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ABSTRACT 
Conventional for Gas-Lift Optimization methods heavily rely on reservoir and fluid data quality, which comes 
at the cost of additional OPEX and human resources efforts for data gathering and calibration. Even after 
thorough calibration, pseudo-steady-state models overlook complexities like multi-pointing conditions and 
slugging behavior. On top of that dynamic multiphase flow simulation could be a viable option, however it 
adds further complexity and manpower requirements, making full-field deployment unsustainable. 

In a nutshell Gas-Lift Optimization revolves around the relationship between Well Production Rate and Gas-
Lift Injection Rate. This paper proposes a data-driven, model-free approach aimed at eliminating the 
dependency on well models, correlations, and field personnel. By focusing solely on this relationship over 
time, this data-driven approach identifies optimal Gas-Lift Injection Rate setpoints and execute direct 
implementation of these setpoints via gas lift controllers. 

Developed as an Edge Application and ran directly on site in an IIOT gateway device, this data-driven 
method leverages on the high-frequency data to provide predictive responses for single and multi-well 
optimizations. The application will execute iterative optimization cycles progressing towards system 
optimality, adapting to changing well conditions in a closed-loop manner. 

A case study involving eight unconventional horizontal wells from the Permian basin in Texas demonstrates 
the effectiveness of the proposed approach. Despite the complexities associated with these being 
unconventional wells, including severe slugging and rapidly changing conditions, significant production 
improvements were registered ranging from 5% to 25%. The entire optimization process was conducted in 
a fully autonomous manner, eliminating the need for office and field personnel, as well as avoiding the 
requirement for well modeling. 

This paper demonstrates the benefits of a fully autonomous and Data-Driven Gas-Lift Optimization 
workflow, covering the entire process, including data gathering, processing, edge computation, multi-well 
optimization, and direct well implementation via closed-loop control. 

 

INTRODUCTION 
When considering traditional gas lift optimization methods, a common reference is the typical gas lift 
performance curve (GLPC) as illustrated in Figure 1. 



   

 

 

 

 

Figure 1: Gas Lift Performance Curve without noise 

This curve provides a clear depiction of the relationship between well production and the Gas Lift Injection 
Rate (GLIR). However, obtaining this GLPC typically requires modeling the well using a multiphase flow 
simulator. Achieving a well calibrated model relies on the quality of reservoir and fluid data, alongside 
specialized knowledge. Yet, even with such efforts, pseudo-steady-state models often overlook 
complexities such as multi-pointing conditions and slugging behavior. 

To circumvent the need for well models, an alternative approach involves utilizing real-time field data (well 
production and GLIR) to construct the GLPC. However, actual field data can significantly deviate from this 
idealized conception of well behavior, as demonstrated by the dataset depicted in Figure 2. This dataset 
was collected over a brief period from an unconventional well in the Permian basin, Texas, US. 

 

Figure 2: Example of real distribution for GLIR and well production data points 

This dataset reveals an absence of a clear relationship between well rate and GLIR, making optimization 
less straightforward than implied by Figure 1. While the traditional GLPC approach isn't inherently flawed, 
the relationship between well rate and GLIR is more nuanced than often depicted. Hence, effective 
optimization requires consideration of noise in the dataset, as depicted in Figure 3, where synthetic noise 
based on real case data is added to illustrate a more realistic GLPC affected by inherent well dynamics and 
measurement noise. 



   

 

 

 

 

Figure 3: Gas Lift Performance Curve with noise 

Consequently, the optimization process shifts from merely identifying a single GLIR setpoint for maximum 
production to identifying an operating envelope where the well has the potential to achieve peak production 
rates, as demonstrated in Figure 4. 

 

Figure 4: GLPC best operating envelope 

This dynamic operating envelope, influenced by changing well conditions and reservoir pressure over time, 
presents a moving target for optimization. The following section elaborates on how the gas lift optimization 
algorithm can identify and track this desired operating range over time. 

 

METHODOLOGY 
Considering that the condition of the well evolves over time due to factors like water-cut increment and 
reservoir pressure decline, the optimal operating envelope will continually shift. The optimization process 
outlined in this paper has been deliberately structured to continuously iterate with different injection 
setpoints, ensuring that the Gas Lift Injection Rate (GLIR) remains within the optimal operating range over 
time. This iterative testing approach forms the core of the methodology presented here and underscores 
why executing this workflow effectively for multiple wells necessitates full autonomy. 

