PRECIPITATION CAUSED BY LIQUID CO₂ IN CARBONATE FORMATION TREATMENTS, A POTENTIAL PROBLEM RESOLVED

WILLIAM G. F. FORD and TOMMY R. GARDNER Halliburton Services

INTRODUCTION

Injection of liquid carbon dioxide with treating fluids has been used for many years to improve results and to eliminate some of the problems associated with the stimulation of oil and gas wells. One purpose is to promote faster cleanup without the need of swabbing. When the pressure is released at the wellhead after the treatment, the carbon dioxide vaporizes and forces the treating fluids from the formation. Presence of this gaseous carbon dioxide in these fluids reduces the weight of the fluid column so that normal reservoir drive can then help unload the fluids from the well. Rapid recovery of the stimulation fluids is normal.

Under certain conditions, dissolved carbon dioxide and calcium salts can react to form a calcium carbonate precipitate. This paper discusses the conditions of temperature, pressure, and pH under which calcium carbonate does not precipitate.

EQUILIBRIUM CALCULATIONS

The most useful tools in helping to answer questions like "How much of a substance will dissolve?" and "Will precipitation occur?" are chemical equilibrium calculations.

Chemical equilibrium is the study of those factors that influence the extent to which a reaction takes place. The quantity of products formed in relation to the quantity of reactants used is one such factor. The equilibrium constant relates the concentration of the reactants to the products. Equilibrium constants are useful in determining how much of a certain reactant or product will be present at equilibrium. For slightly soluble substances that form precipitates, such as CaCO₃, the equilibrium constant is simplified and called the solubility product constant (K_{sp}) .

The following set of equations was used to study the CaCO₃-CO₂ equilibrium system to determine the amount of CO₂ necessary to cause precipitation of calcium carbonate in spent acid solutions. The particular condition of interest was the equilibrium of CaCO₃-CO₂ at 400⁰ F under 12,000 psi. Due to lack of equilibrium data in the literature for these conditions, the following equilibrium equations and constants were used to obtain an approximate solubility of CO₂ in spent acid.^{1,2}

(1) $CaCO_3(s) = Ca^{2+} + CO_3^{2-}$	$K_{sp} = 2.4 \times 10^{-6}$ at 392°F and 911.4 psi CO ₂ pressure
(2) $H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$	$K_1 = 1.7 \times 10^{-4} \text{ at } 77^{\circ} \text{F}$ and 14.7 psi
(3) $\text{HCO}_3^- = \text{H}^+ + \text{CO}_3^{2^-}$	$K_2 = 5.6 \times 10^{-11} \text{ at } 77^{\circ} \text{F}$ and 14.7 psi
(4) $CO_2 + H_2O \rightleftharpoons H_2CO_3$	$K_3 = 2.6 \times 10^{-3} \text{ at } 77^{\circ} \text{F}$ and 14.7 psi

Substituting Equations (2), (3), and (4) into (1) yields

(5)
$$K_{ap} = \frac{[Ca^{2+}][CO_2] K_1 K_2 K_3}{[H^+]^2}$$

Rearranging (5) and solving for Co₂ gives

(6)
$$[CO_2] = \frac{[H^{+2}]^2 K_{sp}}{[Ca^{2}] K_1 K_2 K_3}$$

With the calcium ion concentration $[Ca^{2+}]$ known, the equilibrium carbon dioxide concentration $[CO_2]$

was calculated for various pH values. Figure 1 shows the results of these calculations. The carbon dioxide concentration represents the amount of CO₂ that could be present in solution without causing CaCO₃ to precipitate. Once this concentration is exceeded, however, precipitation of CaCO₃ will occur. Solutions of 20-percent and 40-percent CaC1₂ were considered since these would be equivalent to the concentrations of calcium chloride obtained upon spending of 15-percent and 28percent HC1, respectively, on calcite. As the pH increases, the solubility of CO_2 in both 20-percent and 40-percent calcium chloride solutions decreases. Also, at any specific value of pH, as the calcium chloride concentration increases the solubility of CO₂ decreases. Therefore, based on the above equilibrium calculations, the lower the pH the greater the solubility of CO₂ in calcium chloride solutions.

RESULTS OF MODEL STUDIES

Model studies were conducted to experimentally verify the effects of pH, temperature, and pressure on the solubility of CO_2 in calcium chloride solutions. Three separate series of tests were conducted.

