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INTRODUCTION 

Horizontal single-phase flow in a pipe net- 
work occurs frequently in oilfield operations. 
The field engineer may need to predict with 
reasonable accuracy the pressure loss in these 
lines. Nomographs from a handbook or appro- 
priate equations from a fluid mechanics text 
can be employed for these calculations. 

The equations for Reynolds number and 
pressure loss in most textbooks will not have 
been derived in commonly employed field 
units, requiring numerous conversions which 
are excellent sources of error. To further 
complicate these calculations, Moody diagrams 
appear in the literature with two different 
sets of values for the friction factor. A cal- 
culated pressure loss would be in error by 
400 per cent if the wrong friction factor were 
used. 

In this paper the equations for Reynolds 
number and pressure loss are defined in field 
units. Examples are included to illustrate the 
calculations. In addition, a listing of a com- 
puter program for calculation of the Darcy 
friction factor is given for the engineer who 
has access to a computer or terminal. 

REYNOLDS NUMBER 

The Reynolds number in consistent units for 
pipe flow is a dimensionless parameter defined 
as 

R,= F m* 

and is one of the most important parameters 
in fluid mechanics. It is the ratio of the iner- 
tial to the viscous forces. The Reynolds num- 
ber indicates the flow pattern from laminar 
(viscous) to fully developed turbulent flow. 

Since the friction factor equation varies with 
flow regime, the proper regime must be es- 
tablished before further calculations are pos- 
sible. Therefore, the first step in the calcula- 

*All nomenclature listed at end of paper. 

tion of a pressure loss is to compute the Rey- 
nolds number. 

A value is not readily calculated from field 
data using Eq. (1). A more useful equation is 

which applies for liquid or gas flow. The con- 
stant C&+. varies with the units of the volu- 
metric flow rate and its value is given in Tables 
1 and 2 for liquid and gas flow respectively. 
The volumetric flow rate for gas is at standard 
conditions which is readily available. Exact in 
situ computations, i.e. at the actual flowing 
pressure and temperature, are not justified 
when pipe roughness and other factors must 
be approximated. 

The viscosity in Eq. (2) is absolute (dynamic) 
viscosity in centipoise. The centipoise unit 
was selected because of its wide use in the oil 
industry. If the kinematic viscosity in centi- 
stokes is known, conversion to centipoise for 
a liquid is accomplished by multiplying the 
given viscosity in centistokes times the specific 
gravity of the liquid. For example, the abso- 
lute viscosity would be 3.4 centipoise if the 
kinematic viscosity and specific gravity were 4 
centistokes and 0.35 respectively. The pipe 
diameter in Eq. (2) is in inches. 

ABSOLUTE AND RELATIVE ROUGHNESS 

Absolute roughness is the average depth of 
the wall irregularities. A uniform value is 
assumed for the entire pipe wall of a given 
conduit; this parameter is not measured. 

The relative roughness is the absolute pipe 
roughness divided by the pipe diameter in the 
same units. 

Relative Roughness =E/d 
(3) 

Since the relative roughness is a dimensionless 
quantity, the absolute roughness and pipe ID 
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must both be in the same units of length as 
inches, feet, etc. 

The friction factor chart (Moody diagram) is 
based on three parameters, one of which is 
the relative roughness. The importance of 
relative roughness increases for higher Rey- 
nolds numbers and does not affect the friction 
factor at low Reynolds numbers where laminar 
flow exists. 

In many handbooks and texts a relative 
roughness chart appears in conjunction with a 
Moody diagram. Curves on this chart will be 
labeled commercial steel or wrought iron 
pipe, drawn tubing, etc. Rather than using 
these charts it is recommended to use values 
for absolute roughness applicable to oilfield 
pipe which have been determined by several 
investigators. Cullender and Smith1 found an 
absolute roughness of 0.0006 inches to be rep- 
resentative of oil well tubing. A value of 0.0007 
inches was reported by the Bureau of Mines2 
and the American Gas Association3. These 
values for absolute roughness are based on 
fully developed turbulent flow. 

FRICTION FACTOR AND 
FRICTION FACTOR CHART (FIG. 1)4 

After the Reynolds number and relative 
roughness are calculated for the given _ flow 
conditions, the friction factor can be deter- 
mined from a Moody diagram. The basis for 
a friction factor chart (Moody diagram) should 
be established before the friction factor is 
plugged into a pressure loss equation. 

Moody diagrams appear in the literature 
based on two different friction factors, i.e. the 
Darcy and the Fanning factors. 