The Data-Driven Gas Lift Optimization (DD GLO) process consists of two main sections: 

1. Initial dataset generation 



   

 

 

 

2. Optimization loop 

 

Initial Dataset Generation 

To kickstart the process, the algorithm requires a minimum dataset size (typically set to eight data points) 
for successful optimization. If this initial dataset isn't available, the algorithm triggers an autonomous 
process to generate sample data points. This involves introducing slight variations around the prevailing 
GLIR and recording associated production rates. Generating this initial dataset typically takes up to two 
weeks, with each setpoint evaluation undergoing a stabilization period of 48 hours. Once the minimum data 
points are collected, the optimization step begins. This initial dataset generation step is a one-time 
requirement after algorithm initialization. Subsequently, the optimization loop maintains the dataset updated 
by discarding old values and replacing them with new data as acquired. 

 

Optimization Loop 

The optimization loop process is the core of the DD GLO application, and it is divided in five main steps as 
show in Figure 5:  

 

Figure 5: Data-Driven Gas Lift Optimization process 

• Step 1: Compute well rate and update dataset 

This step involves using the initial dataset generated or updating the dataset with the newly computed well 
rate after implementing the latest GLIR from the previous cycle: [937Mscfd, 175bopd]. 

• Step 2: Run optimizer 

Once the dataset is updated, the application runs the optimizer, which involves fitting a concave curve 
through the provided data points. The objective of the solver is not to replicate the GLPC but to identify the 
operating region that moves the well towards system optimality over iterative cycles. 

• Step 3: Get new GLIR setpoint 

The output of the optimizer provides the new GLIR setpoint, typically the maximum value from the fitted 
curve. In the example presented in Figure 5, this new GLIR setpoint is 918Mscfd. 



   

 

 

 

• Step 4: Implement new GLIR setpoint 

The new setpoint is set for implementation in the field via closed-loop actuation at the well. 

• Step 5: Stabilization period 

After implementing the new setpoint, the well undergoes a transient period where the well rate starts to 
change. It's crucial for the algorithm to allow all wells to reach pseudo steady-state conditions before 
acquiring new well rates and starting the next cycle. 

This iterative optimization process progresses towards system optimality, recognizing that system 
optimality is a moving target over time. Continuous and autonomous testing and production validation 
against new GLIR ensure dataset quality and adaptability to changing conditions. 

 

Algorithm Capabilities 

In addition to the core optimizer functionality, the algorithm offers diverse capabilities to enhance 
optimization: 

• Multi-well Optimization: This feature efficiently manages multiple wells while adhering to 
constraints. By considering a global constraint for 'Total Available Gas Lift [Mscfd]', the solver 
allocates gas lift to maximize oil production across a well group 

• Economic Optimization: The algorithm incorporates a cost function to optimize well production 
economically. This function factors in oil and gas selling prices, as well as the costs associated with 
processing gas and water, enabling the identification of the most economical GLIR setpoint 

• Operational Constraints: The solver can impose constraints on individual wells or groups of wells, 
ensuring adherence to operational requirements. These constraints encompass total oil, water, and 
gas production, accommodating field-specific limitations. Additionally, a step-size limit prevents 
solutions from deviating too far from existing set points, maintaining stability and efficiency 

 

FIELD EQUIPMENT REQUIREMENTS 
Considering the iterative nature of the process and the frequent changes in setpoints required by the wells, 
manual operation is impractical. Thus, the following minimum field instrumentation is necessary for the 
successful execution of the DD GLO process: 

• Gateway: A gateway linked to field instruments, capable of collecting all necessary field data, 
processing it, running the application, and implementing adjustments at the well via closed-loop 
actuation. 

• GLIR Measurement: Equipment for measuring Gas Lift Injection Rate. 

• Flow Control Valve (FCV): Essential for regulating flow rates. 

• Flow Computer (FC): A remote-operable FC capable of PID control to set GLIR setpoints. 

• Well Production Measurement: A Multi-Phase Flow Meter (MPFM) or equivalent device capable of 
real-time measurement of liquid, oil, and gas rates from the well. Additionally, Virtual Flow Metering 
solutions can be considered for more cost-effective setups. 

 



   

 

 

 

 

Figure 6: Example of field installation 

 

FIELD IMPLEMENTATION AND RESULTS 
 

Case Study 1 

• Single Well Optimization 

• Main Highlights: 

o Fully autonomous workflow execution 

o Production maintenance in-line with natural well declination 

o Satisfactory performance under changing conditions 



   

 

 

 

 

Figure 7: Production Profile for Case Study 1 

Figure 7 illustrates the production profile of the study well both before and after the optimization algorithm 
was implemented. Although there wasn't a significant increase in production, it's reasonable that the well 
was already operating near its optimal condition. However, following the algorithm implementation, the 
algorithm effectively maintained the natural decline of the well production in a fully autonomous manner, 
without any intervention from field personnel. Particularly, from September to November, the algorithm 
successfully stabilized production for three months, demonstrating the value of the autonomous operation. 

