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Many steps are taken in the design of injec- 
tion facilities that are intended to result in bet- 
ter performance, less maintenance and a greater 
degree of “on stream time.” These steps might 
be collectively described as a conservative appli- 
cation and, among others, include derating both 
speed and loading of prime movers and pumps, 
design of piping to eliminate undesirable fre- 
quencies of pulsations, provision of adequate suc- 
tion conditions for the pumps employed and util- 
ization of standby or alternate systems. The de- 
sirable result of such design is a station of high 
reliability that can be obtained with an optimum 
investment of capital and will result in a mini- 
mum operating cost over the life of the installa- 
tion. Of paramount importance in obtaining 
such an installation is the reliability of the com- 
ponents employed and the reliability of the re- 
sultant system. 

At this point it may be desirable to define, 
for the purposes of this paper, reliability. One 
commonly accepted definition is: Reliability is 
the probability that a component will satisfac- 
torily perform its function for the period of 
time intended under the operating conditions 
encountered. 

Reliability, then, is a function of both time 
and environment. With these constraints one 
might logically expect that many years of ob- 
servations of failures might be required to assign 
a reasonable estimate of reliability to a given 
component or piece of equipment. Actually, in 
the past few years great strides have been made 
in the development of techniques to increase the 
confidence level that can be placed on reliabil- 
ity estimates derived from reasonable periods of 
failure observations. 

To illustrate the means by which statistical 
methods have been applied to obtain useful re- 
liability estimates, let us examine the plot of 
the failure rate of a theoretical component versus 
time; failure rate being the number of failures 
per unit of time. (Fig. I) 

Observation of this plot reveals that this 
theoretical curve can be divided into three prac- 
tical and distinct regions labeled I, II and III. 

Explanations follow: 
Region I has an initial high failure rate 

that decreases with time. This region correlates 
with failures experienced during start-up and 
“de-bugging” periods. It is generally termed 
the “region of early failures.” 

Region II is the region of random failures 
and the failure rate is essentially constant. 

Region III is the region of wear-out failures 
where the failure rate increases as the useful 
life is reached. 

Reliability is concerned with all three of 
these regions; however, with reasonable qual- 
ity and proper design Region I can be reduced 
to a quite short duration and Region III can be 
postponed past the period of interest by proper 
maintenance. Thus, the mathematical deter- 
mination of reliability is normally concerned 
with Region II, that of essentially constant fail- 
ure rate. 

While the derivation of the mathematical 
relationship for the reliability of a component 
for a period of time, t, is beyond the scope of 
this paper, this relationship can be expressed as 
follows: 

Rt = e 
-At 

where: Rt is the reliability of the compo- 
nent for the period of time, t. 
e is the base of natural logarithms 
A is the failure rate or reciprocal of 
mean time between failures 
t is a specified period of time. 

This relationship is termed the exponential 
failure distribution.’ 

The use of this relationship is proper only 
when dealing with Region II, that of constant 
failure rate, and when the failures that do occur 
are both random and independent. It is realized 
that seldom are these prerequisites exactly met. 
However, much evidence exists to show that 
these prerequisites are approximated closely 
enough in actual operation to justify the use 
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of this relationship in many instances. 

Reliability estimates for the components of 
any system can be made by proper observations 
of the components in the same environment and 
recording the time between failures. These data 
can be taken from components in actual service, 
or from testing programs. 

Table I presents a hypothetical record of a 
component and the resulting mean time between 
failures. Note that the estimate is based on the 
data at hand and should improve as more com- 
ponents are observed over longer periods of time. 
In the interest of brevity this table is limited to 
an approximate one-year operating time. As in- 
diacted, the mean time between failure is 633 
hours with a resultant value of X of l/633. 

Failure Time AT Failure 
1 400 400 9 
2 600 200 10 
3 1300 700 11 
4 1900 600 12 
5 2800 900 13 
6 3200 400 14 
7 4000 800 15 
8 5200 1200 

Time AT 
5400 200 
6100 700 
7400 1300 
8000 600 
8400 400 
8800 400 
9500 700 

9500 

TABLE I 

From Table I: Mean Time Between Failures = 
9566 = 633 hours 

15 

x = l/MTBF = & 
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With these data Tables II shows a com- 
parison of the probabilities for failure-free 
periods of time developed by both empirical 
probability and the relationship eSXt. Note 
that these probabilities are in relatively close 
agreement even though we have used only 15 
failure observations. 

t 

0 
200 
400 
600 
800 

1000 
1200 
1400 
1600 

Probability of Failure-Free 

Period Longer Than t 

15/15 = 1.00 
13/15 = 0.87 

9/15 = 0.60 
7/15 = 0.47 
3/15 = 0.20 
2/15 = 0.13 
l/15 = 0.07 
o/15 = 0.00 
o/15 = 0.00 

TABLE II 

.--At 

1.00 
0.73 
0.53 
0.39 
0.28 
0.21 
0.15 
0.10 
0.08 

1.0 

.8 

.6 

12 16 20 

t = Hundred hours 

FIG. 2 
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This relationship is shown graphically in 
Fig. 2. From this one might, based on the limited 
observations, assign a reliability estimate of 0.50 
for a failure-free period of operation of 500 
hours. As more observations are recorded, an 
even closer fit to the exponential failure distribu- 
tion might be expected. These reliability esti- 
mates are useful in component comparison as 
well as in evaluating the need for standby sys- 
tems where continuity of operation must be 
maintained. (Fig. 2) 

In most instances we are more concerned 
with the expected “on stream” time than with 
the probability of a set period of failure-free 
operation. Using the data in the previous exam- 
ple and arbitrarily assigning ten hours’ down- 
time for each failure, we might determine an 
expected average operating time for this com- 
ponent as follows: 

MTFB = 633 hours or 15 failures in 9500 hours 

15x10 - = 0.016 not operational or 0.984 ex- 
9500 petted average operating time 

In practice the mean time to repair can be 
determined and used in this estimate of expected 
average operating time. The mean time to re- 
pair can become quite significant and should 
be properly evaluated in the comparison of alter- 
nate designs. 

