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ABSTRACT OBJECTIVES 

Developed is an analytical analysis from which a 
synthesized dynamometer card can be calculated and 
plotted from generally known oil well parameters. The 
analysis preserves the time of displacement variable 
necessary for the calculation of instantaneous loads at 
any time or any position of the polished rod throughout 
the pumpjng cycle. The nonlinear boundary conditions 
introduced by the fluid pump are linearized and result 
in the applicability of superposition of loads in proper 
phase relationship. 

From the synthesized dynamometer cards, various 
pumping conditions may be investigated; surface and 
subsurface equipment selected; and malfunction of sys- 
tem components determined. 

ANALYTICAL CONSTRUCTION OF DYNAMOMETER 
CARDS 

INTRODUCT ION 

For the calculation of the maximum polished rod load 
occurring during the pumping cycle numerous formulae 
and analytical procedures have been developed and are 
in use. Certain of these take into account the distributed 
nature of the rod string system; however, thenon-linear 
boundary conditions arising from the intermittent oper- 
ation of the pump valves have not been considered in 
analytical methods. It is the purpose of this paper to 
develop a method by which dyanarnometer cards may 
be analytically constructed from generally known or 
calculable well parameters. The intermittent application 
of the fluid load is considered in its proper time phase 
relationship, and linearization techniques are applied to 
allow this fluid load to be transferred to the polished 
rod position. This fluid load is then added directly to 
the dynamic load arising from the motion of the sucker 
rod mass. 

The dynamometer card, as recorded by a well dyna- 
mometer, is a force-displacement graph of the instan- 
taneous load at the polished rod. The dynamometer card 
then is a record of the variation in load that is due to 
the movement of the rod string, fluid column, and 
surface equipment. Assuming constant input velocity or 
constant angular crank velocity, one finds that the load 
is the result of this velocity acting on the movable parts 
of the overall system. This paper is devoted only to an 
analysis of the rod line part of the over-all system; 
therefore, certain idealizations of surface equipment, 
bottom hole pump, and distributed fluid column are 
made. By comparison of the analytical card with dyna- 
mometer cards an acceptable method of calculation 
would give investigators a means of selecting surface 
and subsurface equipment, establishing pumping condi- 
tions, and determining malfunction of equipment. 

The primary objective of this paper is to develop a 
method of analyzing the rod line system. As a result of 
the assumed input velocity acting on the rods and of the 
consideration of the superimposed intermittent fluid 
column load in its proper time phase relationship, this 
analysis should produce a final expression of the 
polished rod or input force versus time. For the purpose 
of this analysis the distributed fluid column will be 
considered as a lumped or constant load acting on the 
rods over a part of the upstroke cycle. Justification 
for this consider action is found in the observation of 
pump dynamometer cards and from the analysis of the 
fluid column as a distributed system. Apparently at 
nominal pumping speeds the dynamic fluid load trans- 
ferred to the rods is negligible in comparison with the 
static fluid load. A second objective is to develop the 
necessary analytical procedure by which the results -- 
its magnitude and phase relationship at the polished 
rod -- of the application of the intermittent static fluid 
load may be evaluated. 

1) 
ANALYTICAL MODEL 

As previously stated, this analysis is limited to one 
element, namely the rod line system, of the pumping 
system. Ignoring then the unit and its associated equip- 
ment, one finds it necessary to assume the nature of 
the input velocity. For the basic analysis it will be 
assumed that the input velocity is sinusoidal in nature 
and that the distortion -- arising from intermittent 
fluid load, mass of surface equipment counterbalance, 
etc. -- can be considered by Fourier Analysis. 

Figure 1 schematically shows the rod line system, 
together with information relative to nomenclature, 
points of load and velocity application and waveforms. 
As indicated by the arbitrary element of the rod line, 
the mass, damping and elasticity are considered to be 
uniformly distributed along the entire length of the rod 
system, and each distributed element is assumed to 
possess uniform size, density, and surface friction or 
damping. Denoting the instantaneous force by f and 
instantaneous velocity by v, the equation of continuity 
and D’Alemberts Principal results in two equations. 
J. R. Norton (1) develops these in detail. 
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af 

at 2. 

These equations express the relationship between force, 
velocity, mass, damping and the elastic properties of 
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the rod system at any position and at any time. 
The variable x or the space coordinate is considered 

as a constant, and the time variable t as avariable; 
then the Laplace Transformation of Equations 1 and 2 
can be written as 

fx (x,s) = zv (x,s) 3. 

where 
vx ks) = Yf (x.9) 4. 
z -c+Ms 
Y q l/ks ItI 

and f 
X' 

vx denote differentiation with respect to the 

independent variable x, and (x,s) indicates f or v is a 
function of both variables x and s. 

If Equations 3 and 4 are differentiated with respect to 
x, two second order ordinary differential equations are 
obtained as follows: 

f xx ow) = zy f(w) 

V (x,s) = zy v(x,s) 
These equations have solutions of the form 

5. 

6. 

where 

f(x,s) = Ae yx + Be- yx 

v(x,s) = + )AeYx - BeeYx) 
C 

-f=* C. 

zc -477 d. 

7. 

8. 

For normal operating conditions, expressions c and d 
may be approximated by 

C 

In these frequency domain solutions the constants 
A, B, Z c and Y are functions of the parameter 8; there- 

fore in the real time domain they will be functions of 
the original parameter t. The constants A and B depend 
upon the initial boundary conditions while Zc andrde- 

pend upon the physical parameters of the system. If 
one designates the boundary conditions symbolically, a 
solution in terms of these symbols can be obtained. In 
the final result then it will be necessary to develop 
suitable expressions for these designatedendconditions. 