Another notable aspect of this application is its adaptability to changing conditions. Figure 8 compares the 
production profile of the study well with another well in the same pad that was managed according to the 
pre-established field operating philosophy via manual optimization processes. 



   

 

 

 

 

Figure 8: Application adaptation example to changes on water-cut vs manual operation. 

Upon analyzing the benchmark well, two instances highlight the impact of neglecting well management on 
production deferment: 

1. In August, the benchmark well witnessed a sudden reduction in water-cut from approximately 50% 
to 35%, while the GLIR setpoint remained at 600 Mscfd. Following this decrease in water-cut, the 
well required less GLIR due to the lighter column. Despite eventually reducing the GLIR to 450 
Mscfd over two weeks, this delay resulted in inefficient gas lift injection, leading to unnecessary 
OPEX expenditure. 

2. Subsequently, after adjusting the GLIR in response to the water-cut reduction, the water-cut 
increased back to nearly 50%. This heavier liquid column demanded higher injection rates to 
maintain production. Unfortunately, the operations team overlooked this change, resulting in three 
weeks of no gas lift increment. Consequently, the well's performance declined, with liquid and oil 
production falling below optimal levels. 

3. Meanwhile, the study well experienced a water-cut increase towards late August. The application 
consistently increased the GLIR, allowing the well to adapt to the changing conditions more 
effectively. Thus, while a minor production deferment occurred, it was significantly less impactful 
compared to the deferment experienced by the benchmark well. 

 

Case Study 2 

• Multi-Well Optimization: 3 wells 

• Main Highlights: 

o Fully autonomous workflow execution 

o Production maintenance in line with natural well declination 

o Step-change for underperforming wells 



   

 

 

 

In this scenario, the solver concurrently executed the optimization process for three wells. Figure 9 
illustrates the dataset generated for each well upon completing the initial data generation process outlined 
earlier. 

 

Figure 9: Output from first optimization cycle in Case Study 2 

For wells 1 and 3, the solver identified a concave trend based on the datasets, indicating that these wells 
were already operating near optimally. Consequently, the optimization cycle's outcome was consistent with 
the gathered data. However, for well 2, the solver's output differed significantly. It detected an increasing 
trend towards higher gas lift injection volumes. While the objective is not to replicate the Gas Lift 
Performance Curve (GLPC) precisely, but rather to approximate it based on the available dataset, well 2's 
trend did not reach its maximum within the imposed constraints (Minimum = 600 Mscfd, Maximum = 1000 
Mscfd). Thus, the solver proceeded to implement the maximum allowable GLIR setpoint for well 2. Figure 
10 illustrates the production rates obtained after implementing the setpoints from Figure 9. 

 

Figure 10: Step-Change production improvement in Case Study 2 

As anticipated, wells 1 and 3 exhibited minimal changes in production output; the values recorded at the 
conclusion of the optimization cycle closely mirrored the existing dataset. However, well 2 presented a 
starkly different picture; it was evidently underperforming. Initially set at approximately ~700 Mscfd, the 
GLIR for well 2 was increased to 1000 Mscfd during the optimization cycle. This adjustment resulted in a 
notable over 20% increase in production rate within a single cycle, escalating from ~260 bopd to ~310 bopd. 
Figure 11 illustrates the significant shift in the production profile. 



   

 

 

 

 

Figure 11: Well 2 production profile showing before and after DD GLO implementation. 

Following the deployment of the edge application, a distinct shift in both liquid and oil production is evident. 
However, shortly after the production enhancement, there is a sudden increase in the well's water-cut, 
impacting oil production. Nevertheless, as previously mentioned, the application adeptly adapted to these 
new conditions, sustaining oil production levels through higher GLIR.  

 

CONCLUSIONS 
This study encompassed three phases, involving a total of eight wells. The initial phase focused on single 
well optimization, followed by two subsequent phases dedicated to multi-well optimization. Across the 
board, three wells exhibited a marked improvement in performance, averaging a production enhancement 
of approximately 20%. While the remaining five wells did not display a significant production boost, 
nonetheless these were successfully maintained at optimized conditions, aligning with natural decline 
patterns and ensuring maximum deliverability autonomously. Moreover, the application's ability to swiftly 
adapt to evolving well conditions was demonstrated, not only in response to abrupt water-cut changes but 
also in the consistent upkeep of production levels over time, particularly crucial given the rapid reservoir 
pressure depletion typical of unconventional wells. This was accomplished through an automated closed-
loop process, featuring the effectiveness of the approach. 
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