EXAMPLE OF INJECTION 
UNIT EVALUATION 

In this example total required design volume 
is 12,000 BPD and the selection appears to be 
one of the following alternates: 

Expected Average 

Operating Rated 
Time/Unit Volume/Unit 

A. One large unit 0.92 13,300 

B. Two medium units 0.85 7,000 

C. Four small units 0.80 3,500 

The expected average volume for Alternate 
is 12,200 BPD, a volume slightly greater than 
required. In making this same determination 
for Alternates B and C the binominal distribu- 
tion becomes a useful tool. In general terms this 

expression is: (0 + D)n = 1 

where 0 = expected average unit operating 
time 

D = expected average unit downtime 
n = number of units involved 

For Alternate B, expansion of this distribu- 
tion becomes O2 + 20D + D2 

These three terms correspond to the fol- 
lowing: 

O2 - Both units operating (.85)2 = 0.722 

20D - Two combinations of one operating 
and one down 2(.85)(.15) = 0.255 

D2 - Both units down (.15)2 = 0.023 

Using these percentages and the volume 
capability associated with each, the expected 
average volume becomes: 

0.722(14,000) + 0.255(7000) = 11,980 BPD 

Similarly for Alternate C: 

(0 + D)4 = O4 +403D + 602D2 + 40D3 + D4 

Four units operating = (0.80)4 = 0.410 

Three units operating = 4(.80j3(.20) = 0.410 

Two units operating = 6(.8O)Y.20)* = 0.154 

One unit operating = 4(.80)(.20)3 = 0.025 

No units operating = (.20)4 = 0.001 

Expected average volume 

III 0.41 (14,000 + 10,500) + 0.154(7000) 

+ 0.025(3500) = 11,200 BPD 

The results of the evaluation are sum- 
marized below. 

Expected Expected 
Alternate Average Volume Station Downtime 

A 12,200 0.080 

B 11,980 0.023 

C 11,200 0.001 

With these estimates completed, an eco- 
nomic analysis can be performed to give proper 
weight to investments, operating costs, tax con- 
siderations and resultant income associated with 
each alternate. Also, compatibility of the alter- 
nates with requirements of the injection pattern 
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can be evaluated. It should be pointed out that 
the above example for illustrative purposes was 
kept quite simple and straightforward. In all 
cases consideration must be given to failure of 
systems that are common to the injection units, 
such as fuel systems, electrical distribution sys- 
tems, etc. In some cases a combination of dif- 
ferent units may better fit design requirements. 
As an example of the latter, suppose design vol- 
ume in the above case is modified by the re- 
quirements of a very high probability of main- 
taining a minimum rate of 6000 BPD. In this 
case a fourth alternate might offer advantages. 
This could involve use of one highly reliable 
medium unit and three small units as below. 

Expected Average 

Operating Rated 
Time/Unit Volume/Unit 

One medium unit 0.92 7000 
Three small units 0.80 3500 

This alternate is identified “D” and deter- 
mination of expected average volume follows. 

Four units operating = 0.92(.80)3 = 0.471 

Three units operating = 3( .92) c.80)*( .20) = 0.353 
( .08)(.80)3 = 0.041 

Two units operating = 3(.92)(.80)(.2OY = 0.088 
3(.08)(.80)2(.20)2 = 0.031 

One unit operating = (.92)(.20j3 = 0.007 
3(.08)(.20)2(.80) = 0.008 

No units operating = (0.08)(.20)3 = 0.0006 

Expected average volume then becomes 
0.471 (17,500) = 8,250 
0.353 (14,000) = 4,940 
0.041 (10,500) = 431 
0.088 (10,500) = 924 
0.031 ( 7,000) = 217 
0.007 ( 7,000) = 49 
0.008 ( 3,500) = 28 

14,389 BPD 

Summarized, Alternate “D” then offers 14,- 
839 BPD expected average volume with an ex- 
pected station downtime of .06 of 1 per cent. The 
comparison of all four alternates for maintain- 
ing an expected minimum rate of 6000 BPD 
follows: 

A. .92 B. .977 c. .974 D. .9914 

By this alternate, significant improvement 
is obtained in both expected station downtime 
and expected operation above the minimum rate 
of 6000 BPD. Further refinement will allow 
reduction of the volume capability of the me- 
dium unit in Alternate “D” without sacrifice of 
design requirements. With this refinement an 
optimum selection is indicated. 

CONCLUSION 

It is felt that reliability concepts provide a 
useful tool for those concerned with evaluation 
and selection of equipment for applications of 
this nature. The techniques are readily adapt- 
able to mechanization with resultant economy 
in data assimilation and offer a means of ob- 
jectively forecasting performance. 
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