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ABSTRACT 

Fluid inertia forces can be large enough to be considered in sucker rod 

simulators. Fluid inertia forces are larger with shallow wells, large pumps, 

high stroke rates, and/or lower compressibilities. Texas A&M U has developed 
a fluid inertia model. This paper covers the primary assumptions, the 

equations, the boundary conditions, the initial conditions, a parameter study 

based on field data, the solution method, the discretized equations, the pump 

position, and the calculation sequence. 

INTRODUCTION-- 

Sucker rods are the most common artificial lift method used in the United 

Statesl. For most wells the forces due to fluid acceleration are small 

compared to the rod forces. Even so, fluid inertia forces can be important. 
The evidence includes the recent development of a downhole pulsation damper2. 

This paper is for rod pumping systems that see significant fluid inertia 
forces. 

Sucker rod dynamics are usually modeled with Hooke's Law and Newton's Second 

Law. Such a model applies only the hydrostatic pressure at the pump. Fluid 

acceleration is excluded. Fortunately, the fluid inertia forces are often 

negligible compared to the forces covered by Newton's and Hooke's laws. 

Newton's and Hooke's laws give good results as long as the fluid inertia 

forces are negligible. 

Shallow wells, large pumps, high stroke rates, and low compressibility 

increase the fluid acceleration forces relative to the rod forces. Production 

personnel have developed rules-of-thumb to cover such conditions. 

RP llL3 warns about the impact of fluid inertia. 

Indeed, API 

The dynamic forces due to the acceleration of the fluid column are-described 

by another series of equations. These include an equation of motion, a 

continuity equation, and an equation of state. This paper shows how to use 

the equations to develop a fluid inertia sucker rod simulator. 

ASSUMPTIONS 

The assumptions give a simple, one dimensional model for a Newtonian liquid. 

The rod is assumed to operate in the elastic range. 
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The rod element size, d.X, is constant. The fluid element size, dZ, is 

constant. 
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The rod and the fluid equations are treated separately, except at the 

traveling valve. The pump velocity determines the fluid velocity at the pump. 

The fluid pressure at the pump determines the force on the pump. 

Only viscous damping is included in the model. The rod damping is 

proportional to the rod velocity. The fluid damping is proportional to the 

fluid velocity. The rod viscous damping factor accounts for sliding friction 

and for structural damping. 

The pump is assumed to be full and anchored. 

The sign convention is positive up. 

32.1740 ft /s* 

Gravity is negative; g, equals negative 

The produced fluid is assumed to behave like a slightly compressible liquid. 

The composition is-expected to be homogeneous. The gas anchor eliminates all 

free gas. The flow path is assumed to be a vertical, constant cross section, 

concentric annulus between the rod and tubing. Laminar flow is assumed. 

These are much like the assumptions of Doty & Schmidt4. 

Other assumptions are listed in the body of the paper. 

INTRODUCTION TO THE ROD EQUATIONS 

Hooke's Law, Newton's Second Law, and the sonic velocity equation combine to 

give the classic, second order, partial differential wave equation (pde). 

Utt +C, U, - a,* U,, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1) 

Experience shows that a pair of first order pdes has numerical advantages over 

the classic wave equation. It is also easier to apply the force boundary 

condition at the pump. Newton's Second Law and Hooke's Law define the two, 

first order pdes. 

Rod Equation of Motion 

The rod equation of-motion is derived from a force balance on an arbitrary 

element of rod5. This gives a second order pde when written in terms of rod 

stretch. Rod stretch is the same as rod displacement. 

U tt +'r 't -dF g,/dM = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2) 

The rod mass term may be expanded for each element. 

dM- p, A, dX/144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3) 

Substitution for the mass term gives 

U tt +'r 't -144 F, g,/(p, Ar) - 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4) 
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The equation may be written in terms of rod stretch velocity. This gives the 

desired first order pde. Rod velocity is written as V, to avoid confusion 

with fluid velocity, VF. 

V rt +'r 'r -144 F, g&p, Ar) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5) 

All the above forms exclude the static, buoyed weight of the rods. This is 

allowed by linear superposition because the static weight at each node is 

constant. The buoyed weight of the rod is added to the rod force at the end 

of the calculations. An alternative exists. The following form shows the 

gravity acceleration term. Note: up is positive, so gz is negative. 

V rt +'r 'r -144 F, g&p, Ar) -g, (1-pF/p,) - 0 . . . . . . . . . . . . . . . . . . . . (6) 

Equation of State 

The equation of state for the rod is Hooke's Law6. Hooke's Law says that 

stress and strain are proportional to Young's Modulus. 

F- E A, Ux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7) 

The time derivative of Hooke's Law is the other first order pde. 

Ft - E A, Vrx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8) 

Rod Sonic Velocity 

The sonic velocity is a material property. The same material properties 

appear in the classic wave equation. Thus, 
798 

sonic velocity is part of the wave 

equation . Sonic velocity is an important part of the stability 

requirement. This is because strain waves move through the rod at the sonic 

velocity. 

ar 
2 = 144 g, E/p, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9) 

Summary of th.e Rod Equations 

The wave equation is a combination of Newton's Second Law, the space 

derivative of Hooke's Law (Fx - E A, U,,), and the sonic equation. 

