SUCKER ROD PUMP METALS IN SOUR BRINE SERVICE

O. W. DAVENPORT Exxon Company, U.S.A.

ABSTRACT

One of the principal causes of subsurface failures is corrosion. Corrosivity of well fluids is primarily related to hydrogen sulfide and/or carbon dioxide gases in the produced water. Optimum utilization of corrosive-resistant materials for component parts of sucker rod pumps has been the more economical practice in Exxon's operation as compared with the use of corrosion inhibitors and less expensive metals. Past performance of pump part metals was studied to provide guidelines in upgrading the pump part metallurgy. Using a computerized data bank, over 8,000 pump runs were analyzed from 26 major fields within the West Texas and Oklahoma areas, most of which contained hydrogen sulfide in the produced fluid. General guidelines for pump part metals selection were established. The study indicated that average pump part service of at least 12 months should be expected with proper metallurgy selection.

INTRODUCTION

One of the principal causes of subsurface pump failures is corrosion. Pump corrosion is water dependent, and damages normally occur when the produced fluid contains greater than 20% water. The corrosivity of well fluids is primarily related to the amount of hydrogen sulfide and/or carbon dioxide gases dissolved in the produced water. There is a choice in the selection of metal components used in subsurface pumps for handling the corrosive fluids: one may use (1) inexpensive pump metals and depend upon corrosion inhibitors for protection or (2) pump metals and alloys that are sufficiently corrosion-resistant to the acid gases. Optimum utilization of corrosion-resistant materials has been the preferred practice in Exxon's Midcontinent Division, as corrosion inhibitors have not provided a high degree of pump protection. Corrosion inhibitors are adversely affected by the mechanical action of the barrel, plunger and valves, and higher

fluid velocities within the pump. Also, with certain pump designs, some pump parts are not sufficiently contacted by the inhibitors.

This study was made to provide a basis for improved selection of pump part metals for sour brine service. Past performances were used to establish guidelines in upgrading pump part metallurgy to increase service life.

COMPUTER DATA BANK

The basis of this pump study was data accumulated in a computerized data bank for the period of six years, 1969 through 1975. The computer file, one of several for artificial lift surveillance,¹ was developed and maintained through the use of two simplified field entry forms. Figure 1 is an input form for recording data associated with a pump installation (run) and Figure 2 is an input form for pump service (pull). The forms are completed by the pump company repairing the pumps.

The input form for a pump "run" provides data on the proper pump identification and pump metallurgy. Recorded on this form are the lease and well number, "run" date, API pump classification, metallurgy of each pump component, and other pertinent information as shown in Figure 1. The pump "pull" record (Figure 2) provides identification data similar to the "run" report; and in addition, it indicates the failing part and the cause of failure. Code numbers are used for metallurgies and failure types. Both reports are required to constitute a completed pump record for analysis.

The computer data bank is built from data on input forms. The data bank is assessed with a computer program to collect and arrange the data as required for analysis. For this study, the average

				:	SUBSUR	FACE	PUMP S	SERVI	CE F	REPC	RT										
CARD CO	DE [1] 4 DIS	TRICT	A۸	LDR	EW	<u>s</u>						(2)	3						(5-9)		
FIELD SU	PERINTENDENT	K	IN	G							(3-4)	3	6	LEA	SE C	DDE	5	5	7	66	,
LEASE N	AME	MEAN	5	s.	A.			WELL (10-13)	2	7	1	6	DA	, [2	2	2) 4	7 4	5
PUMP ST	TATUS (20):	PUMP NU	MBER	{21-26	53	9					_			UA	۰ د [_	MO.		DAI	r r	YEAR	
	WAS RUN	PUMP SH	OP	<u></u>		×	<u> </u>	×		(2)	7-28)	×	×								
2 PUMP	WAS PULLED	API PUMI DES. (29-4	P 10]	2	0	15	OR	W	B	С	2	4	0								
3 PUMP	WAS PULLED AN	ID JUNKED	т	OTAL P	UMP REP	AIR CO	ST - DOLLA	RS (4	1-44)												
r				(47-48)	(49-50)	(51-52) (53-54)		{55-60)		(61-66		.	(67-72)		(73-78)		,	
	PART MET	ALLURGY	Liner ør Barrel	Plunger	Valve Rod or Pull Tube	T. Pigr Cage o U.P.T. Cp	r Barrel olg. Extension		T Upper Seat	Case	Ball	Lower Seat	Cage	Ball	Upper Seat	Cage	ag Valv Bali	Lower Seat	Cage		
ļ	Regular Steel, No	Hardening	01	01	Ø	01	01										ļ			1	
Â	Brass or Aluminum Brass or Al. Bronze Manel	Bronze , Chrome Plated		13	13	D 14	13		13	 		13	~~ 		13		13	13	~		
	Monel, Chrome Pla Cobalt - Nickel Spr	ated	16	16 17	16	16	16	-									-				
	Cobalt-Nickel Spray Other	, Cor Resistant Pins	19	18						+	·		+			↓			+		
	LINER OR SLEEVE	JACKET OR TUBE	MA	TL'S.	Cage M	aterial	Type Gu	ide			·•	VA	LVE C	AGE M	ATERI	ALS				1	
	Cast Iron	Regular Steel Alloy or Stainless	20 21	20 21	Brass or A	Al. Bronze	Br. or Al. B Insert	10016		45			44]		45	_		44 45	Ì	
	Hard Cast Iron	Brass or Monel Regular Steel	22	22			Spray Rubber			46	1		46			46	-		46	1	
	<u> </u>		\sim	\sim	\sim			\sim	~_	\leq	\sim	<u> </u>		\sim	\sim		\sim	\geq	\sim	1	
	Cobalt-Chrome Ste	el				+	01	HER BA	CS21	ID SEA	52	S2	<u>}</u>	60	6		52	52		ł	
	Titanium Carbide		†	t	+	t		53	53		53	53	+	53	53		53	53		1	
	Tungsten Carbide				+ ···	1		54	54		54	54	-	54	54		54	54]	
	Special Stainless, 4	40C, 440A		I		1		55	55		55	55		55	55		55	55]	
	Used Parts		56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56	56		

