, in that improved buy-in leads to greater adoption, 

which in turn leads to further improved outcomes. 

 

In addition to the importance of increasing scale in terms of well count and organizational 

buy-in, another valuable learning taken from this study is the need for autonomy. 

Implementation of ML recommendations was severely limited by the need for a human to 

implement each recommendation manually.  The ‘implementation constraint’ observed 



when deploying ML at scale underlines the value of the 3rd phase of capability maturity: 

"Automate”. Overcoming this hurdle will be addressed in future work.  

 

CONCLUSIONS / SUMMARY 

 

The journey to a fully mature and operational AI ecosystem for any operator using artificial 

lift is a long one.  It requires the operator and its partners to navigate numerous roadblocks 

and challenges as their oilfield becomes increasingly digital. 

 

The process for the successful implementation of an artificial lift ML model can be defined 

as follows, 

 

• Develop the ML model  

• Demonstrate its capabilities  

• Refine model, user interface, and application expectations 

• Deploy at scale and transition into workflows of core business 

 

Refining the ML model, as it provides outputs and recommendations, is widely recognized 

as a key to successful implementation. However, an often overlooked and equally 

important training effort involves how humans oversee the ML optimization program. This 

requires a shift in perspective and the development of new skills necessary to supervise 

autonomous operations, as well as driving out the fear of failure of both the ML model 

and the humans that oversee it. 

 

Deploying a refined machine learning algorithm at scale over multiple wells, fields, etc. 

can provide compelling benefits in terms of decision-making, LOE improvement, and 

production uplift. 
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FIGURES 
 

 

Figure 1 – Example of Capability-Implementation Maturity Matrix 

 

 



 

Figure 2 – ML Model Implementation Timeline 

 

Figure 3 – % Oil Change After Implementing ML Recommendations 



 

Figure 4 – Next Day Oil Uplift on High Engagement Well-set 

 

 

Figure 5 – Year over Year Average ESP Uptime 
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(56 wells with 617 actions taken to either accept or reject ML recommendation)

On average results from 'accepted' 
recommenations outperformed 'rejcted' 
recommendations. 


