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ABSTRACT 

Methane emissions measurement technologies have been evolving rapidly and becoming increasingly 
efficient over the last few years. The purpose of this paper is to introduce recent technological 
advancements that have helped operators in the US obtain more in-depth methane leak insights, 
improving the performance of emissions mitigation programs, ensuring proper management of associated 
risks, and delivering measurement-based methane emissions inventories. Technological advancements 
include both measurement hardware and emissions data processing algorithms and software tools. 
However, emission source detection, localization, and quantification are still areas of ongoing research 
and need further improvement.  

Technology companies, such as Project Canary, have developed novel models for detecting, localizing, 
and quantifying the total site emissions from oil and gas production facilities using continuous monitoring 
data. This model uses real-time and historical data to quantify emissions from various intermittent and 
continuous sources while differentiating any offsite emissions. A machine learning model is employed to 
build a unique model for each methane monitoring device to determine how the wind direction affects the 
concentration readings, simulating plumes from all potential emission sources and matching the plumes 
to the device model with a mixture model. This model is currently used to quantify emissions on hundreds 
of operating well pads across the United States. These models are complemented with operator 
notification and alerting systems to ensure timely actions by operators that result in reducing their 
environmental footprint and help keep the gas in pipelines. The most recent updates to the operator 
notification systems, called Smart Alerts, employ machine learning algorithms to eliminate unnecessary 
notifications and avoid alert fatigue.   

 

INTRODUCTION 

Managing methane emissions has become a serious challenge for oil and gas professionals in the U.S. as 

the industry landscape evolves quickly. Precise measurement of methane emissions is not only important; 

it is essential, with far-reaching implications for the sustainability of the environment, regulatory compliance, 

and operational efficiency of oil and gas production facilities. We have seen a profound change in the 

technology available to measure methane emissions over the last few years, driven by major advances in 

equipment and software. With these technological breakthroughs, operators have been given powerful tools 

to learn more about methane leaks and improve the effectiveness of emissions reduction programs. 

This paper aims to provide insight into recent technological breakthroughs and their significant impact on 

the efficiency of emissions mitigation strategies. It gives operators a high-level understanding of emissions 

management by analyzing existing technologies to measure methane emissions continuously. The 

advances discussed include the measurement equipment and software tools developed to process 

emissions data. These improvements will allow a more accurate and effective approach to managing 

methane emissions, enabling operators to manage related risks better to comply with regulatory 

requirements. 

Nevertheless, there is still work to be done to improve methane emissions management. Further research 

and development are still needed to detect, localize, and quantify methane emissions. Addressing these 



challenges is essential to refining emission management strategies and improving the accuracy of methane 

inventories. 

A groundbreaking model for the continuous monitoring and management of methane emissions from oil 

and gas production facilities is an important advance in this area. This model is based on real-time and 

historical data to accurately quantify emissions from different sources, including machine learning 

techniques to improve the detection, localization, and quantification of methane to provide unprecedented 

insight into managing methane emissions. It separates on-site and off-site emissions and simulates 

emission streams. The potential of these technological innovations is underlined by the model's integration 

with advanced operator notification and alerting systems, including innovative Smart Alerts that use 

machine learning algorithms to reduce unnecessary notifications. These systems reduce environmental 

impact and enhance operational efficiency by minimizing product loss and ensuring pipeline gas 

containment. 

The paper will discuss in detail these technical developments, their implementation difficulties, and possible 

new strategies to tackle methane emissions as they evolve. The aim is to give oil and gas professionals a 

comprehensive overview of how these innovations can be used for more sustainable and efficient 

production practices, which will, in turn, lead to greater awareness about the potential future benefits of 

such progress. 

 

METHODOLOGY 

Hardware 

Emissions monitoring companies have a suite of methane sensing technology that can be deployed, 

ranging from metal oxide and spectroscopic-based point sensors to IR imaging cameras.  For this 

discussion, we will focus on laser-based spectroscopy, as it offers the highest-fidelity continuous 

monitoring solutions that enable reliable leak alerting and provide relevant data to feed into the 

localization and quantification algorithms.  As an example of the current capabilities of the monitors, 

Project Canary currently develops and deploys the “Canary X” device, which uses a near-infrared tunable 

diode laser to measure the absorption spectrum of the ambient gas and estimate the concentration of 

different molecules.  This device can measure down to 0.4 parts per million, with a precision of around 

0.125 parts per million.  In contrast, Project Canary’s “Sentinel” device is based on mid-infrared 

spectroscopy and has a precision of less than 0.001 parts per million and a lower detection limit of 0.01 

parts per million (the tradeoff is that the technology required to get down to this level of accuracy is more 

expensive). Both devices can be deployed for leak detection, localization, and quantification, and the 

choice between the two depends on the required level of precision and accuracy for the given application.  