FIGURE 1—DATA FORM - REPLACEMENT PUMP

lives of failures and non-failures by metallurgies were summarized for the barrels, plungers, valves, cages, and pull rods or pull tubes (Table 1). Guidelines for pump-part service by metallurgies were based primarily on the service life of failing parts. Service life of non-failures was considered when such life exceeded the service life of failing parts.

 TABLE 1—SUBSURFACE PUMP: COMPONENT PUMP PART

 LIFE AND METALLURGY

District: "C" Field: No. Pump Component	Metallurgy	Number Failures	Average Life- Days	Number Non-Failures	Average Life-Days
Barrel or Liner	Alloy Steel - Chr. Pit,	2	462	11	326
	Adm. Brass - Chr. Pit,	50	534	370	567
	Reg, Steel - Hardened	257	310	109	160
	Reg, Steel - Nickel Plt,	_28	540	9	112
	Total	337	363	199	<i>¢</i> 60
Plunger	Cobalt Nickel Spray	45	515	325	<i>4</i> 80
	Hard Cast Iron®®Reg. Steel	37	379	138	501
	Ni-Hard®®Reg. Steel	28	554		472
A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.	Total	110	480	626	481

PUMP AND PART SERVICE

Service of pumps and parts, subsurface pump types, and average pumping conditions were summarized for 26 major fields that produce sour fluids (Table 2). The average of completed pump runs ranged from 3 to 10 months in these fields while the range for average part-life was 5 to 14 months. Pump run and part life do not necessarily relate. To illustrate, Field No. 1, District C, experienced a 4.5 month average pump run and a 13.8 month average part life for a ratio of 0.32, while at Field No. 2, District B, similar values were 8.5 months and 8.7 months, respectively, for a 0.98 ratio. This ratio generally reflected the effect of well servicing for other types of subsurface failures-rod breaks, tubing leaks, workovers, etc.--and the field practices on pulling and shopping pumps for cleanup, inspection, or replacement. Consequently, a low ratio indicates that other subsurface failures dominate well servicing and should receive more attention. Eight of the 26 fields with moderate to severe pump-

