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INTRODUCTION 

Modern controllers are required to estimate various parameters from field data to provide effective 

diagnostics and control of sucker rod pumping installations. In some cases, however, the data are not only 

corrupted by noise but also contain outliers that are in gross disagreement with the postulated model. If 

included, outliers can distort the fitting process so dramatically that the fitted parameters become arbitrary. 

In such circumstances, the deployment of robust estimation methods is essential. This paper discusses the 

application of random sampling consensus (RANSAC) to rod pump systems. The method can identify the 

outliers even when they constitute up to 50% of data.  

RANDOM SAMPLING CONSENSUS 

This approach proposed in [1] is well described in [2], which we follow. Given that a significant portion of 

the data may be outliers, RANSAC is the opposite to conventional smoothing techniques. Instead of using 

as much data as feasible to obtain an initial solution and then attempting to identify outliers, the smallest 

possible subset of the data to estimate the parameters is selected. For example, two points are randomly 

picked for a straight line. This process is repeated enough times on different subsets to ensure that at least 

one of the subsets contains only good points with high probability p, say, 95% or 99%. The best solution is 

the one that maximizes the number of points that are “in agreement” with the model. Once the outliers are 

identified and removed, the remaining set of inliers is combined to generate the final solution. 

Ideally, every possible subset of the data would be considered. If this is computationally infeasible, an 

important question is how many times random sampling must be repeated. Ref. [2] gives a simple formula 

that relates the number of subsets m to the fraction of contaminated data ε: 𝑝 = 1 − (1 − (1 − 𝜀)𝑛)𝑚. Here 

n is the number of features in each sample. If ε is unknown, as is usually the case, an educated worst-case 

estimate must be made in order to determine m. The criterion that distinguishes inliers from outliers will be 

elaborated on in the following section. 

MODEL EXAMPLE 

To illustrate the method, consider a straight green line 𝑦 = 𝑎𝑥 + 𝑏 in Figure 1, where 𝑎 = 1.5 and 𝑏 = 10. 

Suppose that we have obtained 𝑁 = 200 measurement points but 50% of them are gross outliers. Those 

are represented by red circles randomly scattered all over the plot. The remaining 100 measurements are 

“good” in a sense that they are slightly perturbed by Gaussian noise only. Those are depicted as blue 

triangles. The estimation algorithm knows neither the number of the outliers nor the standard deviation of 

the noise σ. The worst-case scenario 𝜀 = 0.5 is assumed. RANSAC selects a pair of points 𝑚 = 17 times 

to ensure that at least one selection contains two inliers with probability 𝑝 = 0.99. For each pair a set of N 

Euclidean distances 𝑑𝑖 from every point to the calculated line is recorded. Point 𝑖 is classified as an inlier if 

𝑑𝑖 < 1.96𝜎 and as an outlier otherwise. The standard deviation is estimated from the median of the 

residuals: 𝜎 = 1.4826√𝑚𝑒𝑑𝑖(𝑑𝑖) [2]. The black line in Figure 1 represents the result of a particular RANSAC 

run. 95 points were classified as inliers and the final estimation of the coefficients of the straight line was 

made by using only those points.  

APPLICATION TO ROD PUMPING: TRAVELING VALVE CHECK 

The problem that motivated this work is the estimation of the plunger leakage rate from the traveling valve 

check. This method proposed in [3] involves stopping the pumpjack during the upstroke when the weight of 

the fluid column is carried by the traveling valve. The surface 𝐹𝑠(𝑡) load is measured and recorded as a 



function of time. The obtained curve is then processed to extract the pump leakage rate from the polished 

rod load loss rate. The original work [3] attempted to estimate the leakage by picking just three samples 

and then passing a parabola through them. The first point is always at time 𝑡 = 0 corresponding to the 

maximum load 𝐹𝑠(0). The other two are selected arbitrarily, however. Further research [4] proposed a 

transformation of the load curve with the intention to pass a straight line through all the samples via linear 

regression. In both cases though a noisy 𝐹𝑠(𝑡) signal presented a significant challenge. 