Data Acquisition 

To monitor the emissions from a given site, at least three in-situ methane sensors (either Canary X or 

Sentinels) must be deployed along the facility's fence line.  One of these sensing stations is also 

equipped with an anemometer that measures the wind speed and direction.  All these data (methane 

concentrations from each sensor and wind measurements) are reported via cellular to cloud-based 

databases every minute.   

Real-Time Alerting 

The high temporal sampling of continuous monitoring coupled with highly scalable cloud computing 

infrastructure allows the performance of real-time analytics and alerts operators to anomalous methane 

signals shortly after they arise. These anomalies may indicate a large leak that not only costs money in 

lost products (natural gas molecules) but also poses significant risks of incurring regulatory fines if the 

leak persists.  Innovative alerting system, such as Project Canary’s novel “Smart Alerts,” combines 



observed methane concentrations with on-site wind data to identify anomalous events.  Since higher wind 

speeds dilute concentrations, the algorithm uses wind-normalized methane concentrations, which are the 

product of wind speed and a baseline-adjusted methane concentration, to compute alerting thresholds.  

Alerting thresholds are computed based on ten to thirty days of recent history at the site and updated 

nightly.  For the operator to receive an alert, there must be sufficient observations above the threshold 

coming from the same sensor and a similar wind direction.  This is indicative of sustained emissions from 

a consistent source on site.  For the alert to end, there must be several consecutive observations with 

wind-normalized concentrations close to baseline.  This helps ensure that just one alert is generated for a 

consistent event, even if the sensors pick up evidence inconsistently as the wind changes direction, 

reducing the risk of alert fatigue for the operator. 

Localization and Quantification 

In addition to providing real-time alerts to operators, there has been significant progress regarding novel 

localization and quantification services that generate emissions insights at the equipment level.  These 

services have many applications.  To name a few:  these insights aid in localizing potential leaks so that 

they can be mitigated as rapidly as possible, and also provide emissions statistics for each piece of 

equipment so that targeted improvements can be made when trying to prioritize which pieces of 

equipment to upgrade, allowing the operators to prioritize the most problematic pieces of equipment in a 

data-driven manner rather than making ad-hoc assumptions about which pieces of equipment may be 

responsible for most of the site’s emissions.  Finally, these insights can be aggregated to a site-level 

emissions profile that can be analyzed on various timeframes to ensure compliance with regulatory limits. 

Project Canary’s localization and quantification algorithm is composed of two distinct components: the 

“forward model” that describes the transport of gas from sources to sensors, and the “inverter” that 

combines the forward model with sensor methane measurements to estimate the best-fit state vector (i.e., 

source rates).  

Forward Model 

As previously mentioned, the so-called “forward model” is the physical description of gas transport from 

sources to sensors under specified atmospheric conditions.  It must account for wind speed and direction, 

source release rates, turbulent dispersion, and the relative positioning and heights of sources and 

sensors.  In principle, there are copious forward models of various levels of complexity that one could 

employ for this purpose.  At the extreme level of complexity is a fluid simulation using meteorological data 

as inputs that co-evolves a passive scalar (i.e., methane) as it is advected along with the simulated fluid 

flow.  Such an approach would represent a high-fidelity forward model but is not practical for 

implementation in real-time systems due to the high computational expense.  

 A variety of simplifications exist that parametrize gas transport in a form that is more tractable for rapid 

computation.  For instance, the well-known Gaussian Plume model represents a closed-form solution to 

the steady-state advection-diffusion equation, using an empirically derived estimate for the dispersion of 

gas as a function of downwind distance that depends on the stability class of the atmosphere.  In short, 

the vast amount of scientific research on this model and the various extensions makes it flexible and 

trustworthy, while the ease of computation makes it highly efficient to drive the calculations necessary for 

the localization and quantification algorithms (for reference, running a high-fidelity fluid simulation as the 

forward model would take on the order of hours, while the Gaussian Plume model is computed on the 

order of milliseconds).  We have found that for most cases, the benefits of the Gaussian Plume outweigh 

the slight accuracy improvements one can realize by employing a more sophisticated forward model, 

such as the time-dependent Gaussian Puff or numerically solving the advection-diffusion equation.  For a 

facility with dramatic terrain variation or significant obstructions between sources and sensors, however, 

these other methods will likely be important for capturing the more complex dynamics of gas transport 

that the Gaussian Plume cannot account for as easily.  As such, we are working to include them in our 

system as optional forward models we can enable if deemed necessary for a given facility. 