				SU	BSURFAC	CE PUN	IP SE	RVIC	CE RE	POR	T									
CARD CODE (1) 4	DISTRICT		AN	DRE	ws						_ (2	3						(5-9)		
FIELD SUPERINTENDE	NT	K	IN	G	<u> </u>					(3	4	6		LEASE	CODE	5	· 5	. 7	6	6
	M	EAN	15	S.F	}		w	ELL (10)-13)	2 '	7	6	,	DATE		2	2	<u>-19</u>	7	5
PUMP STATUS (20):	,	UMP NU	JMBER	(21-26)	539	7									MC).	 D.	AY	Y	EAR
1 PUMP WAS RUN	P	UMP SH	OP			xxx	××:	×		(27-2	•))	(X								
2 PUMP WAS PULLED		PI PUM	P 10)	2 0	7 7 :	50	R	W	B		2 4	10								
3 PUMP WAS PULLED	INUL DAA	(ED	т	DTAL PUM	P REPAIR	COST - D	OLLAR	5 (41.	.44)		2 (0								
r		(45-46)	(47-48)	(49-50)	(51-52)	(53-54)		(55-60			(61-66)			(67-72)	Anneline	Velve	73-78)			
		Liner		Valve	T. Pigr.			linner	ravella	g vaiv	lower			Unner	Tonaing		Lower			
FAILURE (CODE	Barrel	Plunge	Pull Tube	U.P.T. Cola	Extensions	Ball	Seat	Caae	Ball	Seat	Case	Boll	Seat	Cage	Ball	Seat	Cage		
Worn		01	01	01	01	01			(01)			01			101			01		
Break		02	02	02	02	02														
Split							02	02	02	02	02	02	02	02	02	02	02	02		
Cracked		03	03	03	03	03	02	02	02 03	02	02	02 03	02	02	02	02	02	02 03		
		03	03 04	03 04	03 04	03	02	02 04	02 03 04	02	02	02 03 04	02	02 <u>04</u>	02 03 04	02 04	02 04	02 03 04		
Grooved or Scored		03 04 05	03 04 05	03 04 05	03 04 05	03 04 05	02 04 05	02 04 05	02 03 04 05	02 04 05	02 04 05	02 03 04 05	02 04 05	02 04 05	02 03 04 05	02 04 05	02 04 05	02 03 04 05		
Grooved or Scored Fluid Cut		03 04 05 06	03 04 05 06	03 04 05 06	03 04 05 06	03 04 05 06	02 04 05 06	02 04 05 06	02 03 04 05 06	02 04 05 06	02 04 05 06	02 03 04 05 06	02 04 05 06	02 04 05 06	02 03 04 05 06	02 04 05 06	02 04 05 06	02 03 04 05 06		
Fluid Cut Plating Flaked		03 04 05 06 07	03 04 05 06 07	03 04 05 06 07	03 04 05 06	03 04 05 06 07	02 04 05 06	02 04 05 06	02 03 04 05 06	02 04 05 06	02 04 05 06	02 03 04 05 06	02 04 05 06	02 04 03 06	02 03 04 05 06	02 04 05 06	02 04 05 06	02 03 04 05 06		
Grooved or Scored Fluid Cut Plating Flaked Beat Out		03 04 05 06 07	03 04 05 06 07	03 04 05 06 07	03 04 05 06 08	03 04 05 06 07	02 04 05 06 08	02 04 05 06	02 03 04 05 06 08	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08		
Grooved or Scored Fluid Cut Plating Flaked Beat Out Bent		03 04 05 06 07 09	03 04 05 06 07 09	03 04 05 06 07 09	03 04 05 06 08	03 04 05 06 07 09	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08		
Grooved or Scored Fluid Cut Plating Flaked Beat Out Bent Thread Damage		03 04 05 06 07 09 10	03 04 05 06 07 09 10	03 04 05 06 07 09 10	03 04 05 06 08 10	03 04 05 06 07 09 10	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08 08	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08 10	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08 10		
Grooved or Scored Fluid Cut Plating Flaked Beat Out Bent Thread Damage Internal Pits		03 04 05 06 07 09 10 11	03 04 05 06 07 09 10	03 04 05 06 07 09 10 11	03 04 05 06 08 10 11	03 04 05 06 07 09 10 11	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08 10 11	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08 10	02 04 05 06 08	02 04 03 06 08	02 03 04 05 06 08 10 11	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08 10 11		
Grooved or Scored Fluid Cur Plating Flaked Beat Our Bent Thread Damage Internal Pits External Pits		03 04 05 06 07 09 10 11 11 12	03 04 05 06 07 09 10 11 12	03 04 05 06 07 09 10 11 12	03 04 05 06 08 10 11 12	03 04 05 06 07 09 10 11 12	02 04 05 06 08	02 04 05 06 08	02 03 04 05 06 08 10 11 11 12	02 04 05 06 08 12	02 04 05 06 08	02 03 04 05 06 08 10 11 12	02 04 05 06 08 12	02 04 05 08 08	02 03 04 05 06 08 10 11 11 12	02 04 05 06 08 12	02 04 05 06 08 12	02 03 04 05 06 08 10 11 12		
Grooved or Scored Fluid Cur Plating Flaked Beat Our Bent Thread Damage Internal Pits External Pits		03 04 05 06 07 09 10 11 12	03 04 05 06 07 09 10 11 12	03 04 05 06 07 09 10 11 12	03 04 05 06 08 10 11 12	03 04 05 06 07 09 10 11 12	02 04 05 06 08	02 04 05 06 08 12	02 03 04 05 06 08 10 11 12	02 04 05 06 08 12	02 04 05 06 08 12	02 03 04 05 06 08 10 11 12	02 04 05 06 08 12	02 04 05 06 08 12	02 03 04 05 06 08 10 11 12	02 04 05 06 08 12	02 04 05 06 08 12	02 03 04 05 06 10 11 12		
Grooved or Scored Fluid Cur Plating Flaked Beat Our Bent Thread Damage Internal Pits External Pits Other	~~~	03 04 05 06 07 09 10 11 11 12 12	03 04 05 06 07 10 11 12 19	03 04 05 06 07 09 10 11 12 19	03 04 05 06 08 10 11 12 19	03 04 05 06 07 09 10 11 12 19	02 04 05 06 08 12 19	02 04 05 06 08 12 19	02 03 04 05 06 08 10 11 12 19	02 04 05 06 08 12 19	02 04 05 06 08 12 19	02 03 04 05 06 08 10 11 12 12 19	02 04 05 06 08 12 19	02 04 05 08 12 19	02 03 04 05 06 08 10 11 12 19	02 04 05 06 08 12 19	02 04 05 06 08 12 19	02 03 04 05 06 08 10 11 12 12		

