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ABSTRACT 
The upstream oil and gas industry faces significant challenges in optimizing production 
from aging assets, particularly in managing the vast amounts of unstructured data 
generated by rod lift equipment and associated automation. This paper presents field 
results from the deployment of Cognitive Card Recognition (“CCR”), a machine 
learning-based solution for automated dynacard analysis and anomaly detection for rod 
lift operations. 
 
The CCR system, developed through collaboration between rod lift subject matter 
experts, data scientists, and oil producers, employs multiple machine learning models 
trained on nearly 100,000 expert-labeled dynacards. Current models achieve 85-95% 
accuracy in identifying twelve distinct non-normal operating conditions, including fluid 
pound, gas interference, worn pumps, and rod parts. The system continuously improves 
through regular incorporation of additional labeled data and model retraining. 
 
Field deployments demonstrate that CCR implementation enables operations teams to 
transition from reactive to proactive maintenance strategies, leading to reduced deferred 
production, decreased well downtime, and optimized maintenance scheduling. This 
technological advancement represents a significant step forward in leveraging artificial 
intelligence (“AI”) to improve oil production efficiency, worker productivity, and 
equipment reliability in aging fields. 
 

INTRODUCTION 
Optimizing oil production from aging rod lift assets requires timely identification and 
correction of equipment issues. Rod lift systems, widely used in the industry due to their 
simplicity and reliability, often experience various operational challenges that negatively 
affect production. These issues range from equipment wear and tear to subsurface 
complications, all of which can significantly disrupt operations if not quickly addressed. 
Traditional diagnostic approaches involve manual interpretation of dynacards - graphical 
representations of subsurface pump performance - which are not only labor-intensive 
but also susceptible to human error and inconsistency. Furthermore, manual methods 
typically lead to delayed responses, resulting in prolonged downtime and increased 
operational costs.  

Recent advancements in AI enable a robust solution by automating and streamlining the 
dynacard analysis process. AI-driven tools such as CCR facilitate rapid, accurate 
identification of anomalies, enabling operations teams to shift from reactive 
troubleshooting to proactive maintenance practices. This transition represents a critical 



improvement in operational efficiency and asset management, particularly relevant to 
aging oil fields where equipment reliability and production optimization are paramount. 

TECHNICAL BACKGROUND 
Rod lift systems, also known as beam pumping systems or sucker rod pump systems, 
are among the oldest and most widely utilized artificial lift methods in the oil and gas 
industry. These systems mechanically lift oil from a reservoir to the surface using a 
pump driven by a surface pumping unit. Central to the performance analysis of rod lift 
systems is the pump. The pump acts as the heart of a rod lift system. Wells equipped 
with a load cell and a pumpoff controller (“POC”) visualize data points in the form of 
dynacards, graphs representing the load on the rod string plotted against rod position 
throughout each stroke cycle. Dynacards provide critical diagnostic insights into 
subsurface pump operations, equipment condition, and reservoir performance. The 
optimization objective for rod lift systems is simple - align pump displacement with 
reservoir inflow. 

Historically, dynacard interpretation has been a manual process conducted by 
experienced production engineers, artificial lift technicians, or lease operators. This 
manual interpretation involves visual analysis of dynacard shapes to identify common 
anomalies, including fluid pound, gas interference, mechanical wear (e.g., worn pumps 
or barrel wear), and mechanical failures, such as parted rods or holes developing in 
tubing. While experienced personnel can effectively diagnose many issues, the manual 
process is subjective, labor-intensive, and susceptible to human error, fatigue, and 
inconsistency. Furthermore, as the number of rod-pumped wells grows - often 
numbering into the thousands per operator - the efficiency and scalability of manual 
dynacard analysis decreases. This is precisely the gap that CCR fills - optimization at 
scale. 

The introduction of advanced digital sensors and telemetry has exponentially increased 
the volume of data produced by rod lift systems. Operators now have access to large-
scale data streams of near real-time dynacard information, collected continuously, often 
on a per-stroke basis. This amount of data surpasses the human capacity for manual 
analysis, leading to delayed anomaly detection, increases in non-producing time (NPT), 
reactive maintenance strategies, and, consequently, reduced operational efficiency. 

METHODOLOGY 
To address these challenges, advanced artificial intelligence (“AI”) and machine 
learning (“ML”) methodologies have been implemented through Ambyint’s Cognitive 
Card Recognition (“CCR”) solution. CCR leverages state-of-the-art deep learning 
techniques—including deep convolutional neural networks (“CNNs”) and transformer-
based architectures—to perform accurate card classification. Initially trained on 
approximately 8,000 to 9,000 expert-labeled dynacards derived from field data, the 
training data sets have since been scaled significantly to nearly 100,000 expert-labeled 
dynacards, enhancing both accuracy and reliability.   