This completes the rod equations. Another set of equations is needed to solve 

the fluid inertia problem. The other set is known as the fluid equations. 

INTRODUCTION TO THE FLUID EQUATIONS 

The fluid and the rod equations are similar in many ways. Both are vibration 

problems. Both see the transmission and reflection of sonic waves between the 

wellhead and the pump. 

The pump motion makes density waves travel up the fluid column. The pressure 

goes up as the fluid is compressed. This gives the two part key to solving 
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the fluid inertia problem. First, liquid compression implies a pressure 

increase. Second, the force on the pump is the product of fluid pressure 

times pump area. Significant, dynamic pressure changes must be added to the 

hydrostatic pressure of the fluid column. Shallow wells, wells with high 

strokes per minute, wells with large pumps, and wells with low compressibility 

fluids have higher dynamic fluid forces. This explains why fluid inertia 'is 

more significant in shallower, higher speed, higher rate wells and in wells 

with less compressible fluids. 

The next sections summarize the equations that describe the motion of pressure 

waves through the fluid column. 

Fluid Equation of Motion 

The equation of motion comes directly from Bird, Stewart, and Lightfoot'. The 
derivation starts @th the generalized equation in cylindrical coordinates. 

This is nearly one‘dimensional because the radial and angular velocity 

components are zero. However, the vertical stress tensor, 7Ez, is two 

dimensional. The stress tensor is two dimensional because the laminar 

velocity distribution in the radial direction tends to be parabolic for 

laminar flow. 

This simulator is forced to be one dimensional because we substitute a fluid 
damping term multiplied by the average fluid velocity for the stress tensor. 

This substitution is valid for laminar flow. The stress tensor for turbulent 

flow approaches zero. This is because the turbulent velocity distribution is 

nearly constant across the annulus. This model uses the laminar substitution. 

The fluid damping term, CFp, is derived from the power lost to friction. 

Power equals flow rate times pressure drop 10 , and power equals mass times 

acceleration times velocity. 

VFav aF dPf = (pF aF L/144) (CFp VFav/gc) VFav . . . . . . . . . . . . . . . . . . . . (10) 

The friction pressure drop gradient up the annulus is 

dPf /dL = ~c VF,,/(lOOO (do-di)2). . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-.. (11) 

The fluid damping factor equation is 

'FP P 4.632 ~,/(PF (do-di)*). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12) 

This simulator uses a single CFp value for the entire fluid column. 

(VFt+VF vFz) +144 p, g&F +cFp VFav +pF g,/g, - 0 . . . . . . . . . . . . . . . . (13) 

Each rod taper can have a different fluid damping factor. This is because the 
viscosity and density values can modify the damping term for each fluid 

element. The viscosity form of the fluid equation of motion becomes 
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(VFt+VF VFz) +I44 Pz g,/PF + 4.632 ~~~~ pc/(PF (do-di)2) +PF gz/& p 0. 
.,....*.....*... (14) 

If the viscosity form of the equation of motion is going to be used it makes 

sense to consider turbulent fluid damping as well. 

Continuity Equation 

The continuity equation is 

dpF/dT +d(PF VF)/dZ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . ..*......*....* (15) 

Equation of State 

The equation af state for slightly compressible fluids is as follows11*12. 

Hewlett-Packard's Petroleum Fluids Pat is3a quick source for the reference 

pressure and the reference fluid density . Another quick source is to use 

the density at atmospheric pressure. 

PFl = pFo [l +C, (Pl-PO)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16) 

The slightly compressible assumption has a limitation. A highly compressible 

fluid violates the assumption. An alternative is to use the exact equation of 

state. 

pF1 - pFo eco ('l-'0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17) 

Fluid Sonic Velocity 

The speed of the compression waves is the fluid sonic velocity14. 

aF2 - 144 g&c, PF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (18) 

Summary of the Fluid Equations 

The solution to the fluid problem is a combination of the equation*of motion, 

the continuity equation, the equation of state, and the sonic equation. 

This completes the equations needed to solve the fluid compressibility 

problem. The next step covers how the rod and the fluid equations interact. 

COUPLING 

The rod and the fluid problems are solved independently, except at the 

traveling valve. This is called a lightly coupled system. Light coupling is 

' 
y=~';~dw~~~p~~;~ 

recommendation for using rod velocity to calculate 

In a real well the fluid drag on the rod depends on 

the fluid velocity too. Fortunately, history matching validates Gibbs' 

approach. This supports the assumption that interaction between the rod 

motion and the fluid is significant only at the pump. 
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BOUNDARY CONDITIONS 

The solution sequence is determined by the boundary conditions. The boundary 

conditions are introduced as they are needed. The finite difference method 

needs a boundary condition to start each of the calculation sequences. 

Polished Rod Velocity 

The polished rod velocity is the first boundary condition for the rod 

equation. This allows velocity calculations from the polished rod to the 

traveling valve to begin. The polished rod velocity may be calculated in 

different ways. Svinos16 uses exact kinematics. Laine, Cole, and Jennings 17 

use a Fourier series to accurately approximate exact kinematics. API RP 11L 

uses six percent second harmonic for conventional pump jacks. 