FIGURE 2—DATA FORM - DAMAGED PUMP

ing conditions showed an average pump-part life on the order of 12 months and greater. This would appear to be a reasonable goal for all of the fields, and pump metallurgy should be upgraded accordingly. Costs of various metallurgies are generally not a major factor in metals selection since well servicing costs \$250 to \$900 per job and production losses greatly exceed the incremental costs of upgraded replacement parts.

Average service life of major pump component parts was determined and typical data are shown in Table 3 and graphically in Figure 3. The average service represents the service life for failing parts only,

TABLE 2—SUBSURFACE PUMP PERFORMANCE:1969THROUGH 1975

District : Field :	** B **	"B" 2	<u>а</u>	"C" 1
No. Runs	96	118	142	2625
Avg. Pump Run - Months	9. 6	8, 5	6, 9	4, 5
Avg. Part Service - Months	12, 7	8.7	12, 3	13. 8
Ratio - Pump/Part Life	. 76	. 98	. 56	. 32
Type Pump	RWT, RWB	RWT, RWB	RV'T, RV'B	RWB, RWH
Pump Depth - Avg, Feet	5000	2200	2500	7000
H ₂ S - PPM (Prod. Wtr.)	30	300	80	200

unless otherwise indicated. For each component part, the two metallurgies most widely used in each specific field and their corresponding service are presented. This service represents the average life for parts that failed in service, except in certain cases where the life of non-failed parts exceeded that of failed parts; then the average life of both failed and non-failed parts is used. Figure 3 presents a comparison of part service and readily reveals which individual components are experiencing shorter service lives. These are candidates for upgrading to improve service. A description of metal codes is presented in the Appendix.

TABLE 3—PUMP PART PERFORMANCE: 1969 THROUGH 1975

	District : Field :	" B' 1		" B' 2		"B" 2			۲ C ۲
		Соре	Serv. Mos.	Code	Serv. Mos.	Code	Serv. Mos,	Code	Serv. Mos.
Α.	Pump Barrel								
	Avg, Service - Months Metals - Most Used	13			9	ç)	1	2
	lst	1	15	15	7	6	9	14	18+
	2nd	6	ó	2	13	-	-	2	10
В. Н.	Plunger Pull Tube or Rod	12	11	11	11	'' ''	2.27		2223
	Avg/Service - Months Metals - Most Used	16			9	13		Ĩ	.3
	lst	1	18	15	7	1	13	1	18+
	2nd	2	6+	1	14		-	-	-

FIGURE 3—SUBSURFACE PUMP PERFORMANCE

METALS SELECTION

Performance of component pump parts is presented in Tables 4 through 12. The parts are identified as to metallurgy and rated according to their service record as follows:

RATING	MONTHS SERVICE
A-Good	Over 10 months in 2 or more districts
A-Qualified	Over 10 months in one district
B-Fair	8 through 10 months in one or more districts
C-Poor	Less than 8 months in one or more districts

The A-qualified rating is included because satisfactory service of a metal in one field or district may not extend to other areas.

These tables provide guidelines on metals selection for upgrading of pump parts. Generally, the past performance data indicate that the best service for pump barrels is attained with corrosion-resistant base metals plated with chrome or nickel on the inside diameter. Regular steel plungers with spray metal coatings of chrome, nickel, and certain metallic carbides on the external surface perform well. Also, regular steel appears to be satisfactory for other fittings—cages, pull rods, and pull tubes. The best valve service is obtained with stellite, a nonferrous alloy. Certain metals with lower ratings show good service in specific fields, and continued use of the materials in these fields would be prudent. These tables can be used to reduce the "trial and error" effort and expense in selecting a right combination of parts to improve pump service.

