SOPHISTICATED COMPUTER POWER AVAILABLE AT REMOTE LOCATIONS

STEPHEN B. COOK General Electric Information Services Company

ABSTRACT

It is well known that a computer can help engineers to be more productive. Currently, there are multitudes of hardware and software available on the market. Communications capabilities now exist to provide a link between the well site and the computer. The paper focuses on the current availability of software and communications to provide access to large core programs from the well site, the benefit to the engineer of this expanded computer power, and some specific examples of the software.

INTRODUCTION

Engineers have long been using computers in their work. Historically, usage has been a function of the complexity of the problem, the availability of computer power, and the cost/benefit relationship to the engineer. Originally, big computers were used to solve every variety of mathematical computation. This problem solving process required programming and access to a big computer. It often involved long turn-around times and incurred high costs. The advent of the programmable mini-computer eliminated many of the difficulties associated with using big computers - such as cumbersome programming and JCL, and long turn-around times. Lately, the cost of solving engineering problems has also been reduced. Thus, it would now appear as if we were entering into a more harmonious state for the engineer and his minicomputer.

This period, however, may be short lived. The problems now facing the engineer are far more complex than those of a decade ago and the demands on his time are much greater. In order to effectively solve problems, the engineer needs access not only to problem solving computers, but also to large databases and sophisticated models. Since large databases and sophisticated models most often reside on large, centralized computers, the engineer is faced with having to access a central computer, locating the appropriate database, finding the proper model and putting it all together to solve a problem. This requires much more time and effort and significantly increases the cost of solving the problem. Fortunately, we have the capability to address these drawbacks:

- A. Access to a big computer.
- B. Locating the proper database.
- C. Finding and using a model that will do the job.

Various entrepreneurs have focused on points B. and C. These programmers and engineers who have developed systems designed to solve a family of related engineering problems. However, the engineer in the field is not always aware of the availability of these systems. Thus his problem is not solved quickly, completely, or economically. What is needed to make the search for these systems easier is a complete index of all available models, databases, and systems that exist to help the engineer to solve the problem. Also, access to the proper computer that handles the system and a method whereby the raw information from the engineer can get to the computer, be processed, and then get back to the engineer – e.g. a reliable communications network.

THE CURRENT SITUATION

A number of companies and universities supply remote computing services for the engineer. Many have developed libraries of programs and associated databases for dealing with complex analytical problems. Some have developed communications networks to provide access to their libraries from remote locations. The quality of these programs and communications networks vary from quite sophisticated to barely adequate. The one with which the author is most familiar is the General Electric Information Services Company's MARK III (R) Service. This system of computers and communication equipment provides access on a local dial-up basis to more than 600 cities in the world. It also provides access to other remote locations via telex service or long-distance telephone connection. GEISCO has developed a large library of sophisticated programs which focus on helping the engineer to be more productive. Many of these programs have been developed by outside programmers - experts in their field - who receive a royalty for the use of their programs. These programs focus on keeping the engineer productive and up-to-date with the latest techniques. It has been estimated that the use of these types of programs can increase the efficiency of an engineer up to 20 percent. Obviously this increase helps the engineer; he has more time to work in non-problem solving areas, he can be more creative, and he could possibly even gain a few more hours to enjoy his family.

The enclosed listing contains some authors and programs that may be of interest to production engineers. During the classroom discussion, the author will be prepared to discuss specific applications of these programs and to review the different terminals and communication techniques that are available to provide access to this kind of computer power at remote locations. A table of authors and a partial list of their programs is below:

AUTHOR	PROGRAM NAME(S)	DESCRIPTION
Atlantic Software,Inc.	Project Control/70 (PC/70)	Project and resource management. Focusing on planning, simulation (what if), monitoring correcting, and eval- uating manpower pro- ductivity and costs.
Baker Packers Completion Systems	Tubing Movement Program	Based on SPE paper no. 5143. Focuses on determination of forces and stresses in a string of tubing due to changes in pressures, temperatures and fluids.
Core Labs (ENPAL Library)	MCRES	Monte Carlo Revenue Estimator.
	DECIT	Decline curve projection.
	ECOCSHF	Economic cashflow projection.
	WCTR	Time rates waterflood oil recovery.
	PVTOIL: PVTGAS	PVT properties of low volatility oils. PVT properties of dry gas.

...and others...

•

b.

۲

.

.

.

.

.

.

÷.

*

٠

.

*

۵.

-

•

-

*

-

. 379

AUTHOR	PROGRAM NAME(S)	DESCRIPTION
Delta X	SUPRO*	Designs complete rod pump system given design and load factors.
	SURDYN*	Predicts surface dynagraph from an assumed down- hole pump dynagraph according to API- RP-11E.
	PUMPDYN*	Calculates down-hole dynagraph and gearbox torque according to API- RP-11E.
	SYSTOR*	Computes the pump unit gear- box torque and/or permissible polished rod load in accor- dance with API-RP- 11E.
	and many others	
Garrett Computing Systems	PUMP	Determines SPM required to stay within various constraints for rod pump and string design.
	GRASP	Grid-type reservoir analysis and simulated performance model. Develops a 2 or 3 dimensional, unsteady state, reservoir production output for oil and gas.
	PARD .	Analyzes various transient pressure performance data.

AUTHOR	PROGRAM NAME(S)	DESCRIPTION
Garrett Computing	API14B	Subsurface safety valve sizing.
Systems	CRAM	Calculation of reservoir and aquifer volumes by material balance.
	and many others	
General Electric Company	ASTRA	Combines PERT and resource allocation into single report.
	СРМ	Cost analysis for project management.
	GESIMTEL	Dynamic, proba- bilistic models to simulate ongoing systems.
	and many others	
PSI Energy Software	GASFLOW	Calculates gas flow rates from orifice.
	DECLINE	Oil or gas schedules using all standard decline curve equations.
	RAPS	Reservoir accounting and production schedules.
	HALLPLOT	Hall technique for injection well analysis for water floods
	and many others	

2

.

٣

r

<u>`</u>

**

.

.

.

.

.

۰.

.

.

•

•

AUTHOR	PROGRAM NAME(S)	DESCRIPTION
West Texas Consulting Service, Inc.	G1 Special	Calculates absolute open flow for gas and types it on Gl form.
	BUILDUPTWO	Calculates, tabulates, and plots pressure vs. time.
	FLGSIBU	Calculates flowing and/or shut-in pressures and tabulates and plots pressure versus time.
Dwight's	Database	Production statistics on all individual producing gas wells & oil leases in an 11 state area.
P. I. Corporation	Database	Drilling Activity Analysis System. Drilling activity statistics on oil and gas wells.
Univ. of Oklahoma	Database	Production statistics on all oil and gas fields in North America.

•