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Introduction 
Artificial lift systems (ALS) play a critical role in global oil and gas production, with approximately 84% of 
oil wells and 42% of gas wells utilizing some form of ALS. Among these, sucker rod pumps (SRPs) remain 
the most widely used method, accounting for approximately 40% of the global installed base, followed by 
electrical submersible pumps (ESP) at 24%, gas lift at 20%, and plunger lift at 9% (Research, 2022) 
In the United States, over 88% of oil wells require an ALS, with SRPs being the most preferred method, 
making up 54% of all ALS wells. In key basins, rod lift remains dominant— in the Permian Basin alone, 
approximately 100,000 wells operate on SRPs, while the Bakken and other major basins also rely heavily 
on this technology. The widespread use of SRPs highlights the significant potential for improving 
production optimization through advanced methodologies. 
Automation is increasingly shaping artificial lift operations, with approximately 72% of artificially lifted 
wells in North America utilizing some form of automation (Research, 2022). However, operators have 
identified key areas for improvement, including enhanced data accuracy, predictive analysis with AI, 
improved communication and data transfer, frequent software updates, and more cost-effective solutions 
to support production optimization. As the industry shifts toward data-driven decision-making, the 
adoption of predictive production optimization solutions is expected to grow, allowing operators to 
improve efficiency and production outcomes through remote operational capabilities. 
Rod pump production optimization has been an ongoing focus in the industry, with the primary objective 
of maximizing well production potential while minimizing failures due to mechanical wear, excessive 
cycling, corrosion, or fatigue. Failures in SRPs remain a persistent challenge, and early detection is crucial 
for maintaining efficiency. A study on a subset of eight wells demonstrated that the mean time between 
failures improved from 7 months to 21.4 months after implementing Edge Technology (Jared Bruns, 2022) 
reinforcing the value of advanced optimization solutions. 
However, rod lift optimization presents challenges, particularly in achieving precise pump speed control 
and dynamically adjusting to reservoir conditions. Traditional optimization approaches rely heavily on 
operator experience and rule-of-thumb practices, often using pump-off controllers (POCs) and variable 
speed drives (VSDs). With increasing levels of well instrumentation, edge computing technology is 
emerging as a powerful solution to enhance real-time production optimization. By leveraging edge devices 
and automation, operators can improve efficiency, reduce failure rates, and optimize pump performance 
with greater precision. 
 

Rod Pump Speed Control: Present-Day Practices and Challenges 
Pump-Off Controllers (POCs) play a crucial role in sucker rod pump (SRP) operations, using predefined 
settings to manage pump speed and cycling. However, these settings require manual adjustments, 
introducing subjectivity and potential inefficiencies. Misconfigured speed setpoints—whether too high, 



 

 

too low, or improperly calibrated—can lead to pump failures, excessive cycling, or production losses. The 
most common optimization method, Pump Fillage (PF) control, relies on PID algorithms to maintain target 
PF values. However, these setpoints are static, failing to adapt to reservoir changes over time. As a well’s 
deliverability declines, the optimal PF and strokes per minute (SPM) must also adjust dynamically. The 
Production Optimizer algorithm presented in this paper overcomes these limitations by enabling real-
time, automated optimization, allowing SRPs to operate beyond rigid POC-defined ranges. By integrating 
IIoT and edge computing, this approach enhances efficiency, reduces failures, and ensures wells produce 
at their optimal performance throughout their lifecycle (Gambaretto, Yermekova, Srivastava, & Hyder, 
2024). 
 

Present Day Solution 
This paper presents an advanced workflow designed to improve the efficiency and performance of SRP 
systems. It builds on existing POC capabilities, which traditionally prevent over-pumping and optimize SRP 
operations. This innovative approach integrates edge-based technologies, significantly enhancing 
automation and intelligence. By incorporating machine learning (ML) algorithms, the system can classify 
dynamometer card patterns in real time, enabling precise identification of operational events and 
anomalies. 
 
Utilizing high-frequency dynamometer card and pump data, the system autonomously adjusts SRP 
operational setpoints to maintain optimal performance, minimize energy consumption, and reduce 
equipment wear. Additionally, a holistic approach is employed, where well parameters and operational 
data are automatically fed into a solver to determine optimal frequency setpoints for continuous 
production optimization. This interconnected framework not only enhances data reliability and accuracy 
but also ensures seamless integration with broader digital oilfield initiatives. The key challenge was to 
harmonize these workflows to enable autonomous SRP optimization without any conflicting processes. 
 