Performance of different metals and alloys is discussed by pump parts below:

Barrels (Table 4)

Barrels of corrosion-resistant base metal, plated with chrome or nickel on the internal diameter have provided the best service in our pumping environments. A nickel-plated, regular steel barrel has performed satisfactorily in one field. However, steel base metal has few corrosion-resistant properties and normally should be used in mild corrosive environments. The plating materials are beneficial on wear surfaces in that they possess corrosion- and abrasion-resistant properties. Occasionally, erratic performance may be experienced with plated barrels due to improper application of the plate. Failures occur as "flaking" of the plate material or galvanic corrosion of the base metal part.

The majority of our subsurface pumps are of the bottom holddown design, and selection of a base metal to resist corrosion is important to good service. With this type of pump, a "dead space" in the tubing-barrel annulus exists and extends from the discharge at the top of the pump to the bottom holddown. Corrosion products settle in this space to set up concentration cell corrosion, and inhibitors cannot be effectively applied to the area. So, both barrel and tubing corrosion damage can occur. This is one reason that corrosion inhibitors have not been highly effective in controlling pump corrosion.

Where tubing corrosion is a problem in this dead space, an internal plastic coating on the joint of tubing containing the pump has been successful. A top seal on the pump barrel can alleviate this corrosive area and permit the use of a cheaper base metal for the barrel. With pumping depth above 5,000 ft, a top holddown or travel-barrel design can eliminate this corrosive condition.

TABLE 4—SUBSURFACE PUMP M	METALS EVALUATION:
BARRELS	

	Metal		A	erace Ser	vice - Mor	nths	Total No.
Material Rating	Coue +	Description		District		Total	Runs
			''A''	"B"	''C''	~	
'A' - Good	14	Brass - Chr. Pil.	<u>ن</u> +	10+	18+	15+	724
'A' - Qualified	4	Rej, Steel - Ni, Plt,	-	-	12	12	85
	12	Stainless - Chr. Pit,	-	13+	-	13+	28
	16	Monel - Chr. Pit,	-	12	-	13	26
'B' - Fair	1	Rey, Steel	-	9+	8+	9+	363
	2	Reg, Steel - Harden	6	12	9	9	609
	3	Rex, Steel - Chr. Pit	8	9+	-	8	267
	6	Alky Steel - Harden	9	9+	•	9	316
	9	Special Alloy - Harden	8+	11	-	9	91
'C' - Poor	7	Alloy Steel - Chr. Pit.	-	6+	-	5+	29
	15	Monel	-	7+	-	7+	59
Not Rated	13	Al, Bronze	Insu	fficient Da	ita		
	27-Sec.	Ni-Hard - Stainless	insu	fficient Da	ita		

+ Life of non-failed parts exceed failures; service months are an average of both.

* See Appendix for code.

Plungers (Table 5)

Both the one-piece and composite plungers of specific metallurgy have provided satisfactory ser-

vice. The tendency within the Division and Industry is to use the one-piece plunger. This trend probably results from the additional work required to manufacture and assemble the composite, difficulties in maintaining alignment, particularly in deeper wells, and the slight increase of restriction because of the smaller I.D. of the plunger tube.

The spray-metal (Cobalt-Nickel), one-piece plunger has provided the best performance record of the one-piece plungers. Two types of spray-metal plungers are available: a plunger with the pins (threaded ends) protected by a plating or by means of a monel connector, and a plunger without protection. The ones without protection have performed better than the plungers with corrosion resistant pins. This may be due to a reduction in pin strength caused by the metal spraying process or, in the case of those with a monel connector, a reduction of metal strength. Of the composite plungers, the nickel cast iron (Ni-Hard) has performed satisfactorily. The cast iron (regular and hard) has provided good service in one District.