The Gaussian Plume equation is given by: 

Equation 1 
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On the left-hand side of this equation, C represents the predicted concentration at a point in space, x, and 

y are the downwind and crosswind distances, respectively, and z is the height.  On the right-hand side, Q 

represents the source rate, and sigma sub y  and sigma sub z are the horizontal and vertical components 

of the turbulent dispersion, which are functions of the downwind distance.  To estimate these dispersion 

parameters, we turn towards empirically derived functional forms and associated coefficients from well-

known controlled release studies that characterized the dispersion of passive tracers as a function of 

downwind distance and atmospheric conditions (e.g., Martin, 1976).  Finally, u represents the average 

wind speed.  

Applying the forward model to every minute of data at every sensor for every potential source with a unit 

rate results in the so-called “source-sensor sensitivity matrix,” A.  The rows (indexed by i) of this matrix 

correspond to each sensor measurement and associated atmospheric conditions at that time, and the 

columns (indexed by j) correspond to each source.  The value at each element (i,j)  in the matrix 

represents the predicted concentration at sensor/time i from source j via the forward model.  

We emphasize here that any forward model can be used to compute the source-sensitivity matrix.  The 

following steps in the localization and quantification calculation (the inversion to source rates) are 

independent of the particular choice of the forward model.  As such, the forward model can be viewed as 

a modular component of the system that can be adjusted depending on the details of the facility (i.e., we 

can swap out the Gaussian Plume for a higher-fidelity model at complex facilities, compute the A matrix, 

and move forward in the calculation in the same way). 

Inverter 

The next step in the localization and quantification algorithm is the so-called “inversion” of methane 

measurements to a state vector (or source rates).  We employ a recursive Bayesian estimator in the form 

of a standard Kalman Filter (see, e.g., Welch & Bishop 2006 for a modern overview of Kalman Filters), 

where the previously described “source-sensitivity matrix,” A, is the measurement function (typically 

denoted as H in control theory literature) of the Kalman filter that is responsible for transforming a state-

space estimate to measurement-space.  This framework is run every 15 minutes and computes the state 

of the system at the time being considered, qt, via a recursive Bayesian update.  In other words, the 

existing state of the facility, qt-1, is used as the “prior” and is combined with the new data to give the 

optimal state estimate at the current time, qt.  This current estimate is then saved and used as qt-1 in the 

next iteration, and the calculation continues in perpetuity. 

This process generates an updated estimate of the emissions rate for each potential source at a site 

every 15 minutes.  The historical state estimates are all saved so that the source rates as a function of 

time can be used for further analysis (leak detection and alerting, facility-level quantification of emissions 

over time, analyzing individual pieces of equipment’s emissions distribution, etc.). 

 

RESULTS 

Controlled Release Testing 

In order to evaluate the accuracy of the previously described algorithms, we turn towards controlled-

release testing to quantify a variety of performance metrics, including localization accuracy, quantification 

accuracy, and the leak detection rate and detection limit.   We have participated in several controlled 



release studies, but for the current purposes, we will focus on the “Advancing Development of Emissions 

Detection” (ADED) testing from 2023 run by Colorado State University’s Methane Emission Technology 

Evaluation Center (METEC).  At this facility, they have 18 different pieces of equipment, including tanks, 

separators, and wellheads, from which they release methane in a highly controlled and metered manner.  

We have sensors placed around the perimeter of the facility and attempt to identify, localize, and quantify 

their controlled leaks.  By comparing our estimates to their known leak rates, we can evaluate our current 

algorithms across a variety of performance metrics.  We will now summarize some of the key results from 

applying our current algorithms to the known controlled releases from the ADED 2023 testing. 