The first series of tests were performed to determine the effect of CO_2 on the pH of the calcium chloride solutions. These tests consisted of bubbling carbon dioxide through 20-percent and 40-percent calcium chloride solutions for approximately 30

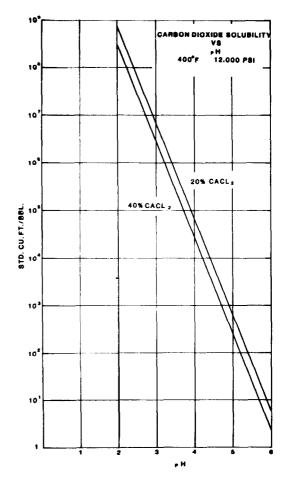


FIG. 1-CARBON DIOXIDE vs pH AT 400°F AND 12,000 psi

minutes at $77^{\circ}F$ and 14.7 psi. As the CO₂ was bubbled through the calcium chloride solutions, the pH was measured with a calibrated pH meter. A

Type of Solution	Temperature (°F)	CO2 Pressure (psi)	pH Initial	Final	Visual Observation
20% CaCl ₂ *	77	14.7	9.2	4.45	No observable ppt.
40% CaCl ₂ * ¹	77	14.7	7.6	2.75	No observable ppt.
15% HCl + 10% CH₃COOH**	400	800	0	3.5	No observable ppt.
28% HC1**	400	800	0	4.0	No observable ppt.

TABLE 1-pH OF SPENT ACID

* CO2 bubbled through solution, pH measured with pH meter.

^{}** pH measured using methyl orange indicator.

¹ A 40% calcium chloride solution is equivalent to 28% HCl completely spent on calcite.

lowering of the pH was observed to take place. While most of the CO_2 was not soluble in the calcium chloride solutions at atmospheric pressure, the amount that did dissolve formed carbonic acid and therefore resulted in lowering the pH. No precipitate was observed. These results are shown in Table 1.

The second series of tests were conducted to study the effect of temperature, pressure, and pH on 28percent HCl and on a mixture of 15-percent hydrochloric acid plus 10-percent acetic acid reacting on calcite in a CO₂ atmosphere. After reaction, the 15-percent hydrochloric acid plus 10percent acetic acid mixture should have a lower pH value than the 28-percent hydrochloric acid due to the slower spending rate and buffering effect of the acetic acid. Calcite crystals and 28-percent HC1 were place in a visual pressure cell. Another pressure cell was filled with calcite crystals and a mixture of 15-percent hydrochloric acid plus 10-percent acetic acid. The cells were then pressured with carbon dioxide and heated to 400°F. Methyl orange indicator was added to the two solutions while bubbling CO₂ into the cells. Addition of indicator was repeated over a 48 hour period approximately every 6 hours. The results of these two tests are given in Table 1. In each case no precipitate was observed. This was due to the low pH values and the limited amount of CO_2 present in the test cell. Theoretical calculations shown in Figure 1 indicate that at a pH of 4, 2.56×10^4 SCF of CO₂ could be soluble in spent 28-percent HC1. An even larger amount of CO₂

would be soluble in the spent mixture of 15-percent hydrochloric acid plus 10-percent acetic acid mixture at a pH of 3.5. Because of pressure limitations of the test cells, these high concentrations of CO_2 could not be obtained. Therefore no precipitate was formed. It is not known what effect temperature has on the color change of the methyl orange indicator. This may account for the anomaly in the pH data shown in Table 1 where a lower pH value was measured in the 40-percent CaCl₂ solution that had CO_2 bubbled through it at 77°F and 14.7 psi as opposed to the spent 28-percent HCl acid solution in a pressure cell at 400°F and 800 psi.

The third series of tests were conducted to verify equilibrium calculations at bottomhole temperature and pressure and to show the effect of a pressure drop. Dry ice (CO₂) was added to a closed test cell. The test cell was then pressured with 20-percent or 40-percent calcium chloride solution to 12,000 psi and placed in an oven heated to 400°F. With the test cell at 12,000 psi and 400°F, the release valve was opened and the pressure allowed to drop to atmospheric. The valve was closed, and the test cell was cooled by quenching in water. The cell was opened, and the solids removed and analyzed by xray diffraction. The results of these tests are reported in Table 2. In each case no CaCO₃ precipitate was formed. According to equilibrium calculations a pH value greater than 4 would have had to be reached for CaCO₃ to precipitate in 20-percent and 40percent CaCl₂ solutions under these test conditions.