TABLE 5—SUBSURFACE PUMP METALS EVALUATION: PLUNGERS

	Metal		Av	eraje Ser	vice - Mor	nths	No.
Material Rating	Code	Description		District		Total	Runs
			<u>''A''</u>	<u>B.</u>	"C"		
'A' - Good	17	Cobalt-Ni, - Spray	9+	14+	14+	12+	877
	26-Sec.	Ni-Haru - Reg, Steel	-	8+	16+	13 •	280
'A' - Qualified	20-Sec.	C. I Reg. Steel	-		16+	16+	175
	23-Sec.	H, C, J, - Rey. Steel	-	-	13+	13+	97
'B' - Fair	2	Reg. Steel - Hargen	-	10+	-	10+	76
	18	Cobalt-Ni, Spray - CRP	7+	11+	9	10+	536
	24-Sec,	H, C, I, - Stainless	-	8	-	8	27
	30-Sec.	Stainless - Stainless	-	10+	-	10+	70
'C' - Poor	8	Alloy St Ni, Plt.	7	-	-	7	23
Not Rated	1	Reg. Steel	Insu	fficient Da	eta		
	19	Other	Vario	us Alloys			

+ Life of non-failed parts exceeds failures; service months are an average of both.

Balls and Seats (Tables 6 and 7)

Performance data in the tables reflect either ball or seat service, whichever failed first. The ball and seat are considered as one unit since they are generally replaced as a unit. The service data show that the stellite (cobalt, chrome, tungsten nonferrous alloy) provides outstanding service and is most widely used within the division. In one shallow field, Field No. 2, District B, the monel valve has performed well in a very sour environment. Care should be exercised in the application of monel because it is a relatively soft metal and will deform under heavy loads as encountered in deep wells. Its hardness is about R_c35 as compared to R_c58 for Stellite.

In some fields, a cheaper ball (tool steel or stainless) with a very hard tungsten carbide (R_c72) seat is used. No improved valve performance has been apparent with this combination, primarily because a failure of either part required a service job, and generally, both parts were replaced.

 TABLE 6—SUBSURFACE
 PUMP
 METALS
 EVALUATION:

 TRAVEL
 VALVE
 BALLS
 AND
 SEATS

	Metai		Ave	erage Serv	vice - Mon	ths	Total No,
Material Rating	Code	Description		Districi		Total	Runs
·•			- A-	<u>B.</u>	<u>C.</u>		
'A' - Goo	52	Stellite	-	12+	15	13+	1082
'A' - Qualified	15	Monel (1)	-	11+	-	11+	75
'B' - Fair	9	Spec. Alloy- Harden	8+	8+	-	8+	247
	54	Tungsten Carbide	5+	8+	6+	8+	271
'C' - Poor	10	Stainless - 329 & 414	7+	-	-	7+	313
	55	Stainless - 440 C&A	5+	10+	-	6+	307
Not Rated	55	Titanium Carbide	Insu	fficient Da	ita		

ed 55 Titanium Carbide th: (1) Hardness - 27/35 R_C - Not suited for heavy loads

+ Life of non-failed parts exceeds failures; service months are an average of both.

 TABLE 7—SUBSURFACE
 PUMP
 METALS
 EVALUATION:

 STANDING VALVE - BALLS
 AND SEATS
 Standards
 Standards

	Metal		Av	erage Serv	vice - Mor	iths	lotai No.
Material Rating	Code	Description		District		Total	Runs
			'A''	"B"	''C''		
'A' - Good	52	Stellite	-	12+	14	13+	1221
'A' - Qualified	15	Monel (1)	-	11+	-	11+	74
'B' - Fair	9	Spec, Alloy - Harden	-	8+	-	8.	171
'C' - Poor	10	Stainless - 329, 414	7+	-	-	7+	305
	54	Tungsten Carbide	3+	8+	-	7+	243
	55	Stainless - 440 C&A	4+	11+	-	5+	303
Not Rated	53	Titanium Carbide	Insu	fficient D	ata		
	2	Reg. Steel - Harden	1050	mclent D	6)6		
(1) Ha	rdness - 2	7/35 R _C - Not suited for hea	vy loads				
+ Li	fe of non-f	ailed parts exceeds failures;	service m	onths are	an avera	ge of both.	

Other Fittings—Cages, Couplings, Pull Rod, and Pull Tube (Tables 8 through 11)

Regular steel metallurgy has provided satisfactory service for the other fittings and is used extensively within the division. Naval brass has performed well in Field No. 2, District C, under difficult pumping conditions. This metal has good corrosion-resistant properties but is a softer metal with less strength than regular steel.