Features used for classification are extracted from stroke data and standardized, 
accounting for different sampling frequencies, varying pump sizes, and other relevant 



operational variables. Initial model training emphasized achieving high precision and 
recall rates above 90%, ensuring robust diagnostic reliability. 

The CCR system includes a structured retraining pipeline for continuous model 
improvement. Every seven days, unlabeled dynacards are automatically selected from 
operational data and queued for labeling. Labeling jobs are initiated, with labeling 
requests distributed to rod lift subject matter experts (“SMEs”) for validation. Upon 
completion, labels are systematically consolidated using a custom decision tree 
methodology, addressing any discrepancies or disagreements among SMEs, with the 
final results securely stored for future reference and model retraining. 

Model performance is continuously monitored through defined evaluation metrics, 
including precision and recall. Should these metrics fall below the established threshold 
of 90%, the retraining process is automatically triggered. Retrained models, along with 
updated features and calculated metrics, are stored in AWS S3s for seamless version 
control and deployment management. A new model version is deployed into production 
environments only when it demonstrates measurable improvement over the preceding 
iteration, ensuring the operational reliability and continual enhancement of the CCR 
system. 

The development of CCR involved collecting, digitizing, and creating an extensive 
dataset containing millions of dynacards, many of which have been labeled by rod lift 
SMEs. The labeling process categorizes dynacards into multiple predefined classes 
corresponding to known operational states and anomalies, such as fluid pound, gas 
interference, rod parts, hole in tubing, worn pumps, and other mechanical irregularities. 
Supervised learning techniques are applied, where machine learning models are trained 
iteratively using this labeled dataset to learn characteristic dynacard signatures 
associated with each anomaly type to better improve model performance and 
implementation.  

One critical aspect of CCR's architecture is its multi-model approach. Rather than 
relying on a single generalized model, CCR employs an ensemble of specialized 
machine learning models optimized for distinct anomaly categories. This ensemble 
methodology enhances diagnostic precision, reducing false positives and false 
negatives, and ensuring consistent performance across diverse operational conditions 
and equipment configurations. 

CCR also includes automated retraining workflows to ensure sustained accuracy 
improvements. As operational data accumulates and new dynacards are validated by 
SMEs, these data points are continuously incorporated back into the training set. 
Regular retraining cycles allow the CCR models to adapt dynamically to changes in field 
conditions, equipment behavior, and dynamic downhole circumstances, ensuring long-
term reliability and accuracy. 

Integrating CCR into operational workflows transforms rod lift diagnostics from a 
reactive, manual effort into a proactive, automated process. By automating dynacard 
analysis, operators achieve early and reliable detection of anomalies, enabling timely 



interventions. Consequently, this technological progression results in significant 
operational benefits, including reduced downtime, optimized maintenance schedules, 
decreased deferred production, and enhanced overall asset reliability. 

RESULTS AND DISCUSSION 
CCR currently includes twelve models fully deployed into production and a number of 
additional models that are under development and field testing.  This paper will provide 
detailed results from three unique CCR use cases.   

Rod Part 
 
In the first field example, CCR was able to successfully identify a rod part failure. Rod 
part failures represent a severe operational risk due to their potential for immediate 
cessation of pump function and the significant secondary damage they can inflict on 
downhole equipment if left unaddressed. Under certain conditions, particularly with 
deeper rod parts, conventional pump-off controllers (POC) may fail to promptly shut off 
the pumping unit due to setpoint malfunctions or incorrect detection thresholds. In these 
scenarios, the continued operation of the pump despite a parted rod can induce 
additional damage, resulting in extended downtime, higher repair costs, and increased 
deferred production.  

CCR identified a rod part event, immediately alerting operators even before the POC 
system recognized the downhole issue. This proactive detection allowed operators to 
promptly initiate a shutdown and schedule an efficient workover. As a result, the well 
resumed normal production—approximately 200 barrels of fluid per day—within 15 days 
following CCR’s anomaly identification. Figure 1 and 2 below illustrate the rod part event 
and subsequent workover in additional detail.   



 
Figure 1 - Anomaly Detected 5 Days Prior to Failure  

 
Figure 2 - Dynacards Depicting Rod Part 



 
Worn Pump Detection Working in Collaboration with Automated Setpoint Management 
 
Another use case for CCR is the benefit of anomaly detection when working in parallel 
with Autonomous Set Point Management (“ASPM”). In this example, CCR identified the 
well as experiencing a worn pump. In a typical worn pump scenario, production slowly 
falls as the pump becomes less effective at lifting fluid.  However, with CCR and ASPM, 
when CCR identified a worn pump (see orange in vertical bar chart), over a period of 
two months, nine speed-up recommendations were automatically implemented, 
increasing max working speed from 4.5 SPM to 6.0 SPM.   
 