Pump Velocity - 

The traveling valve velocity is the boundary condition for the fluid 

equations. Thus ) the solution to the rod velocity equation provides the 

starting point for the fluid velocity equation. 

Wellhead Pressure 

Wellhead pressure is the second boundary condition for the fluid equations. 

This and the calculated fluid velocity are the starting points for the fluid 

pressure equation. 

Rod Forces 

Strictly speaking, most of the rod forces could have been found as soon as the 

rod velocities were known. However, the force at the pump would have remained 

unknown. 

Pump Force 

The force on the traveling valve depends on two pieces of information. One is 
the pressure at the pump. The other is the status of the traveling valve. 

The pump force tensions the rod when the traveling valve is closed. The pump 

force lightly compresses the rod when the valve is open. Strictly speaking, 
three forces are at work. When the valve is closed most of the force is due 

to pressure times area. Flow through the open valve drags on the pump. Both 
directions cause drag between the moving and stationary parts of the pump. As 

a practical matter both drag forces tend to be small. This model assumes both 
drag forces are zero. Therefore the minimum and maximum pump forces are as 

follows. 
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FPN = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19) 

FPX = Ap [ -'ner +'csg - 
PF1ner (Xner -Xnl) ] . . . . . . . . . . . . . . . . . . . (20) 
144 

Note: a negative pump force pushes down on the traveling valve and puts 

tension into the rod. 

Rod Force at the Pump 

The rod force at the pump is a function of the pump boundary condition. The 

pump boundary condition is a function of the rod force at the pump. This 

means the boundary condition depends on the solution to the equations, and the 

solution depends on the boundary conditions. 

This simulator%esolves the dilemma by assuming the pump velocity is zero. 

The pump force is then estimated from Hooke's Law. If the estimated force is 

between the maximum and minimum pump forces, it then becomes the calculated 

force. 

Otherwise, the pump force is set at the maximum or the minimum, whichever was 

exceeded. The pump velocity is then calculated from the rod velocity 

equation. 

Doty & Schmidt present a clear discussion of the procedure for finding the 

pump motion. Gibbs18 Schafer", and Bowlin" also discuss this topic, 

INITIAL CONDITIONS 

All the initial conditions are set at the static value. This says the system 

has been off long enough to stop moving. The initial rod and fluid velocities 

are all zero. The initial dynamic rod forces are all zero. The initial fluid 

pressures are all hydrostatic. 

SOLUTION METHOD 
-~ 

Finite Differences 

This model uses finite differences to solve the equations. The method 

substitutes a truncated Taylor series for each derivative. It is important to 

have a consistent sign convention. The sign convention is positive up. This 

means all positions and velocities that act in the upward direction are 

greater than zero. Rod tension is positive. Rod compression is negative. 

Here is an example. 

dx Xl -X2 -= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21) 

dT T2 -Tl 

The subscripts are correct. They are correct because time increases in the 
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positive direction. The rod node numbers decrease in the positive direction. 

Node zero is at the polished rod. The highest node number is at the pump. 

The equations are then solved algebraically. The unknown information is put 
on one side of the equal sign. The known values are put on the other side. 
The explicit method allows only one unknown per equation. This means some 
values must come from the previous time step. The explicit method is the 
simplest method because it avoids matrix solutions. The explicit method needs 
only algebra. The downside is that the solution can be unstable. 

Stability and Accuracy 

There are two stability requirements. Both limit the element length divided 

by the time step relative to the sonic velocity. Both criteria are for 

undamped waves. Qamping improves stability. Experience shows that precision 

is best when the following equalities are satisfied. .- 

arj - rod sonic velocity I dXj/dT .............................. (22) 

aFk - fluid sonic velocity I dZk/dT .............................. (23) 

It is convenient, though not necessary, to let dX and dZ be constant. 
Precision is best when dX/dT and dZ/dT are close to the equalities. 

This simulator reads the number of rod elements from the data file. The rod 
element size is calculated from the rod length. The maximum time step size is 
then estimated from the highest sonic velocity. This is usually a rod sonic 
velocity. 

dx = Xner /ner ................................................... (24) 

dTmax = dX/a rj,max ................................................ (25) 

The actual time step size is picked so there are an integer number of time 

steps in one stroke. This meets the stability requirement as long as the 

selected time step is smaller than the maximum. The first of the next 

equations uses integer math. This forces nts to be an integer, One is added 
to guarantee that the time step is less than the maximum time step. t -~ 

nts = 60 /(N dT,,,) ......................................... ..I ... (26) 
dT = 60 /N /(nts +l> ............................................. (27) 

Once the time step size is known, the size and number of fluid elements are 

calculated. Integer math truncates nef to an integer. The fluid element size 
is smaller than the rod element size. 

dZ = aF dT ...................................................... (28) 
nef - Xner /dZ .................................................... (29) 
dZ = ser /nef ................................................... (30) 

There is a trade off between speed and precision. Larger fluid element sizes 
honor the fluid sonic velocity stability criteria. The simulator runs faster 

with'larger fluid elements. Accuracy goes down with larger fluid elements. 
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This was tested with the fluid element size equal to the rod element size. 

The loss of precision is on the order of ten percent or less. 