	Temperature	= 400°F	Pressure = 12,000 psi		
<u>Test No.</u>	Percent CaCl ₂	SCF CO2	*Results After Opening Test Bomb		
1	20	1,200	No solid on the inside of the bomb		
2	40	1,200	A very hard crystalline material reformed		
3	40	600	A wet deposit was found		
4	40	900	A wet deposit was found		

TABLE 2CaC12-CO2	COMPATIBILITY	TESTS
------------------	---------------	-------

* X-ray diffraction analysis indicates that all of the deposits were CaCl₂.

CASE HISTORY

A gas well in Western Oklahoma was treated with 15-percent HC1 containing 1200 SCF $CO_2/bb1$ of acid. The 15-percent HC1 and the CO_2 were pumped simultaneously at a rate of 20 bpm and 5 bpm, respectively. The well, completed in the Hunton Formation (dolomite), was approximately 25,000 feet deep with a bottomhole pressure of 12,000 psi. The bottomhole temperature was 425°F. Upon flowing back the treating fluid after the treatment, the wellbore became plugged with what appeared to be calcium carbonate. The solids were shaped like small round balls and laboratory analysis revealed they were calcium carbonate. After the calcium carbonate plug was removed from the well, it was discovered to be a dry hole and abandoned.

Based on experience, the pH of the returning fluid would be expected to be reasonably close to what was calculated because the acid should have been completely spent at that temperature. Taking into account the CO_2 produced by the spending of the acid on the formation plus the CO₂ added with the acid, a pH of 4.8 at bottomhole conditions was calculated. Figure 1 shows that at a pH value of 4.8 the maximum amount of CO₂ soluble per barrel of 20-percent CaCl₂ is 1500 SCF at 12,000 psi and 400°F. If the pH of the returning fluid exceeds 4.8, calcium carbonate precipitation will occur under these conditions. The calcium carbonate precipitate in this case was probably formed by the returning fluid experiencing a pressure drop. A rapid pressure drop would decrease the solubility of the CO₂ in the spent acid solution. As the CO_2 gas leaves the spent acid solution, the equilibrium of Equation (7) is shifted to the right causing CaCO₃ to precipitate.

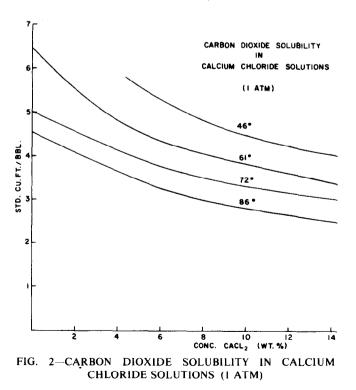
$$Ca^{2+} + 2HCO_3^{-} \stackrel{-}{=} H_2O + CO_2 + CaCO_3 \qquad (7)$$
$$+ \land P$$

Also, the returning fluid could have mixed with formation water, to some degree, thereby increasing the pH of the fluid. A rise in pH would also decrease the solubility of the CaCO₃ causing precipitation. All these effects can be additive.

SUMMARY

Calculated and experimental results have shown that under certain conditions of temperature, pressure, and pH, CaCO₃ scaling can be avoided. Precipitation of calcium carbonate may be controlled by maintaining a lower pH of the returning fluid. One means of accomplishing this is to use a buffered acid solution such as HC1 containing acetic acid. Such solutions can maintain pH between 2.0 - 3.5, depending on temperature.

APPENDIXES


Effect of Temperature and Pressure on the Solubility of Carbon Dioxide in Calcium Chloride Solutions

Temperature Effect

The solubility of carbon dioxide in calcium chloride solution decreases as the temperature increases. This is shown in Figure 2. Mackenzie³ studied the temperature effect over the range of 115° to 176° F in calcium chloride solutions up to 16-percent by weight at 14.7 psi pressure.