Proposed Edge - Based Workflows 
1. Real-Time Dynamometer Card Analysis and Classification  

POCs generate dynamometer cards for each stroke of a surface pumping unit (SPU) or pumpjack using 
load cells and inclinometers. However, POCs are limited in their ability to analyze and classify every card 
in real time. Edge computing overcomes this limitation by processing every single dynamometer card 
directly at the wellsite, instantly identifying and classifying SRP operating conditions without delays. 
 
Leveraging advanced ML and deep learning (DL) techniques, the Edge system continuously analyzes high-
frequency dynamometer data, detecting operational patterns and anomalies as they occur. This enables 
real-time classification of six key SRP behaviors: normal operation, fluid pound, gas interference, tagging, 
flatlining, and distortion (Fig. 1). Unlike POCs, which cannot classify every individual card, Edge computing 
ensures that no critical data is missed, providing a comprehensive and immediate understanding of pump 
performance. 
 
Additionally, the ML algorithm provides both primary and secondary classifications for each card, along 
with probability scores indicating classification confidence. Classified cards undergo reclassification as 
needed and are added back into the ML training pool to improve model accuracy over time. In cases where 



 

 

a card is reclassified, a Subject Matter Expert (SME) reviews and validates the updated classification before 
incorporating it into the training dataset. 
 
Following edge-based analysis, a subset of dynamometer cards—typically at one-minute intervals—is 
transmitted to the cloud. This allows engineers to remotely visualize and monitor well performance 
through an application, enabling proactive decision-making and optimization without requiring physical 
presence at the wellsite (Z. Hyder, 2024) 

2. Fast Loop Mitigation Based on Dynamometer Card Classification 
This workflow enables autonomous mitigation of well conditions classified as abnormal. When 
consecutive dynamometer cards indicate issues like gas interference, fluid pound, tagging, or flatlining, 
the Edge system adjusts the rod pump’s speed in real time to stabilize operations. Once normal conditions 
resume, the pump returns to its original speed. 
 
Mitigations help prevent unnecessary shutdowns by intervening before secondary pump fillage (PF) limits 
trigger a shutdown. Safety checks ensure that speed adjustments remain within allowable limits, 
protecting SRP equipment. Flatlining, a critical issue where energy is used but no liquid is produced, 
prompts immediate mitigation. If initial speed adjustments fail, the system escalates by sending alarms 
and, if necessary, shutting down the pump to prevent further inefficiency (Z. Hyder, 2024). 

 
Figure 1: Theoretical dynamometer card shape (Cheng et al. 2020) vs. actual card shapes for different operating conditions 

 
3. Production Optimizer 

The Production Optimizer (POPT) algorithm is designed to enhance SRP performance by dynamically 
adjusting pump speed based on real-time well conditions. Unlike traditional methods that rely on static 
PF setpoints, the POPT (Gambaretto, Yermekova, Srivastava, & Hyder, 2024) algorithm uses a rolling 
window approach to continuously evaluate operational parameters and determine the optimal speed for 
maximum production efficiency. 
 
The workflow begins with data ingestion and preprocessing, where key well parameters—mainly PF, 
strokes per minute (SPM), shutdown events, runtime, shutdown duration, and cycle counts—are collected 
and enriched with additional features. The algorithm activates automatically when enabled on a well, 
continuously learning from incoming data.  



 

 

Following preprocessing, the algorithm categorizes the well’s historical performance by pump operating 
speeds and calculates key performance indicators (KPIs) to assess production efficiency. The three primary 
indicators are: 
 

• Production Indicator (PI): Identifies the speed setpoint that maximizes fluid production. 
• Combined Indicator (CI): Balances uptime and production by penalizing excessive shutdowns. 
• Combined Indicator – Quadratic Penalty (CI-QP): Applies stricter penalties on excessive cycling to 

stabilize wells with high secondary PF setpoints or VFD speeds. 
Once these indicators are computed, the algorithm assesses whether adjusting the current VFD speed will 
increase production while maintaining pump health. The optimization logic follows these key rules: 
 

1. If increasing speed improves production, the algorithm raises the VFD frequency incrementally. 
2. If production declines at higher speeds, the algorithm reduces the VFD frequency to avoid 

inefficient operation. 
3. If production remains stable at the current setpoint, no changes are made until further 

optimization is required. 
A crucial aspect of the algorithm is its ability to detect extreme PF conditions. When the system 
encounters very high or very low PF scenarios, it assesses whether the well can produce more efficiently 
at an alternate speed range. If the well experiences high PF but low production, the algorithm gradually 
increases speed to test for improved output. Conversely, if the well exhibits low PF with high speed, the 
algorithm slows down the pump to reduce stress on equipment and improve efficiency (Fig 2). 
 