DISCRETIZED EQUATIONS 

The following summarizes the discretized equations. The reader can confirm 

them by substituting for the derivatives and completing the algebra. The 

subscript convention works like this. Subscripts are identified by the 

symbols "j" and "k". Rod node j-l is above node j. Fluid node k+l is below 

node k. Node zero is at the polished rod. The presence of the "1" symbol 

after a variable name and before the node subscript indicates data from the 

previous time step. Vrlj happens one time step before Vrj. 

Polished Rod Velocity, Node j = Zero 

V ro - polished rod motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (31) 

Rod Equation of Motion, Nodes j - 1 to j - ner-1 

Use this form of the equation for all but the bottom node. 

(2 -Crj dT) Vrlj + 
144 g, 2 dT CFlj -1 -Flj+l) 

V 
Prj Arj (dx. +dx.+l , > 

rj = . . . . . . . . (32) 
(2 +Crj dT) 

Rod Equation of.Motion, Node j = ner 

Use this form of the equation for the bottom rod node before the fluid 

velocities and pressures are updated. A later equation is used to find the 

pump velocity after the fluid velocities and pressures are updated. 

(* DCrj dT) Vrlj + 
144 g, 2 dT (Flj -1 -Flj > 

dX. 
v = 

Prj Ari 
r-i . . . . . . . . . . . . 
J-J 

-~ (2 +Crj dT) 

Equation of State, All Nodes 

PFlk - p. [l +c, (Plk -PO)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

L 

. . . 

Fluid Velocity, Downstroke, Node k - nef 

V rner A 

'Fnef = 
rner 

. . . . . . . . . . . . . . . ATnef -Arner 

. . 

. . . . . . 

(33) 

(34) 

(35) 
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Fluid Velocity, Upstroke, Node k - nef 

V rner A 

'Fnef = 
pner 

ATnef -Arner 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (36) 

Fluid Equation of Motion, Nodes k - nef-1 to k - 1 

'Flk 
('Flk-1 -VFlk+l) 'FPk gc ('lk-1 -- -- 

V,L - 
2 (dzk +dZk+l) 2 1 -'lk+l) -g 

PFlk (dzk +dZk+l) 
Z 

JTK 1 _ + 'Flk-1 -VFlk+l) 

dT 2 (dzk +dzk+l) 

+CFpk 
2 

. . . . . . . . . . . . . . . . ; (37) 

Fluid Equation of%otion, Node k - Zero 

'Flk 
('Flk -'Flk+l) 'FPk -- - 

2 dZk 2 
'Fo - 

1 
1 

--t ('Flk -'Flk+l) + 'FPk 

gc ('lk -Plk+l) 

PFlk dZk 
-gz 

dT 2 dZk 2 
. . . . . . . . . . . . . . . . . (38) 

Wellhead Pressure, Node k - Zero 

'k - 'tub 

Fluid Continuity & Equation of State, Nodes k - 1 to k - nef-1 

'k = 

'lk ('Fk-1 -VFk+l) 
i 1 +Plk 

p ('Fk +VFlk) ('lk-1 -Plk+l) 
-- 

-- 
dT (dzk +dZk+l) co 2 0 

1 - 
2 ( dzk +dZk+l> 

1 ,('Fk-1 'VFk+l) - 
-- dT 2 (dZk +dZk+l) 

..*.............. (39) 

k- nef Fluid Continuity & Equation of State, Node 

'lk ('Fk-1 "Fk) +'Flk) 
-- 

1 +Plk -- p /kc 
dT dZk co 2 O 2 ('lk-1 -'lk) 

'k 1 - dZk 

1 +(%c-1 -'Fk) 

dT 2 dZk 
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Rod Force, Nodes j - ner-1 to j = Zero 

Fj - Ej A 
dT (Vrj+l -Vrj-1) 

rj ; 
+Flj . . . . . . . . . . . . . . . . . . . . . . . . . . . (41) 

2 

Rod Force at the Pump 

Rod force at the pump is one of the boundary conditions. This boundary 

condition is discussed in detail elsewhere. 

Rod Force at the Pump, Stationary Pump 

Fj 9 Ej 
dT 

A 
rj ; 

(0 -Vrjml) +Flj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.~ 
(42) 

Rod Force at 
- 
the Pump, Moving Pump 

(2 -c rj dT) Vrlj + 
144 g, 2 dT (F.-l -F.) 

Prj Arj dx. 
V rj - . . . . . . . . . . . . . (43) 

(2 +Crj dT) 

PUMP STROKE 

The pump stroke is the difference between the relative minimum and relative 

maximum pump positions during the final stroke. The pump positions at each 

time step come from the integral of the rod velocity during the last stroke. 

nts dT 

‘j - JoVrj dT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (44) 

PUMP POSITION 

Pump stroke can easily be extended to estimate the absolute pump position. 

The static stretch due to the buoyed weight of the rod hanging in the hole is 

needed. First-get the buoyed weight for each rod taper. 

W pFi 
rbi = 'r- C1 - - > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (45) 

Pri 

Find the static stretch for each rod taper. 