Pressure Effect

Prutton and Savage⁴ have studied the solubility of carbon dioxide in 10-, 20-, and 30-percent calcium chloride solutions. These studies were conducted over the pressure range of 220 to 10,334 psi at

TABLE 3-SOLUBILIT	ί OF	CARBON	DIOXIDE	IN	10.1- PERCENT CALCIUM CHLORIDE SOLUTION
-------------------	------	--------	---------	----	---

1	L68°F	21	L4°F	25	50°F
Pressure (psi)	Mole Fraction of CO ₂ in Solution	Pressure (psi)	Mole Fraction of CO ₂ in Solution	Pressure (psi)	Mole Fraction of CO₂ in Solution
235 235 911 926 2381 2396 4557 4822 6262 6556 8600 9114	0.0026 0.0027 0.0081 0.0083 0.0133 0.0133 0.0154 0.0158 0.0170 0.0168 0.0184 0.0192	250 823 1764 1764 3131 4204 5101 5174 5586 5792 7350 8453 9085	0.0021 0.0022 0.0081 0.0112 0.0113 0.0135 0.0140 0.0147 0.0152 0.0162 0.0165 0.0165 0.0168 0.0174 0.0185 0.0185	309 309 1117 1132 2190 2249 4366 4410 6424 6762 8600 9129 10334	0.0027 0.0061 0.0069 0.0113 0.0111 0.0148 0.0148 0.0148 0.0168 0.0167 0.0184 0.0181 0.0193

temperatures of 169° , 214° , and 250° F. Their conclusions were that as the pressure is increased, the solubility of carbon dioxide is also increased. However, as the temperature is increased at constant pressure, the solubility of carbon dioxide is decreased. These results are shown in Tables 3, 4, and 5. It is interesting to note that the change in the solubility of carbon dioxide in water with pressure follows Henry's law up to pressures of about 1,470 psi. Above 1,470 psi, deviations occur. Prutton and Savage⁴ observed very large deviations for the solubility of carbon dioxide in the calcium chloride solutions in which there was a definite salting out effect. Sander⁵ concluded that the compressibility maximum for carbon dioxide at temperatures from 122° to 212°F lie between 1,470 and 2,940 psi and that above this point the gas phase assumes the property of a liquid, being only slightly compressible. Wiebe and Gaddy⁶ confirmed Sander's opinion that the mutual solubility of a liquid in a liquid is affected by pressure to only a slight extent.

TABLE 4-SOLUBILITY OF CARBON DIOXIDE IN 20.2-PERCENT CALCIUM CHLORIDE SOLUTION

3	169°F		214°F	250°F	
Pressure (psi)	Mole Fraction of CO ₂ in Solution	Pressure (psi)	Mole Fraction of CO2 in Solution	Pressure (psi)	Mole Fraction of CO ₂ in Solution
323 338 1073 2426 2440 4145 4263 6674 6762 8408 8820	0.0022 0.0022 0.0058 0.0060 0.0088 0.0086 0.0097 0.0098 0.0107 0.0108 0.0117 0.0118	338 338 1294 1338 2087 2484 2499 4263 4292 8320 8438 9526	0.0017 0.0018 0.0059 0.0058 0.0074 0.0074 0.0084 0.0083 0.0097 0.0099 0.0116 0.0118 0.0123	368 368 926 2205 2205 4116 4145 6821 7218 7438 8849 9349 9687	0.0017 0.0019 0.0039 0.0029 0.0073 0.0094 0.0094 0.0110 0.0110 0.0113 0.0117 0.0115 0.0115

1	169°F		4°F	250°F	
Pressure (psi)	Mole Fraction of CO2 in Solution	Pressure _(psi)	Mole Fraction of CO ₂ in Solution	Pressure (psi)	Mole Fraction of CO ₂ in Solution
221 221 1073 1088 2367 2396 4616 4689 6336 6689 7718 8144 9188	0.0009 0.0036 0.0037 0.0052 0.0051 0.0060 0.0061 0.0067 0.0066 0.0070 0.0070 0.0070 0.0069	1088 1117 2220 2264 3440 3499 3837 5704 5718 5909 7718 9261	0.0031 0.0033 0.0047 0.0049 0.0054 0.0052 0.0058 0.0058 0.0064 0.0064 0.0063 0.0070 0.0071	1220 1250 2176 2205 4351 4439 6615 6880 7262 7497 9776	-0.0031 0.0031 0.0045 0.0045 0.0058 0.0058 0.0063 0.0061 0.0065 0.0069 0.0074

TABLE 3-SOLUBILITY OF CARBON DIOXIDE IN 30.2- PERCENT CALCIUM CHLORIDE SOLUTION

Table 6 shows that solid calcium carbonate in contact with the calcium chloride and carbon dioxide system resulted in only a small increase of the concentration of carbon dioxide dissolved in 10percent calcium chloride. Below 100 atmospheres the solubility was generally the same for carbon dioxide in calcium chloride with and without calcium carbonate present. Above 1,470 psi the solubility increased by less than 4-percent.