We will begin by examining the event-level statistics from ADED 2023, including an analysis of the event 

detection performance, the detection limit, and the cumulative amount of methane released.  Over the 

course of ADED, there were 254 experiments, each of which had between 1 and 5 release sources.  Of 

these 254 experiments, our leak detection algorithm correctly identified 240, corresponding to a detection 

rate of 94%.  The missed detections (or false negatives) were all low-release rate experiments or high 

wind speed (around 10 meters/second), corresponding to an event-level detection limit of around 0.3 

kg/hr.  In Figure 1, we show the cumulative emissions curves from the controlled releases (blue) 

compared to our quantified emissions estimates (orange).  These results demonstrate that our current 

quantification calculations are highly accurate when integrated over long timescales; over the course of 

the three-month ADED campaign, our total emissions estimate was off by only 1.34 percent. 

We now turn toward the source-level metrics. During these 254 experiments, 536 individual releases were 

recorded.  Of these, we detected 472 leak sources (corresponding to 64 false negatives), corresponding 

to a source-level detection rate of 88%.  Of these correctly identified sources, our localization algorithms 

correctly identified the equipment group of the individual releases 95% of the time and correctly identified 

the piece of equipment responsible for the emissions about 55% of the time. 

We note that the results presented here are derived from our own analyses after applying an updated 

version of the detection, localization, and quantification algorithms to the ADED 2023 data.  In other 

words, these are not the same algorithms that were evaluated by the test center during the testing 

campaign. As such, the true test of these algorithms will be from the ADED 2024 campaign that is 

currently ongoing. 

 

ANALYSIS 

By applying our detection, localization, and quantification algorithms to the ADED 2023 campaign and 

performing a posthoc analysis of the results, we demonstrated that current technology and associated 

algorithms can produce reliable leak alerts down to a site-emission rate of 0.3 kg/hr, localize leaks to the 

equipment-group level with an accuracy of 95%, and estimate cumulative emissions over long (multi-

week) timescales with extremely small (sub 5%) error.  These results are based on analysis and 

development that occurred after the results from the blind testing were released, so these statistics need 

to be validated at the conclusion of the ADED 2024 campaign.  Nevertheless, these promising results 

demonstrate that this technology is effective for practical applications, having a high detection rate, low 

detection limit, and highly accurate estimate of cumulative emissions).  We note that one significant area 

for improvement is in the equipment-level localization, which is significantly worse than the equipment-

group localization (55% accurate compared to 95%).  This stark difference is likely due to the inherent 

error associated with our current dispersion modeling (the Gaussian Plume).  We are working on 

incorporating higher-frequency measurements coupled with more advanced time-dependent modeling 

techniques that should improve the accuracy of the forward model and, hence, improve the localization 

accuracy significantly.   

 

CONCLUSIONS 



In this paper, we provided an overview of continuous methane emissions technology, from hardware to 

algorithms. We described how the data collected by high-fidelity methane sensors can be employed to 

generate emissions insights, including leak detection, localization, and quantification estimates.  We also 

described how the most up-to-date algorithms against the controlled release experiments from ADED 2023 

correctly detected 95% of all emission events with a 90% detection limit of around 0.3 kg/hr.  The estimated 

cumulative emissions over the three-month-long testing campaign were higher than the amount released 

by a small margin (1.34%).  At the source level, the technology correctly identified 88% of all equipment 

leaks and correctly localized them to their respective equipment group at a rate of 95%.  Finally, we note 

that an area of future work and improvement is in incorporating more advanced modeling techniques in 

calculating the dispersion of gas from source to sensors.  We postulate that by leveraging higher temporal 

frequency data (i.e., second-level measurements instead of minute-level) and combining these with 

dispersion models that explicitly account for time dependence (e.g., Gaussian Puff, advection-diffusion 

solver, or another reduced-order fluid simulation), we should get significant improvements in the accuracy 

of the forward model, which will likely propagate to a significant improvement in the localization accuracy 

at the equipment-level. 

These promising results from state-of-the-art continuous monitoring hardware and associated quantification 

algorithms demonstrate the utility of these technologies for aiding operators in a variety of applications, 

from reducing the time-to-detection of leaks and minimizing the manual effort in leak detection and repair 

to optimizing equipment upgrades in a data-driven way that takes into account the emissions profile from 

each piece of equipment at a site, to generating site-level emissions insights on a variety of timescales to 

ensure compliance with regulatory requirements, thereby reducing the risk of government-imposed fines. 
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TABLES, GRAPHS, AND FIGURES 

 

Figure 1 - Cumulative emissions over time from ADED 2023.  The actual releases are shown with 
blue while Project Canary’s quantified emission estimates are shown with the orange line.   