By leveraging continuous real-time monitoring and adaptive control logic, the POPT algorithm ensures 
that each well operates at its most efficient and economical speed. This autonomous optimization 
approach eliminates the need for manual adjustments, reduces operator intervention, and enhances 
overall production stability. 

 
Figure 2: Rolling window examples of KPIs vs frequency set points 

 
Case Study – Bakken (Williston) Basin  
A pilot was conducted on 8 wells from the Bakken Shale located in the Williston Basin. These were deep 
horizontal wells completed using multi-stage hydraulic fracturing techniques. In this pilot, the POPT 
algorithm was tested while working in parallel with fast loop mitigations. During the simultaneous 
algorithms working together, we prioritize mitigations first, as it helps to solve the local & immediate 
pump issues. Multiple workflows, complimenting each other were tested on the wells. As can be seen in 
figure 4, an instance in time between 22:00 and midnight is analyzed, where several systems work in 



 

 

unison to maintain continued operations on well A. The graph showcases the following parameters, Pump 
Fillage (percentage – %), VFD Maximum Working Speed (Hertz – Hz), Measured Speed (strokes per minute 
– SPM) and the states of the Gas Interference Mitigation & Tagging Mitigation algorithms. 
 

 
Figure 3: Multiple mitigations & POC control engaging on Well A 

As can be seen in figure 3, an instance in time between 22:00 and midnight is analyzed, where several 
systems work in unison to maintain continued operations on well A. The graph showcases the following 
parameters, Pump Fillage (percentage – %), VFD Maximum Working Speed (Hertz – Hz), Measured Speed 
(strokes per minute – SPM) and the states of the Gas Interference Mitigation & Tagging Mitigation 
algorithms. The algorithm logics monitor the classification of dynamometer cards as they are generated 
by the POC and analyzed by the edge gateway. Each step in the algorithm is assigned a state value so that 
the user can quickly identify where in the logic process the algorithm is. 
Some state values are generic. A value of 0 signifies a dynamometer card classification other than the 
active mitigation algorithm e.g., a state value of 0 for the gas interference mitigation signifies that a 
dynamometer card classification other than gas interference has been assigned. A value of 1 signifies that 
a dynamometer card classification of the active mitigation algorithm has been assigned e.g. a state value 
of 1 for the gas interference mitigation algorithm signifies that a dynamometer card classification of gas 
Interference has been assigned, whereas a state value of 1 for the tagging mitigation algorithm signifies 
that a dynamometer card classification of tagging has been assigned. A value of 5 indicates that the last 5 
dynamometer cards have been analyzed as normal. 
Certain values are unique to specific mitigations. A value of 2 indicates that a gas interference 
dynamometer card has been identified with other parameters being outside user-defined ranges. These 
parameters vary between the different mitigations and include all or some of the following SPM, PF, load, 
etc., which would warrant a control action in the form of either increasing or decreasing the VFD 
Maximum Working Speed setpoint. Similarly, a value of 3 indicates that a tagging dynamometer has been 
identified with other parameters being outside user-defined ranges, warranting a VFD Maximum Working 
Speed setpoint change. 



 

 

 

 

Figure 4: Speed control by POC utilizing primary pump fillage setpoint. 

 
Figure 4 plots the PF against SPM& VFD Maximum Working Speed. As can be observed, the well is 
producing at a high PF of approximately 100% and at a relatively stable SPM from 22:00 to 22:20. The VFD 
Maximum Working Speed setpoint during this time is set to 56Hz. 
At 22:24 a significant drop in the PF is read at a value of 69.2%, which is below the primary PF setpoint of 
70% for the well. The POC engages its logic and reduces the speed of the pumpjack from an average of 
4.8 to approximately 3.6. It should be noted that the VFD Maximum Working Speed was not altered since 
this functionality is only available through the edge gateway and not the POC. 
 



 

 

 
Figure 5: Speed control by edge gateway utilizing the gas interference mitigation algorithm. 