'Si = 
'i 

Ei Ari 

W rbi + nrt 
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 2 c 

n=i+l 

wrbn , (46) 
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Add the taper stretches together 

nrt 

us - ; usi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (47) 

Modify the pump stroke integral to start at time zero. This modification 

keeps track of the pump relative to its initial, static position. Save all 

pump positions during the last cycle. Also keep track of the maximum and the 

minimum positions. 

nts dT ncycl 
- s V 

9 o rj 
dT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (48) 

The pump position_-when the unit is off is the rod length plus the static 

stretch. Add the maximum and the minimum values of the pump stroke to 

estimate the range of pump motion. 

U ner,static = x,,, +us . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (49) 
U ner,max - 'ner static + " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (50) 
U 

,,max 

ner,min - 'ner:static + " ,,min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (51) 

This gives the ideal, absolute pump positions. Keep the vertical and the 
concentric assumptions in mind. Vertical and concentric means the rod hangs 

in the well without touching the tubing. 

CALCULATION SEQUENCE 

This section talks about how to use the discretized equations 

Initial Conditions 

The initial rod and fluid velocities at all nodes are zero. This is because 

the system is at rest at the start of the first time step. Time equals zero 

at the start of the first time step. -. 

The dynamic initial rod force at all nodes is zero. This is because there is 

no dynamic stretch when the system is at rest. The static force is 
superimposed on the dynamic forces at the end of the calculations. 

The initial fluid pressure is the hydrostatic pressure at each node. 

'k = 0.433 -y i!k + P,,b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (52) 

Rod Equation of Motion 

Start at the polished rod. The polished rod velocity gives the needed 

boundary condition, V,,. The following example gives polished rod velocity 

for a conventional pump jack. The Fourier coefficients come from Laine, Cole, 

and Jennings. (Note the similarity with API RP 11L's six percent second 
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harmonic model.) 

V 'tk w 
ro 

- - [.4973 cos(wT) +.0631 cos(2wT) +.0078 sin(wT) +.0124 sin(2wT)] 

12 
. . . . . . . . . . . . . . . . . . . . . . (53) 

The other rod velocities are solved from the top down. Start at node one. 

All the terms on the right hand side are known. Arj' C,, dT, dX, and Prj are 

based on input data. 

The rod damping factor, C,, is the product of the dimensionless rod damping 

factor and the natural angular speed of the rod. The dimensionless factor is 

usually between 0.05 and 0.15. 

damping factor, 

Heavy, ;iscous oils may need a higher rod 

See Jennings and Laine , equations 3, 4, and 5, for 

composite rod sonic velocity. 

c, - cd w. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (54) 
w. - a are /(2 Xner) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (55) 

For the first time step Vrlj, Fl., and Fleml are the initial conditions. 

After the first time step Vrlj, lj, and i! 4 lj-1 are known from the previous 

time step. 

In general, the polished rod and the pump nodes require slightly different 

treatment. This means the rod velocity equation is different for the pump 

node. The difference is that there is no node below the bottom node. 

used instead of Flj+l. 

Flj is 

In summary, the rod velocity at node j is a function of three independent 

variables. First is the previous rod velocity at node j, V,lj. The other two 

are the previous rod forces immediately above and below node J, F 

Flj+l* 

lj-1 and 

Equation of State 
- 

The equation o-f state provides an explicit update of the fluid density. This 

is explicit because the updated density is based on the pressure at the end of 

the previous time step. 

Fluid Velocity, Continuity Equation 

Start at the traveling valve. A decision is required. Was the traveling 

valve moving up or down during the previous time step? Use the right 

equation. The upstroke uses the pump area to get fluid velocity at the pump. 

The downstroke uses rod and tubing areas at the pump to get the fluid 

velocity. 
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Fluid Equation of Motion 

One fluid velocity equation applies to the intermediate nodes. The equation 

of state is used to get the fluid density for the previous time step, pFlk. 

Three velocities and two pressures are needed from the previous time step. 

For the first time step VPlk-1, VPlk, VPlk+l, Plkal, and Plk+l are the initial 
conditions. After the first time step all five are known from the previous 

time step. Node k-l is immediately above node k. Node k+l is immediately 

below node k. All the other terms are based on input data. These are cFp, 

dT, dZ, g,, and Prj* 

The equation is discretized differently at the polished rod because VFlkml and 

'k-1 do not exist. Instead, the equation is discretized in terms of VFk and 

'lk* 

Wellhead pressure _ 

The pressure at the wellhead, Pt,b, is another boundary condition. 

Fluid Continuity & Equation of State 

Start at node one, and calculate pressures at each node. Remember to use the 

other pressure equation for the bottom node. Note that all the fluid 

velocities are for the current time step. Use the velocities just calculated 

for the current time step. Use the initial pressure conditions for time step 

zero. The next time steps will use the pressures calculated at this time 

step. 

Rod Force 

Most of the rod forces could have been calculated sooner. The discretized 

equation is straight forward. The exception is the pump force. 

Rod Force at the Pump 

At first glance, one may erroneously conclude that sucker rod simulation is a 

trivial problem. -Actually, the pump boundary condition is difficult to* 

formulate in mathematical terms. This is because the fluid load on the pump 

is a function of the pump velocity. The traveling valve may be stationary, 

moving up, or moving down. 

The traveling valve is closed when the pump is moving up, and the maximum 

fluid pressure acts on the pump area. The traveling valve is open when the 

pump is moving down, and the net fluid pressure on the pump area is zero. 