TABLE 6—SOLUBILITY OF CARBON DIOXIDE IN 10.1 PERCENT CALCIUM CHLORIDE SOLUTION WITH SOLID CALCIUM CARBONATE PRESENT AT 248°F

Pressure (psi)	Mole Fraction of CO₂ in Solution
412	0.0030
412	0.0030
1073	0.0071
1088	0.0082
2279	0.0116
2293	0.0124
4542	0.0153
4675	0.0159
7056	0.0159
7232	0.0179
9452	0.0179
9452	0.0184
9629	0.0195
12201	0.0198
12848	0.0220

The low solubility of carbon dioxide in calcium chloride and water solutions, even at high pressures, indicates that the reaction of hydrochloric acid on calcium carbonate formations during acid treatments of oil and gas wells results in carbon dioxide being evolved during the reaction.

The Effect of Temperature, Pressure, and Carbon Dioxide Concentration on the Solubility of Calcite

Temperature Effect

Berendsen⁷ has shown that the solubility of calcite decreases with increasing temperature. His work was done at 212° , 392° , and 572° F and at 14,500 psi pressure for various carbon dioxide concentrations. The solubility of calcite tends to follow the same pattern as carbon dioxide solubility in water and carbon dioxide solubility in calcium chloride.

Pressure Effect

Miller⁸ has studied the solubility of calcite at various temperatures and pressures of carbon dioxide. He found that as the pressure is increased, the solubility of calcite is also increased. His results are shown in Table 7. Berendsen has also studied the effect of pressure on solubility of calcite but over a larger range of temperatures and pressures. His results agree with those of Miller, and he concludes that the effect of pressure is more pronounced at 212° F than at higher temperatures.

				per Lite:	r	
Temp.		Partial	Pressure	CO2 in	·	
°F	14.5	145	290	580	725	<u>1450</u>
32	1.34	2.46				
50	1.11	2.15				
68	0.91	1.88	2.33	2.81		
77	0.82	1.75	2.16	2.62	2.85	
86	0.72	1.63	2.01	2.44	2.62	
104	0.55	1.39	1.73	2.08	2.22	2.51
122	0.43	1.17	1.46	1.74	1.86	2.15
140	0.36	0.97	1.22	1.44	1.56	1.80
158	0.30	0.79	0.99	1.20	1.30	1.49
176	0.26	0.66	0.83	1.01	1.08	1.24
194	0.23	0.58	0.70	0.85	0.90	1.04
212	0.20	0.52	0.61	0.71	0.77	0.88
221	0.19	0.49	0.53	0.66	0.71	0.81
221	0.19	0.75	0.00	0.00	↓ • ⊥	

Carbon Dioxide Concentration Effect

Berendsen has found that small concentrations of carbon dioxide have a strong effect on the solubility of calcite. As carbon dioxide concentration increases, the increase in solubility continues at a decreasing rate to a maximum at concentrations between 0.8 and 1.2 mole/kg CO_2 , the precise value of which depends on the particular temperature and pressure conditions. At higher carbon dioxide concentrations, calcite shows a slow decrease in solubility.

REFERENCES

- 1. Ellis, A.J.: The Solubility of Carbon Dioxide in Water at High Temperatures, *Amer. Jour. Sci. 257*, 217-34 (1959).
- 2. Butler, J.N.: Solubility and pH Calculations, Addison-Wesley (1964).
- 3. MacKenzie: Ann. Physik (2) 1, 450 (1877).
- 4. Prutton, E.F. and Savage, R.L.: The Solu-

bility of Carbon Dioxide in Calcium Chloride-Water Solutions at 75° , 100° , and 120° C and High Pressures, *J. lam. Chem. Soc.* 67, 1440-54 (1945).

- 5. Sander, W .: Z. Physik Chem. 78, 513-49 (1912).
- 6. Wiebe, R. and Gaddy, V.L.: The Solubility in Water of Carbon Dioxide at 50⁰, 75⁰, and 100⁰C at pressures to 700 atmospheres, J. Am. Chem. Soc. 61, 315-18 (1959).
- 7. Berendsen, P.: PhD. Dissertation, University of California, Riverside, March (1971).
- 8. Miller, J.P.: A Portion of the System Calcium Carbonate-Carbon Dioxide-Water, with Geological Implications, Amer. Jour. Sci. 250, 161-203 (1952).

ACKNOWLEDGMENT

The authors wish to express their appreciation to Halliburton Services for permission to prepare and present this paper.