Instead of reduced production week over week, oil production was maintained as the 
well was slowly sped up by ASPM.  Finally after two months of an increasingly severe 
worn pump, the pump finally failed, experiencing a complete loss of pump action (see 
dark blue in vertical bar chart), with oil production falling to zero. Figure 3 demonstrates 
this as it occurs. In this example, the operator was able to sustain current oil production 
for over 2 months, and extend useful life of equipment by the same amount. 
 

 
Figure 3 - CCR Working in Parallel with ASPM to Detect and Respond to a Worn Pump 

 

 



Sticking Pump 
 
A common and very pertinent operational challenge for many operators in the Bakken 
region is the early identification of pumps beginning to stick. Sticking pumps are 
characterized by blocked inflow and inefficient pump fillage. Through advanced CCR 
analytics, sticking pumps have been successfully detected by observing clear trends in 
stroke length ratios and fluid load ratios over time.  

A representative example is illustrated in Figure 4, depicting a rod lift well exhibiting 
classic signs of a sticking pump. The analysis occurring in this well specifically shows 
stroke length ratio and fluid load as a function of time. Figure 5 displays the model in 
terms of stroke length ratio and fluid load as a function of strokes per minute (SPM). 
The reason for this is to combat friction due to variable frequency drive (VFD) 
slowdowns. In highly deviated wells, a sticking pump signature is often found in wells 
that operate at varying speeds as a result of friction. As a result, data scientists built out 
a model to track performance in terms of stroke length and fluid load ratio as a function 
of strokes per minute (SPM).  

 

 

Figure 4 - Sticking Pump Model as a Function of Time 



 

Figure 5 - Sticking Pump Model as a Function of Strokes Per Minute 

The graphical trends clearly demonstrate a progressive decline in stroke length ratio, 
coupled with a corresponding rise in fluid load ratio, indicative of restricted fluid entry 
into the pump barrel. The distinctive dynacard pattern—shorter and wider—is consistent 
with the presence of inflow blockages, confirming the operational anomaly.  

The secondary trigger for this procedure involves the incorporation of CCR to analyze 
waviness in surface cards. Any potential for surface vibrations, irregular shapes, and 
features, are modeled in every stroke. Higher frequencies of this anomaly are flagged 
with the corresponding drops in stroke length and increase in stroke length, effectively 
providing more accurate results pertaining to the precision and the recall. LightGBM 
(Ke, 2017), which stands for Light Gradient Boosting Machine, was chosen as the 
machine learning model for detecting stuck pumps in this research. Recognized for its 
efficiency and speed, LightGBM is a state-of-the-art algorithm. Nevertheless, other 
decision tree-based models such as Random Forests (Breiman, 2001) are also feasible 
choices for addressing this specific problem.  

In the model inference stage, the features computed in the data transformation step are 
inputted into the model, which then outputs an estimated probability of a pump getting 
stuck. A pump is classified as sticking if the probability exceeds 50%. If a well exhibits a 
probability of greater than 50%, it is flagged and sent to the designated SME for a 
manual screening process. Once complete and if a sticking well is flagged, the model 
ingests the data and continues to retrain and fine-tune parameters to improve its 
prediction matrix. Early identification of such sticking conditions allows operators to 



proactively schedule remedial interventions, minimizing prolonged downtime and 
preventing costly secondary damage to downhole equipment. 

CCR also creates an environment promoting proactive management practices by 
monitoring dynacard patterns in wells undergoing active treatment strategies, such as 
periodic flushes to mitigate sticking pumps and maintain production efficiency. In one 
recent field example, an operator performed a flush intervention on a well identified by 
CCR as likely experiencing sticking conditions. This proactive action not only 
significantly increased the total stroke length but also restored the well’s production to 
levels previously recorded seven months earlier.  Immediately preceding the flush 
intervention, oil production was 23 BOPD (7-day average), compared to 36 BOPD (7-
day average) after the intervention, an increase of 56%.   

Figure 6 and Figure 7 below highlight the effectiveness of such proactive interventions 
for a well actively managed by regular flushing.  

 

Figure 6 - Sticking Pump Model as a Function of Time in a Well Actively Being Treated 



 

Figure 7 - Sticking Pump Model as a Function of Strokes Per Minute in a Well Actively Being Treated 

Trends in stroke length and fluid load ratios illustrate a stable, optimized operational 
environment, reflecting the immediate impact and effectiveness of these maintenance 
activities. CCR’s continuous monitoring ensures timely adjustments and confirms 
successful interventions, significantly reducing the likelihood of unexpected pump 
failures and production losses. The integration of CCR analytics into operational 
workflows thus empowers teams to validate and optimize proactive maintenance 
programs, resulting in measurable enhancements in production uptime, reduced 
maintenance costs, and improved operational reliability across rod lift assets. 