Both the traveling and the standing valves are closed when the pump velocity 

is zero. Since the fluid load is transferred between the standing and 

traveling valves while both are closed, the pump force must be between the 

zero and the maximum value during the load transfer. 

The first step in the procedure is to assume the pump is stationary, and use 

the' appropriate equation to calculate the rod force at the pump. Physically, 
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this means finding the rod force that satisfies the imposed rod elongation. 

If the calculated load is between zero and the maximum fluid load, then the 

pump velocity really is zero. If the calculated load exceeds the maximum 

fluid load, then the pump is moving up, the rod force is equal to the maximum 

fluid load, and the pump velocity may be calculated with the appropriate 

equation. If the calculated load is negative, then the pump is moving down, 
the rod force is zero, and the pump velocity may be calculated with the 

appropriate equation. Note: pump drag is assumed to be zero. 

In summary, when the traveling valve is moving the pump force is bounded. Set 
the pump force at that limit, and calculate the traveling valve velocity. Be 

sure to use the current force values F. 
J-l 

and F. 
J 

in the rod velocity equation. 

NEXT TIME STEP 

This completes -one time step. Add dT to the previous time to get the next 

time. Repeat <he calculation sequence until the problem is solved. 

CONVERGENCE AND ACCURACY 

This simulator runs a predetermined number of cycles (or strokes) and stops. 

Five cycles is nominal. It usually takes more than four cycles to reach 

steady state. This is because the calculations start from a full stop. It 

takes a few strokes for the transients to die out. The actual number of 
cycles to reach convergence depends on the details of the case and on the 

required number of significant digits. More cycles give better convergence. 
More cycles also use more computer time. Past experience indicates that high 
spm and/or low viscous damping require extra cycles to approach steady state. 

It would be relatively easy to let the model run until it reached a desired 

level of convergence. 

Accuracy is related to the size of the rod elements. Smaller elements give 

higher accuracy than large elements. Smaller elements also use more computer 

time. 

. 
VALIDATION -~ 

Field data validates the simulator. Figures 1 and 2 show how much fluid 

inertia improves the history match. 

Figure 1 concentrates on the pump card. A measured surface dynamometer card 

was used to calculate a pump dynamometer card. Figure 1 labels this the 

"measured" pump card, for brevity. The other two pump cards on figure 1 are 

calculated with predictive simulators developed at Texas A&M U. The worst 

history match results from a simulator that ignores fluid inertia. This is 

the rectangular card. The best match results from the simulator detailed in 

this paper. The improved quality of the history match speaks for itself. 
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Figure 2 is the surface equivalent of figure 1. The surface card calculated 

with the simulator detailed in this paper is clearly a better history match. 
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The calculated surface card that ignores fluid inertia is a poor match. 

Figure 3 gives the results of a sensitivity study on the size of the rod 

elements used in the calculations. The three, six, and eight elements are 

406, 203, and 153 feet long. The six and the eight element cases give the 

same answers at the end of five strokes. This meets the requirements for 

numerical convergence, provided five strokes give a suitable approximation of 

steady state. The three element case is nearly converged. These results 

support the rule-of-thumb developed for sucker rod simulators that ignore 

fluid inertia. The rule-of-thumb calls for rod elements to be 200 to 500 feet 

long. Use longer elements to reduce execution time; use shorter elements to 

finalize results. 

Figure 4 studies the effect of pump efficiency on the calculated results. The 

peak polished rod load matches better for the 80% pump efficiency case.- This 

might suggest that-the measured 75% efficiency is only partly due to leakage 

at the pump. Some of the leakage may be in the tubing. This suggests an 

avenue for future development. 

The overall improvement in the quality of the history match is impressive, and 

there is room for future development. A number of likely areas are worth 

considering. The slightly compressible fluid assumption can be improved. The 

fluid flow channel can be improved. The numerical solution could be more 

implicit. The rod damping could consider the fluid velocity. The fluid 

damping could be made density dependent. Plunger and traveling valve drag 

could be added to the pump boundary condition. Dynamic tubing pressure could 

be included. Each of these suggestions moves a step closer to modeling the 

actual, field conditions. Each suggestion, therefore, holds the potential for 

improving the quality of the history match. 

RESULTS 

Shallow wells have less rod mass than deeper wells. Shallow wells also have 

less hydrostatic pressure at the pump. This means the relative magnitude of 

the fluid inertia forces is closer to the magnitude of the hydrostatic fluid 

forces and the rod forces. Figures 5, 6, and 7 show that the ratio of peak 

pump load to hydrostatic pump load varies inversely with depth. 

Higher spm wells have higher accelerations than slower wells. The fluid 

compression is related to the speed of the pump plunger. Higher spm increases 

the inertial forces of both the rod and the fluid. The static forces (rod 

weight and hydrostatic pressure) do not change. This means the relative 

magnitudes of the inertia forces are higher with higher spm. Figures 8, 9, 

and 10 show that the ratio of peak pump force to hydrostatic pump force varies 

with pumping speed. 

Wells with larger pump plunger areas displace more fluid mass than wells with 

smaller pumps. Since inertial force equals mass times acceleration the fluid 

inertia forces are larger in wells with larger pumps. Figures 11, 12, and 13 

show that the ratio of peak pump force to hydrostatic pump force varies with 

pump-size. 