In this work we first refine the model of [3,4] rewriting the equations that relate the traveling valve leakage 

rate Q to the axial load at the pump 𝐹𝑝(𝑡). As shown in [4], Q may be expressed in two different ways. 
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Here 𝐴𝑝 is the plunger area, K is the spring constant and 𝐶𝑥 characterizes the leakage rate and is the 

quantity to be estimated. Integration of this differential equation yields the following result: 

𝐹𝑝(𝑡) = 𝐹𝑝(0)exp⁡ (−
𝐾𝐶𝑥𝑡

𝐴𝑝
) 

The next step is to relate the load on pump to the load at the polished rod. When dynamic effects are 

neglected, the relationship between 𝐹𝑠(𝑡) and 𝐹𝑝(𝑡) is given by [3,4]: 𝐹𝑠(𝑡) = 𝐹𝑝(𝑡) +𝑊𝑟 + 𝐹𝑢𝑝. Here 𝑊𝑟 is 

the buoyant rod weight and 𝐹𝑢𝑝 is the static mechanical friction on the upstroke. This equation holds for any 

time instant including 𝑡 = 0. Rearranging the terms gives the following two equations: 

𝐹𝑠(0) −𝑊𝑟 − 𝐹𝑢𝑝 = 𝐹𝑝(0) 

𝐹𝑠(𝑡) −𝑊𝑟 − 𝐹𝑢𝑝 = 𝐹𝑝(0)⁡exp⁡ (−
𝐾𝐶𝑥𝑡

𝐴𝑝
) 

Eliminating 𝐹𝑝(0)⁡and taking the logarithm of both sides then yields 

ln
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In general, 𝑊𝑟 is supposed to be known and 𝐹𝑢𝑝 may be calculated. If the test is carried on long enough 

though, the traveling valve eventually opens and the fluid load on pump vanishes. Denote this case 

symbolically as 𝑡 = ∞ and 𝐹𝑠(∞) as 𝐹∞, then 𝐹∞ = 𝑊𝑟 + 𝐹𝑢𝑝 and 

ln(𝐹𝑠(0) − 𝐹∞) − ln(𝐹𝑠(𝑡) − 𝐹∞) = 𝐾𝐶𝑥𝑡 𝐴𝑝⁄  

This is an equation of a straight line that may be rewritten in a more canonical form as 
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RANSAC can then be used to estimate 𝐶𝑥 from the samples of 𝐹𝑠(𝑡). Since the number of parameters is 

𝑛 = 1, it may be feasible to go through all the samples and select the best one.  

DYNAMOMETER CARD ANALYSIS 

Surface and downhole dynamometer cards are used routinely for diagnostics and control. Reference [5] 

presents several interesting cases where the slope of the surface card is utilized to estimate the spring 

constant K and diagnose various important conditions. Those include downhole rod string sticking, 

unanchored tubing as well as a loss of synchronization between the load and the position signals. The 

cards are often “noisy” for a variety of reasons and therefore extracting useful information from them may 

be challenging. Application of RANSAC following the steps of the model example may thus be quite helpful.  



Downhole cards can be utilized to estimate the fluid load on pump, which requires the calculation of the 

fluid load lines. Reference [6] discusses a statistical approach to such computations, which is similar in 

spirit to RANSAC. Since the load lines are horizontal, they are again characterized by just one parameter. 

The potential benefit of RANSAC in this case is an estimate of the standard deviation, which determines a 

set of points to be used to obtain the final solution. 

CONCLUSION 

RANSAC is a powerful robust estimation algorithm that originated in the areas of computer vision and 

statistics. We believe that it has potential in rod pump applications as well, providing more accurate results 

and in some cases opening a door to working with noisy data that cannot be meaningfully processed with 

conventional tools. 

 

Figure 1 – RANSAC estimation of a straight line in the presence of 50% of gross outliers. 
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