 

In addition to the parameters in Figure 4, Figure 5 also plots the gas interference mitigation states. This 
will allow us to observe the conditions under which the algorithm makes changes to the VFD Maximum 
Working Speed setpoints and where it does not. 
At both 22:25 & 22:48, the gas interference mitigation state displays a value of 2 which indicates that gas 
interference dynamometer cards along with other parameters being outside user-defined ranges were 
identified. This prompts the algorithm to make changes to the VFD Maximum Working Speed setpoints, 
changing it from 56 to 45 at 22:25 and from 45 to 31 at 22:48. The step change values are different since 
they are calculated utilizing a function as well. 
Gas interference dynamometer cards are observed multiple times within the 2-hour span however since 
other observable parameters are within acceptable ranges, the algorithm does not take action to change 
the VFD Maximum Working Speed setpoint. At 23:36, the value of gas interference mitigation state 
changes to 5, indicating that the last 5 dynamometer cards analyzed were classified as normal, thereby 
prompting the algorithm to change the VFD Maximum Working Speed setpoint to a value of 56 Hz, which 
was the setpoint the pumpjack was running at prior to the gas interference mitigation engaging. 
This “original” VFD Maximum Working Speed setpoint is influenced by the POPT algorithm, which is 
discussed earlier in this paper under “Workflow #3”. This feature in the algorithm allows for optimized 
speed to be resumed once short-term issues, identified by the ML model are addressed through the fast 
loop mitigations. 
 



 

 

 
Figure 6: Speed control by edge gateway utilizing the tagging mitigation algorithm. 

Figure 6 replaces the previous graph’s gas interference mitigation states with the tagging mitigation 
states. This will allow us to observe the conditions under which the tagging mitigation algorithm makes 
changes to the VFD Maximum Working Speed setpoints and where it does not. 
At 23:13, the tagging mitigation state displays a value of 3 which indicates a tagging dynamometer card 
along with other parameters outside of user-defined ranges was identified. This prompts the algorithm to 
make changes to the VFD Maximum Working Speed setpoint, changing it from 31 to 27. Similar to the gas 
interference mitigation algorithm, the tagging mitigation algorithm utilizes a function to calculate the step 
change value. 
Tagging dynamometer cards are observed multiple times within the 2-hour span of the graph however 
since other observable parameters are within acceptable ranges, the algorithm does not take action to 
change the VFD Maximum Working Speed setpoint. Again, like the gas interference mitigation, at 23:36, 
the value of the tagging mitigation state changes to 5, indicating that the last 5 dynamometer card 
analyzed were classified as normal, thereby prompting the algorithm to change the VFD Maximum 
Working Speed to the value of 56 Hz, which was the “original” VFD Maximum Working Speed setpoint 
prior to the tagging mitigation engaging. 
Overall, it can be observed that even though different controllers (POC and edge gateway) are monitoring 
the well for different parameters, all algorithms function in unison, complementing each other’s 
functionality to address operational issues being experienced by the well. 
 



 

 

 
Figure 7: Well B; Inferred Production (bpd) & VFD Speed (Hz) 

 

 
Figure 8: Well B; Shutdown Count & Runtime (%) 

 



 

 

 
Figure 9: Well B; Average SPM & Pump Fillage (%) 

 
Workflow #3 is achieved through the utilization of the POPT algorithm. Well B (results showcased in 
Figures 8, 9 & 10) was run with the CI mode of the POPT algorithm due to the considerable number of 
cycles/shutdowns that were being experienced by the well. After comparing yesterday’s values for SPM, 
PF, shutdowns etc. to the values recorded over the last 7 days (figure 8), the POPT algorithm can calculate 
KPIs and then make recommendations and implement to the new VFD Maximum Working Speed setpoint 
for the next day. Reviewing the results shows that after the initial data gathering phase, the POPT 
algorithm systematically reduces the VFD Maximum Working Speed of the well allowing for an increase 
in PF and an increase in the well’s inferred production volumes. This overall speed reduction also led to a 
drastic reduction in the daily number of cycles/shutdowns from an average of 6 to 1 (figure 9). 
 
 
Conclusion 
The pilot successfully demonstrated that the edge-based algorithms, including the ML model for 
dynamometer card classification, mitigation algorithms for short-term issue resolution, and the 
Production Optimizer (POPT) algorithm for overall well optimization, can operate autonomously with 
minimal human intervention. The positive results, including increased inferred production, reduced 
shutdowns, and improved pump performance, validate the effectiveness of this autonomous workflow. 
These findings highlight the potential of intelligent control logic in optimizing artificial lift systems 
dynamically, without relying on one-size-fits-all solutions, thereby enhancing operational efficiency and 
reducing manual surveillance efforts. 
 
Building on these promising results, ongoing efforts are focused on refining the mitigation and POPT 
algorithms to enhance their adaptability. The mitigation algorithms are being updated to allow more user-
defined parameters, enabling tailored responses to similar conditions across different wells. Additionally, 
research is underway to improve the POPT algorithm's handling of extreme pump fillage conditions, 
ensuring it explores optimal speed ranges for maximizing economic production. These enhancements aim 



 

 

to further advance autonomous well production management, contributing to the industry's digital 
transformation journey. 
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