SOUTHWESTERN PETROLJNM SHORT COURSE - 90 331 



2.7 C Viscous Fluid Damping, 1 /s 

6 n:r, Number of rod elements 

10.66 N, Strokes Per Minute 

8 ncycl, Number of Cycles to run 

1 nrt, Number or Rod Tapers 

30.5E6 0.4418 1.634 490. 1220. Ei, A,i, Wril pri, Xi 

1.0 

184. 

96.047 

114. 

96. 

151.344 

37. 

-1 

1 

0 

146.4 

7.051 

843. 

114.7 

14.7 

5.9396 

14.7 

2.63-6 

1.40 

w, Specific Gravity 

A, Pump Jack dimension, in (for exact kinematics) 

C, Pump Jack dimension, in (for exact kinematics) 

P, Pump Jack dimension, in (for exact kinematics) 

I, Pump Jack dimension, in (for exact kinematics) 

K, Pump Jack dimension, in (for exact kinematics) 

R, Pump Jack dimension, in (for exact kinematics) 

JR, Crank Rotation; 1 - CW, -1 - CCW (for exact kinematics) 

JCL, Pump Jack Class; 1 - Conventional, 3- Reverse Geometry 

Crank to Counterweight Phase Angle 

Stk, Actual Polished Rod Stroke 

Ap, Pump Area times Pump Efficiency, sq in 

Xnl, Net Lift, ft 

Pt,b, Tubinghead pressure, psia 

Casinghead pressure, psia 

$fgTubing area, sq in 

o, Equation of State Reference Pressure, psi 

C o, Fluid Compressibility, l/psi 

CFP, Fluid Damping Factor, l/s Between 0.5 and 2.5. 

Low compressibility fluids act more like solids than high compressibility 

fluids. A larger volume of low compressibility fluid is needed to accommodate 

a given amount of compression. The larger volume increases the mass of fluid 

that is accelerated. The extra fluid mass increases the fluid inertia forces. 

Figures 14, 15, and 16 show that the ratio of peak pump load to hydrostatic 

pump load varies inversely with fluid compressibility. 

SUMMARY h RECOMMENDATIONS 

The results of the sample calculations, figures 1 and 2, show that including 

fluid inertia can have a tremendous impact on the accuracy of the 

calculations. 

The simulator detailed in this paper should be used to design sucker rod 

pumping systems with significant fluid inertia forces. 

Significant fluid inertia forces are usually found in shallow wells, wells 

with large pumps, wells with high stroke rates, and/or wells with low 

compressibility fluids. 

Additional development focused on better models of actual field conditions 

should lead to better history matching. 

BASE CASE DATA 
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GLOSSARY 

aF 

ar 

are 

AF 

tip 

4 
'd 

'FP 
cO 

'r 
dF 

di 

dO 
dM 

dPf 
dR 

dT 

dU 

dx 
dZ 

E 
f 

F 

F 

Fi 

- fluid sonic velocity 

- rod sonic velocity 

- pseudo rod sonic velocity 

- fluid area 

= net pump plunger area 

- rod area 

= tube area 

- dimensionless rod damping 
- fluid damping factor 

= fluid compressibility 

- rod damping factor 

- F(X) -F(X+dX) 

- rod out-side diameter 
- tubing inside diameter 

- rod element mass 

- friction loss in annulus 

= radial length 

= time step 

= dynamic rod stretch 

- rod element length 
- fluid element length 

- Young's Modulus 
= friction subscript 

- fluid subscript 

- F(T,X) = force in rod 
= F(T,X) = previous force 

- F(T-dT,X) - prev force Fij 

Flj-l = F(T-dT,X-dX) 

Flj+l - F(T-dT,X+dX) 

FP - node ner force on the pump 

FPN = miNimum force on the pump 

;Px - maXimum force on the pump 

F:: 

- dF/dX 

= E A, U,,-i. E A, d2U/dX2 

gz - gravity acceleration 

gz - -32.17404 

gc - gravity conversion factor 

i - taper number 

j - rod node index 
k - fluid node index 

K - rod spring constant 
M = rod mass 

ncycl - number of cycles in a run 

nef = number of fluid elements 

ner - number of rod elements 

nrt - number of rod tapers 
nts = number of time steps 

N = stroke rate 

- L/T = ft/s 

- L/T - ft/s 
- L/T 

- L2 

- ft/s 

= in2 

= L2 - in2 

= L2 - in2 

- L2 - in 2 

a - a - 

-1T 4 - l/s 

- L /F - l/psi 

- l/T - l/s 
=F - lbf 

-L - ft 

-L - ft 

-M - lbm 

= F/L2 - psi 

=L - ft 
-T - s 
-L - ft 

-L - ft 
-L - ft 

- F/L2 - psi 
P _ P _ 

a _ P _ 

-F - lbf 

-F - lbf 

-F - lbf 
a F = lbf 

-F - lbf 

-F - lbf 

-F - lbf 

-F - lbf 

- F/L = lbf/ft 

- F/L 

- L/T2 

= lbf/ft 

= ft/s2 

- L/T2 = ft/s2 

- ML/FT2- lbm ft/lbf/s2 
a - 

a _ 

a - 

- F/L 

-M 
P - 

a _ 

P _ 

a _ 

a - 

= l/T 

a - 

a - 

a _ 

- lbf/ft 

- lbm 
P _ 

P - 

P - 

a - 

a _ 

- stk/min 
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P - pump subscript a - a - 