In addition to tracking stroke length and fluid load ratios, the CCR sticking pump model 
employs frequency-based analysis to identify subtle operational anomalies related to 
pump sticking. Sticking events often occur through rapid, irregular micro-movements—
commonly referred to as waviness—occurring as the pump encounters resistance and 
intermittently slips through impediments. This waviness, while challenging to detect 
visually on standard dynacards, is clearly revealed by analyzing the load versus position 
plots through spectral density transformations. By evaluating spectral density over the 
pump stroke cycle, CCR effectively distinguishes sticking from normal operation, as 
sticking pumps consistently exhibit localized, high-frequency signals, indicative of 
irregular micro-movements caused by restricted pump barrel inflow. Figure 8 
showcases this scenario, plotting spectral density over position. 



 

Figure 8 - Spectral Density Over Position Plot 

Further refinement in the CCR methodology involves applying a band-pass filter to 
remove smooth, low-frequency stroke trends, emphasizing the high-frequency waviness 
unique to sticking conditions. This filtered signal significantly clarifies the presence of 
sticking-induced irregularities, allowing for a more precise and timely identification. The 
detection capability derived from this spectral density analysis, coupled with the band-
pass filtering technique, improves the model's predictive precision, enabling operators to 
intervene at the earliest indication of sticking. Figure 9, demonstrates this process.  

 

Figure 9 - Band-Pass Filter Removing Smooth Stroke Trend 

To enhance the detection of sticking pumps, CCR incorporates targeted statistical 
features derived from spectral density analysis, peak statistics to characterize the 
dynamic behavior of sticking-induced waviness, and total high-frequency power, 
calculated as the sum of the power spectral density using Welch’s method, providing a 
thorough measure of the intensity of micro-movements. Variance derivative calculations 
further quantify fluctuations in pump operation. These selected features are utilized to 
train a Random Forest classifier on SME-labeled dynacards, demonstrating strong 
predictive performance as evidenced by the confusion matrix results, confirming higher 
accuracy in distinguishing wavy (sticking) from normal dynacard signals. Figure 10 
shows the confusion matrix after training the model on the individual components. 



 

Figure 10 - Confusion Matrix After Training The Model 

 

CONCLUSION 
Optimizing production from aging rod lift assets remains a critical operational priority 
within the upstream oil and gas industry. Traditional diagnostic practices, relying 
primarily on manual dynacard interpretation, have proven insufficient in scaling 
effectively to the vast amount of data generated by modern rod lift systems. CCR 
addresses these limitations through advanced artificial intelligence and machine 
learning technologies, enabling rapid, accurate, and proactive anomaly detection at a 
scale previously unattainable. 

Field deployments of the CCR system underscore significant operational advantages. 
By leveraging advanced deep learning architectures, CCR achieves consistently high 
accuracy in identifying and classifying common rod lift anomalies, including fluid pound, 
gas interference, worn pumps, rod parts, and many others. These machine learning 
models are continuously refined through structured retraining processes, incorporating 
new SME-labeled dynacards on a weekly basis and ensuring consistent diagnostic 
accuracy over time. 

CCR’s identification of rod part anomalies before conventional pump-off controllers 
further highlights the system’s value. As illustrated in a case study above, CCR’s 
proactive identification and alerting capabilities reduced failure response time by 1-2 
days, minimizing deferred production, preventing additional equipment damage, and 
effectively extending asset longevity while reducing the NPT of the well. 



A critical operational benefit demonstrated by CCR has been its early detection 
capability for sticking pumps, a prevalent issue in rod lift operations. By analyzing stroke 
length ratios and fluid load trends over time, CCR successfully flags wells exhibiting 
early symptoms of inflow blockage, enabling operators to intervene proactively with low 
cost treatments. Field case studies demonstrate how early anomaly detection provides 
actionable insights, prompting timely maintenance actions and mitigating downtime and 
equipment damage.  Additionally, proactive maintenance strategies, including periodic 
flushing, are considerably enhanced by continuous CCR monitoring. Trends clearly 
show stable, optimized production when wells are actively managed using CCR 
insights, emphasizing the system’s critical role in producing better operational efficiency.  

Ultimately, integrating CCR into operational workflows represents a fundamental shift 
from reactive troubleshooting to proactive maintenance management. By continuously 
enhancing detection accuracy through structured machine learning practices and SME 
collaboration, CCR ensures that operators can reliably predict and mitigate equipment 
failures, streamline maintenance schedules, and optimize overall asset performance, 
thus boosting total production output and reducing operational costs.  
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