Upgrading Pump Parts

Component parts that are candidates for upgrading (less than 12 months average service life) were

TABLE 8—SUBSURFACEPUMPMETALSEVALUATION:TRAVEL VALVE - CAGE

	Metal	Descr	iption	Ave	rage Serv	ice - Mon	ths	No.
Material Rating	Code	Cage	Guide		District		Total	Runs
				"A"	<u>"B"</u>	C		
'A' - Good	32	Req. St.	Req. St.	12+	14+	13	13+	654
	33	Reg. St.	Insert	8+	-	16+	11+	405
'A' - Qualified	37	Alloy St.	Insert	-	13+	-	13+	56
- <u> </u>	41	Stainless	Insert	-	22+	-	22+	19
	44	Brass	Brass	-	-	12 +	12+	244
	45	Brass	Insert	-	-	12 +	12+	282
'B' - Fair	34	Rea. St.	Spray	-	-	8+	8+	57
	36	Allov St.	Alloy St.	8+	11+	10+	10+	299
	40	Stainless	Stainless	7+	10	-	8+	89
	48	Monel	Monet	-	10+	-	10+	131
'C' - Poor	43	Stainless	Rubber	7+	-	-	7+	122

+ Life of non-failed parts exceeds failures; service months are an average of both.

TABLE 9—SUBSURFACE PUMP METALS EVALUATION: STANDING VALVE - CAGE

	Metal	Descr	iption	Ave	erage Serv	ice - Mon	ths	No.
Material Rating	Code	Cage	Guide		District		Total	Runs
	<u> </u>			"A"	"B"	<u>"Ĉ"</u>		
'A' - Good	32	Req. St.	Req. St.	10+	14+	13+	13+	879
	33	Reg. St.	Insert	8+	10+	13+	11+	289
	36	Alloy St.	Alloy St.	8+	12+	-	11+	352
'A' - Qualified	37	Alloy St.	lasert	-	16+	-	16+	48
	44	Brass	Brass	-	-	13+	13+	571
	45	Brass	insert	-	-	14+	14+	314
'8' - Fair	34	Reg. St.	Sprav	-	-	8+	8+	43
	38	Allov St.	Spray	-	10+	-	10+	64
	48	Monel	Monel	-	10+	-	10+	96
'C' - Poor	40	Stainless	Stainless	4+	10+	-	7+	66
	43	Stainless	Rubber	4+	-	-	4+	59

Not Rated 41 Stainless Insert Insufficient Data

+ Life of non-failed parts exceeds failures; service months are an average of both.

TABLE 10—SUBSURFACE PUMP METALS EVALUATION: TOP PLUNGER CAGE OR UPPER PULL TUBE COUPLING

	Metal		Av	erage Serv	rice - Mon	iths	Total No.
Material Rating	Code	Description		District		Total	Runs
			"A"	"B"	"C"		
'A' - Good	1	Reg. Steel	8+	14+	14	13+	1503
'A' - Qualified	6	Ailoy St Harden	-	11+	-	11+	39
	10	Stainless	-	14+	-	14+	21
	13	Brass	-	-	13	13	56
'B' - Fair	5	Alloy Steel	-	12+	6+	10+	203
	15	Monel	-	9+	-	91	142
'C' - Poor	2	Reg. Steel	5+	10+	9+	7+	180
Not Rated	14	Al, Br Chr. Pit.	Insuff	icient Dat	a		
	32	Reg, Steel - Reg, Steel	Insuff	icient Data	a		

+ Life of non-failed parts exceeds failures; service months are an average of both.

TABLE 11—SUBSURFACE PUMP METALS EVALUATION: PULL ROD OR TUBE

	Metal		Av	erage Serv	vice - Mon	ths	No.
Material Rating	Code	Description		District		Total	Runs
*			''A''		"C"		
A' - Good	1	Reg. Steel	7+	13+	14+	13+	1 865
A' - Qualified		NUNE					
'B' – Fair	5	Alloy Steel	-	11+	6+	10+	228
	15	Monel	-	10	-	10	84
'C' - Poor	2	Reg. Steel - Harden	6+	-	6+	6+	137
	6	Alloy Steel - Harden	-	-	6+	6+	31
Not Rated	13	Brass or Al. Br.	insuff	icient Dat	3		

+ Life of non-failed parts exceeds failures; service months are an average of both.

summarized by fields (Table 12). All 26 fields had pump parts that were candidates for upgrading, even those with average service equal or exceeding 12 months. In several fields only one part would require attention, but in nine fields all components of the pump had poor service records.