Darcy friction factor = 4 (Fanning friction factor) (4) 

If the Darcy friction factor were used in a 
Fanning pressure loss equation, the calculated 
loss would be in error 400 per cent on the 
high side. For this reason a friction factor 
cannot be used indiscriminately with all pres- 
sure loss equations. 

The procedure for determining which friction 
factor is plotted as the ordinate of a Moody 
diagram is to note the f-value for a Reynolds 
number of 1000. 

f = 0.064 Darcy 
f = 0.016 Fanning 

A Moody diagram based on the Fanning friction 
factor can be used with a Darcy (Darcy- 
Weisbach) equation by multiplying the chart 
f-value by 4 before plugging it into the equa- 
tion. 

The Moody diagram is a convenient display 
of friction factors for laminar, transition, and 
fully developed turbulent flow through pipes of 
various roughnesses. The chart eliminates the 
need for calculations which are very laborious 
for transition flow. Figure 1 is based on the 
Darcy friction factor. 

The friction factor for laminar flow is in- 
directly proportional to the Reynolds number. 
The f-value is represented on the Moody dia- 
gram by a straight line which is independent 
of pipe roughness. Laminar flow is considered 
to exist for Reynolds numbers less than 4000 
with many authors arbitrarily selecting 2000. 
The conditions for which laminar flow ceases 
are difficult to predict. A value of 2100 is used 
in the computer program in the Appendix. This 
computer program is a revised and extended 
version of one by Sommerfeld.5 (See Fig. 2) 

The Colebrook equation defines the friction 
factor in the transition range between laminar 
and fully developed turbulent flow. This em- 
pirical equation does not lend itself to an easy 
hand-calculated solution, hence the Moody 
diagram. 

The friction factor in the fully turbulent 
region is defined by the Nikuradse equation. 
When complete turbulence is attained, the fric- 
tion factor remains constant with an increasing 
Reynolds number. 

The equations which define the Darcy fric- 
tion factor for the three regions of flow are 
given in the Appendix. 

HORIZONTAL STEADY INCOMPRESSIBLE 
CONFINED FLOW 

The proper equation for the previously de- 
termined friction factor must be employed to 
calculate the pressure loss. The two force 
balance equations which are commonly used 
for describing horizontal, single-phase, iso- 
thermal, steady flow (no acceleration) of an 
incompressible (constant density) liquid 
through a pipe are the Darcy (sometimes re- 
ferred to as Darcy-Weisbach) and the Fanning 
equations. The only difference in the two equa- 
tions is a factor of 4 which may appear in the 
friction factor. 
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The equations in consistent units are gen- 
erally expressed in the literature as 

fL(y12P 1 
Darcy npf= i&d 

(5) 

and 

Fanning npf = 
2f-q2P 1 

gcd 

Unfortunately, the above formulae would re- 
quire several conversions from field units to 
consistent units. 

The Darcy Eq. (5) for pipe flow in practical 
field units is 

ClfT $Gl,12 
nPf= 

Gil5 
(7) 

where C, varies with the units for the liquid 
volumetric flow rate, and its values are given 
in Table 1. The remaining terms of Eq. (7) are 
psi for pressure loss, feet for pipe length, and 
inches for internal pipe diameter. 

HORIZONTAL STEADY COMPRESSIBLE 
CONFINED GAS FLOW 

An equation similar to Eq. (7) can be de- 
veloped for single-phase gas flow through 
pipe. Since gas density varies with pressure 
and temperature, a relationship in terms of 
pressure and temperature can be substituted 
for gas density. Similarly, the volumetric flow 
rate at standard conditions can be converted 
to in. situ conditions based on the flowing pres- 
sure and temperature in the pipe. With these 
substitutions, Eq. (7) for gas becomes 

2 frgLTz 

c ) 

2 

apf = Constant 
P GO5 

‘Igsc (8) 

where the constant would depend on the units 
used for pressure, length and the volumetric 
flow rate. 

A pressure loss equation for gas flow which 
includes the Z-factor requires a trial-and- 
error solution. Many published gas flow equa- 
tions are arranged to solve for the volumetric 
flow rate in terms of a known pressure loss 
which circumvents the trial-and-error solu- 
tion. 