P - pressure subscript a - a - 

P - fluid pressure - F/L2 - psi 

'k - fluid pressure at node k - F/L2 - psi 

;lk - previous pressure at node k - F/L2 - psi 

PO 

- reference fluid pressure - F/L2 - psi 

csg 
- wellhead pressure, casing - F/L2 - psi 

P tub - wellhead pressure, tubing - F/L2 - psi 

pZ 
- dP/dZ - F/L3 - psi/ft 

r - radial derivative subscript - L - ft 

R - rod subscript a - a - 

R - radial distance -L - ft 
S - surface subscript a - a - 

'tk = pump jack stroke -L - in 
t = time derivative subscript - T -s 
T - time .- -T -s 
T - tubing-subscript a - a - 

U - dynamic rod position -L - ft 

US - static rod position at pump - L - ft 

:Si - static rod posit at taper i - L - ft 

t - Ut(T,X), rod velocity - L/T - ft/s 

:t,j 
- rod velocity at node j - L/T - ft/s 

tt - rod acceleration - L/T2 - ft/sZ 

UX 
- dU/dX a - P - 

U xx - d2U+dX2 - l/L - l/ft 

vF - fluid velocity - L/T = ft/s 

'Fk - VF(X,T) - fluid velocity - L/T - ft/s 

'Flk - VF(T-dT,X) at node k - L/T - ft/s 

'Fav = average VF - L/T - ft/s 

'Fr - dVF/dR - l/T - l/s 

'Ft - dVF/dT = fluid acceleration - L/T2 - ft/s2 

>Z 
- dVF/dZ - l/T - l/s 

Vr 
- Ut - rod velocity - L/T - ft/s 

r j 
- V,(T,X) = rod velocity - L/T = ft/s 

V - V,(T-dT,X) at node j - L/T - ft/s 
V 
rlj 

rt - U,, -rod acceleration - L/T - ft/s 

'r = rod weight in air -F = lbf 
W ri - rod weight in air, taper i - F - lbf 
W rb - buoyed rod weight a F = lbf 
W rbi - buoyed rod weight, taper i - F - lbf 

X - depth derivative subscript - L - ft 
X - rod depth -L - ft 

'i - rod length, taper i -L - ft 

$ 
- rod depth at node j -L - ft 

ner - pump depth -L - ft 

Xl-l1 - net lift -L - ft 
Z - depth derivative subscript - L - ft 

Z - fluid depth -L - ft 

'k - fluid depth at node k -L - ft 

as4 



GREEK 

7 = nominal fluid specific grav - - = - 

1 = fluid viscosity - FT/L2 - lbf s/ft' 

PC 
- fluid viscosity - FT/L2 - cp 

P = bulk density - M/L3 - lbm/ft3 

PF - fluid density (at T) - M/L3 

PF1 - fluid density (at T-dT) = M/L3 

- lbm/ft3 

pFo - reference bulk density = M/L3 

= lbm/ft3 

- M/L3 

- lbm/ft3 

pr - rod bulk density - lbm/ft3 

'Rz = stress tensor - F/L2 - lbf/ft2 

w - crank angular velocity = l/T - rad/s 
w 

0 
- rod natural frequency = l/T - rad/s 

CONVERSION FACT-ORS 

cp x 0.000,020,885,44 = lbf s /ft2 

gc - 32.174,044 lbm ft /lbf /s2 

cp x 0.001 = Pa S 

ft x 0.3048 -M 

gc - 1.0 Kg M /N /s2 

lbf x 4.448,221,55 = N 

lbm x 0.453,592,4277 - Kg 
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Figure 1 - Pump card, sensitivity to fluid inertia Figure 2 - Surface card, sensitivity to fluid inertia 
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Figure 4 - Surface card, study of pump efficiency 



J91 'Pool dlund 

f91 ‘Pool dwnd 

Jql 'Pool dund 

< 

Al 'Pool d""'d 

338 SOUTHWESTERN PETROLEUM SHORT COURSE - SO 



Jql 'Pool dwnd 

fql 'Pool dud 

SWTHWESTERN PETROLEUM SHORT COURSE - 80 

. . 
z a 
0 

Jql 'Pool dwnd 

391 'Pool d"% 

339 



lam 
- Oyntic - - - Hydrostatic 1 

-6 

8 
-.I 

a 

s 
n- 

0” 
0 so 103 1 

Pump Stroke, in 
53 

Figure 13 - Pump card, pump diameter sensitivity, 3.25 in: 
peak to hydrostatic load ratio = 3.0 
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Figure 15 - Pump card, compressibility study, 6.OE-6/psi: Figure 16 - Pump card, compressibility study, 3.OE-6/psi: 

peak to hydrostatic load ratio = 2.8 peak to hydrostatic load ratio = 3.0 
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Figure 14 - Pump card, compressibility study, lO.E-G/psi: 
peak to hydrostatic load ratio = 2.6 
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