TABLE 12—SUMMARY OF UPGRADE CANDIDATES I, Fields with Average Pump Service of 12 months or greater

District	Field	Problem Parts
"B"	1 3 4 5 8 15	Stú, Valve Stú, Valve and Plunger Barrel Barrel Barrel Barrel and Plunger

11. Fields with Average Pump Service of less than 12 months

District	Field	Problem Parts
"B"	2	All components
	6	Barrel and Plunger
	7	Plunger, Valves, Travel Valve Cage and Top Cage
	9	Valves
	10	Barrel, Valves and Cages
	11	All components
	12	Barrel, Plunger, Std. Valve and Cage, and Top Cage
	13	All components
	14	Std. Valve Cage and Pull Rod

A table like that presented in Table 3 can serve as a guideline in appropriate metals selection for upgrading. To illustrate the table's use, under "Pump Barrel" in Field No. 1, District B, metal code No. 1 had provided 15 months average service as compared to 6 months for metal code No. 6. Thus, greater use of metal code No. 1 should improve barrel service. The "pump barrel" at Field No. 4, District B, had a short service life of about 9 months and only metal code No. 6 had been used. Selection of another metallurgy from Table 4"Barrels" would be recommended for evaluation. In summary, utilize existing metals that have performed satisfactorily in specific fields. If there are none, select other metals that have performed well from Tables 4 through 11. This approach can reduce the "trial and error" effort and expense in selecting the right combinations of pump parts for service improvement.

PUMP SURVEILLANCE

For proper surveillance and improvement of subsurface part performance, it is planned to review pump data on an annual basis by computer analysis. Generally, metals selection has been at the discretion of the pump company or the shop, with limited input from Exxon. The application of different metals has been made experimentally. Now sufficient data is available to provide suitable guidelines as to proper metals selection in most fields. It is believed that, by combining our pump data with the pump company's information, further improvements in metals selection and, ultimately, in total pump service can be attained.

CONCLUSIONS

- 1. Average pump-part service of at least 12 months should be an attainable goal, and pumps should be upgraded accordingly.
- 2. Past performance data provides guidelines for upgrading pumps. General guidelines for pump-part metals selection are as follows:
 - a. Barrels: Chrome or nickel plate on a corrosion-resistant base metal.
 - b. Plungers: Spray-metal coatings on a reggular steel-base metal and unprotected pins.
 - c. Valves: Stellite.
 - d. Cages, couplings, pull rods, and pull tubes: Regular steel.
- 3. A low ratio of average pump run to average part life in a specific field indicates that service jobs other than pump failures dominate well servicing costs.

REFERENCES

1. White, J. R.: "Computer Application in Sucker Rod Pumping Management," Southwestern Petroleum Short Course, 1976.

APPENDIX

1 2

3

4 5 6

7

8 9

10 11

12 13

14

15

16

Pump Metallurgy Codes

	Regular Steel-No Hardening
	Regular Steel-Harden
	Regular Steel-Chrome Plated
	Regular Steel-Nickel Plated
One Diese Barrol	Alloy Steel
One Plece Barrel	Alloy Steel-Harden
One Diese Diversor	Alloy Steel-Chrome Plated
One Plece Plunger	Alloy Steel-Nickel Plated
Dull Ded	Special Alloy-Harden
Pull Roa	Stainless Steel
Ten Cont	Stainless Steel-Harden
lop Cage	Stainless Steel-Chrome Plated
Mahaa	Brass or Aluminum Bronze
valves	Brass or AI Brz-Chrom Plated
	Monel
	Monel-Chrome Plated

17		Cobalt Nickel Spray
18		Co-Ni Spray-Cor, Resis Pins
19		Other
20		Cast Iron**Regular Steel
21		Cast Iron**Alloy or Stainless
22		Cast Iron**Brass or Monel
23	Lin on Downold	Hard Cast Iron**Regular Steel
24	Liner Barreis	Hard Cast Iron**Alloy or Strils
25	0	Hard Cast Tron** Brass or Monel
26	Či,	Ni-Hard**Regular Steel
27	Sectional Diupeers	Ni-Hard**Alloy or Stainless
28	Sectional Plungers	Ni-Hard** Brass or Monel
29		Stnis Steel**Regular Steel
30		Stnis Steel**Alloy or Stnis
31		Stnls Steel**Brass or Monel
32		Regular Steel**Regular Steel
33		Regular Steel** Insert
34		Regular Steel**Spray
35		Regular Steel**Rubber
36		Alloy Steel**Alloy Steel

37		Allov Steel*∗Insert
38		Alloy Steel**Sprav
39		Alloy Steel [®] "Rubber
40		Stainless Steel**Stnls Steel
41	C	Stainless Steel** Insert
42	Cages	Stainless Steel**Spray
43		Stainless Steel**Rubber
44		Brass or Al Brz**Br or Al Brz
45		Brass or AI Brz** Insert
46		Brass or AI Brz**Spray
47		Brass or AI Brz**Rubber
48		Monel**Monel
49		Monel** Insert
50		Monel**Spray
51		Monel**Rubber
52		Cobalt-Chrome Steel
53	Valves	Titanium Carbide
54	401403	Tungsten Carbide
55		Spec Stainless 440C, 440A

ł

.