Equation (8) is not in the most useful form 
for calculating the downstream (discharge) 
pressure. By letting the mean pressure (p) 

equal (p, + p&2 and the compressibility be a 
function of this mean pressure and an average 
flowing temperature for the system, Eq. (8) 
may be rearranged to solve for the downstream 
pressure. 

p2.jlpL 2 -(!!-Ej2(hz&) (9) 

The units are psia for pressure, degrees R for 
temperature, feet for length, inches for pipe 
diameter, and Mscf/day for volumetric gas 
flow rate. The specific gravity of the gas is 
based on an air density of 0.0764 lb,,,/fts. Note 
that the gas flow rate must be converted to 
Mscf/day before Eq. (9) or the following Eq. 
(11) can be applied. 

Weymouth6 simplified the gas flow equa- 
tion by assuming the gas compressibility to 
be unity (Z = 1.0) and the Darcy friction factor 
to be a constant equal to 

0.032 
f= - 

$13 
(10) 

where the pipe diameter is in inches. Since 
Weymouth used actual measured pressure 
losses to establish Eq. (lo), the left side of 
the equation may be considered Zf rather than 
f alone. Using the above substitution in Eq. (9), 
the downstream pressure can be calculated 
directly. 

where the units are the same as for Eq. (9). 
If Eq. (9) is used, Ducker7 has shown that 

the Z-factor may be based on the same mean 
pressure assumption required to develop this 
form of the equation. In addition Ducker pre- 
sented a method for the calculation of the Z- 
factor. The initial assumed mean pressure can 
be based on a p1 calculated directly by Eq. (11). 

For extremely long lines, a finite difference 
type of calculation may be employed with Eq. 
(9); i.e. a long pipeline can be divided into 
several parts. This approach would be par- 
ticularly *applicable to a computer solution. 
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Since there is no Zfactor in Eq. (ll), dividing 2. 
a pipeline into short length increments will 
not affect the final answer. 

In the Appendix the same data are used to 
calculate the pressure loss by Eqs. (9) and (11). 
These calculated losses are quite different. 
Advanced knowledge as to the applicability of 
a particular gas flow equation to a specific 
line size, pressure level, gas flow rate, etc is 
most important. Assumptions used to simplify 
an equation may not be valid when extrapolated 
well beyond the conditions for which the as- 
sumptions are based. 

3. 

4. 

5. 

6. 
NOMENCLATURE 

, 
C 1 coefficient for liquid flow equation 
CRe coefficient for Reynolds number equation 
d internal diameter of pipe 
g, gravitational constant 
f friction factor 
L, length 
p pressure 

7. 

p mean pressure 
AP f frictional pressure loss 

volumetric flow rate 

SUBROUTINE CARCYF ( RE, RR, F ) 
IF I RE - 2100. ) 70, 70, 71 

C LAHlNAR L VISCOUS 1 FLOW REGION 
70 F = 64. / RE 

GO TO 77 
C COLEBROOK EQUATION f-OR TRANSITION 

71 A = RR / 3.7 FLOW 
B = 2.51 /HE 
C = 0.868589 
x- - C * ALOG{ A + l.Of-12 b 

72 Y = X + C * ALOGT A + 8 * X 1 
IF t ABS(Y) - l.OE-C6 1 74, 74, 73 

73 YP f 1.0 + C * 6 / ( A + B * X 1 
x x-Y/YP 
GO=TO 72 

74 FF = 1-C I X*+2 
C NIKURADSE EQUATION FOR FULLY 
C OEVELOPEC TURBULENT FLOW 

E = 1.14 - 0.86 * ALOGt RR 1 
FFT = 1.0 / E++2 

C COMPARES AN0 USES HIGHER F-VALUE 
IF ( FF - FFT 1 75, 761 76 

75 F = FFT 
GO TO 77 

76 F = FF 
77 CON 1INUE 

RETURN 
EN0 

Reynolds number 
temperature 
mean temperature 
velocity 
gas compressibility factor 
specific gravity 
absolute roughness 
absolute viscosity 
density 

Subscripts: 

g gas 
1 liquid 
SC standard conditions 
1 upstream 
2 downstream 
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FIGURE 2 
SUBROUTINE FOR CALCULATION 

OF DARCY FRICTION FACTOR 
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APPENDIX Nikuradse Equation: 

TABLE 1 
CRe and C, for Liquid Flow* 

J+ = 1.14 - 0.86 In@ 

Example of Pressure Loss 
Calculations for Liquid Flow 

-9l- 

gal/min 

bb I/min 

bb I lhr 

bb I /day 

sRe in Eq. (2) 

3160 

1.33 x 105 

2210 

92.2 

CI, in Eq. (7) 

0.0135 

23.8 

6.60 x IO3 

1.15 x 10-5 

*Based on density of water at 60’ F. of 62.37 Ibrn/ft3 

Given Data: 

d = 2.067” (2” nominal line pipe) 
L = 528Oft 
B = 0.00065" 
q1 1 iO05bbl/hr. 

‘1 * 
Pl = 1ocp 

Calculations: 

Step 1. Calculate the Reynolds number using 
Eq. (2) and the appropriate CRe from Table 1. 

Re = 
221 OY,q1 

pld (2) 

TABLE 2 
CRe for Gas Flow* 

R = 2210 (0.85) 100 
e 10 (2.067) 

2ssc zRe in Eq. (2) 

scf/min 29.0 

scffhr 0.483 

scffday 0.0201 

Mscflday 20.1 

*Volumetric gas flow rate is at standard conditions and CRe 

is based on the density of air at 14.7 psia and 60° F. of 

0.0764 lb,/ft3 

Equations Used to Generate 
The Moody Diagram 

Darcy friction factor equations for steady, 
incompressible flow through pipe: 

Laminar flow: (A-1) 

Colebrook Equation: 

Step 2. Calculate the relative roughness using 
k(3) 

;= 0.00065 = o~ooo31 
2.067 

Step 3. Determine the friction factor from the 
Moody diagram in Fig. 1. (Since f = 0.064 for 
R, = 1000, Fig. 1 is based on the Darcy fric- 
tion factor). 

f = 0.0315 

Step 4. Calculate the pressure loss using Eq. 
(7) and the value of Cl from Table 1 for the 
volumetric flow rate in bbl/ihr. 

nPf= 
0.0066 f-/IL(q*)2 

d5 
(7) 

nPf = 
0.0066 (0.0315) (0.85) (5280) (1OO)2 

(2.067)5 

+f = 247 psi Answer 

The pressure loss due to friction in the one 
mile of 2-in. nominal pipeline is approximately 
250 psi for a volumetric flow rate of 100 bbl/ 
hr. These calculations do not include the pres- 
sure change due to a difference in elevation. 

1 
- = -0.861n 

4 
($ + s) (A-2) 

(A-3) 

(3) 
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Examples of Pressure Loss 
Calculations for Gas Flow 

Given Data: 

d = 2.067” (2” nominal line pipe) 
L = 5280 ft 
e = 0.00065" 

9 gsc= 3000 Mscf/day at P,c:.,= 14.7 psia and’ 
T,, = 60°F (520°R) 

Y, = 0.65 
/.Ig = 0.02cp 

= 800 psia (upstream pressure) 
;I = lOOoF (560”R) 

I. Calculate the pressure loss using the Wey- 
mouth equation. The downstream pressure can 
be obtained directly from Eq. (11). 

I 
P2 = 1 

P,2 - 

2 

( ) pscqgsc -- 
T SC 

y LT 

( ) 992g.m (11) 

p2 = 592 psia 

apf = p1 - p2 = 800-592 

apf = 208 psi Answer 

II. Calculate the pressure loss using the Darcy 
type Es. (9). 
Steps 1 - 3. Follow same steps as used to cal- 
culate the pressure loss for liquid flow. 

R, = 
20.1 Ygggs 
-- 

v 

where C z e = 20.1 from Table 2 

(20.1) (O-65) (3000) = 9 48 x 1o5 
Re = (0.02) (2.067) ’ 

E 0.00065 
-= - = 0.00031 
d 2.067 

f = 0.0157 from Fig. 1 

(2) 

(3) 

Step 4. Determine a Z-factor for the first as- 
sumed mean pressure and average flowing 
temperature for the system. The initial mean 
pressure can be based on pz calculated in Part 
I. 800 + 592 

P= 2 = 696 psia 

z = 0.90 (696 psia and lOOoF.) 

Step 5. Calculate the pressure loss using Eq. 
(9). 

P2 = 
(0.0157) (0.65) (5280) ($60) 

(31.77) (2.067) 

p2 = 69 1 psia 

800+691 
AssumeF = 2 = 745.5 psia 

z = 0.89 (746 psia and 1 OO’F.) 

I (800)2 - 

P2 = 
0.0157) (0.65) (5280) (560) (0.89) 

X 
(3 1.77) (2.067)5 > 

p2 = 692 psia close enough 

Opf = p1 - p2 = 800-692 

npf = 108 psi Answer 

The pressure loss by the two equations varied 
primarily because of the friction factors. The 
Cullender and Smith equation for horizontal 
flow will predict nearly the same pressure 
loss as Eq. (9). The Weymouth equation is con- 
sidered conservative; i.e. it will predict a 
higher than actual pressure loss for many 
conditions. 
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