The generalized velocity function in the real time 
domain is designated by V (it) at the polished rod, and 
the load function is designated by F (o,t) at the pump. 
This amounts to specifying the nature of the input 
velocity at the polished rod and the nature of the fluid 
load on the pump. These time domain functions can be 
transformed to the frequency domain and substituted 
into equations 7 and 8 to obtain 
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n=o / 
where x has been replaced by 1 and by zero, resulting in 
expressions for the load at the polished rod and the 
velocity at the pump. 

GENERAL STEADY STATE SOLUTIONS 

Inversion of Equations 9 and 10 from the frequency 
domain to the time domain by formal methods would 
result in a complete solutioncontainingbothtransient and 
steady state terms. Since, in equation 9 above the fluid 
load at the pump f(o,s) has not been determined, formal 
inversion would require that this load be expressed 
analytically throughout the pumping cycle. The exact 
form of this loadduringthe startingtransient is unknown. 
Therefore, while the transient accompsnyingtheoriginal 
starting of the pumping operation would be informative 
and interesting, this load in the presence of damping 
cannot last longer than a few complete pumping cycles; 
consequently, it will not be investigated in this paper. 

Formal inversion is further complicated by the 
irrational form of the frequency domain variable s. This 
function given by expressions c and d can, however, be 
expanded by the binomial theorem giving the approxima- 
tions of expressions e and f. It should be noted that 
the approximations enter only in the inversion of the 
terms containing the fluid load on the pump and not into 
the inertia load that is due to the motion of the rod 
string. 

To find the steady state solution (i.e., the time 
domain solution containing the transient loads reintro- 
duced each cycle by the valves, but excluding the initial 
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transient) of the non-harmonic force at the 
z- ~~~ So , is first necessary to assume that the time 
variable load approaches the periodic fuiiCtiOn, e.g.. 
F(o,t) = F(o,t-7) where T is the period. Observation of 
dynamometer cards, bottom hole cards and analytical 
investigations reveals that the load traces reproduce 
themselves; this reproduction justifies the assumption 
of the fluid load being periodic. The period is further 
found to be of the same frequency as is the in@ 
velocity, and again justifies the assumption that the 
fluid load is predominantly due to the static load of the 
fluid, since the dynamic fluid load will have a natural 
period dependent upon the properties of thefluidcolumn. 

The steady state solution of Equation 9 canbe obtained 
for each term independent of the other term. The first 
term on the right- side of Equation 9 it will be noted 
contains flo.s). i.e.. the instantaneous fluid load on the . , ,, 
pump for any value of the parameter s. One wants to 
find the value of this fluid load as it traverses the rod 
string where it will be attenuated and shifted in phase. 
The steady state solution of this term will then result in 
an expression of the effect of the lumped fluid load 
acting on the plunger, as seen at the polished rod. 
Designating this load by F. (1,s) and performing the 

inversion to real time space result in 

F. (&s, = f(U) - (-l)“F(o,t-(%+I@ -(2n 1)BIc 11 

where each term on the right-hand side is a periodic 
function extending from - co St 5 + a, . The result 
given by Equation 11 can be expressed in better form 
by recalling that F. (&t) was restricted to a periodic 

function with the period r -$; therefore, to any 

desired degree of accuracy, some finite multiple p. of 
2 @Iis equal to some multiple q, of the period, or 

P(2Bll - q = q$. 

This p may be found by taking increasing multiples of 
2fl&until the result is as close to a multiple of q as 
desired. It has been found that apracticalrepresentation 
of the rod line effect on the load is given by considering 
multiples of l/32 of a wavelength. Since 13$& is the 

2x 
fractional wavelength. this factor is replaced by a/32 
where a is an integer which gives the closest approxi- 
mation in 

a,& 
32+ 2r 

This expression g may be replaced by 

P - qy l g-1 

h. 

where q is the smallest integer which allows the right 
side of i to be an integer and this determines p. Note 
that p is always even. 

Examination of Equation 11 shows that there exists 
an infinite number of sub-series. If these sub-series 
are collected together according to the way by which 
the term is shifted along the time axis, and if the typical 
sub-series is determined, one has a final expression for 
the steady state fluid load as seen at the polished rod 
as follows 

F. (1.t) 
epL p-l 

= 
Sinh nak E (-‘)i F 

I o [0,(2i+l)gL] e-(2i+1E’ 
m 

Equation 12, then, is the final time domain expression 
for the steady state solution of the first term of Equation 
9. It will be noted that to evaluate Equation 12 requires 
that F(o,t) be determined, i.e., the nature of the fluid 
load at the coordinate position zero or the pump. The 
time variable form of this load is assumed and given in 
Appendix A, where F(o,t) is found to be 

The second term of Equation 9 can be stated as 

Fr L&s, = Zcv(.Ls) tanh rR 14. 

where Fr (Is) is the dynamic inertial load at the polished 

rod arising from the sinusoidal manipulation of the rod 
string neglecting the fluid load. In the steady state 
Equation 14 becomes 

which is of the general form 

F,(a, 1~) - A, 
L 
‘8, ~(4 iw) 4, 

15. 

16. 

Since the fluid load has been constructed and repre- 
sented as a periodic load and the rod line system is 
linear, the non-linearites have disappeared and the 
principle of superposition applies, Therefore, the effect 
of the various input velocity harmonics acting on the 
distributed rod string may be determined separately 
and added directly. The input or drivingfunctionvelocity 
expression for the usual harmonics is developed in 
Appendix B, and can be expressed as 

v(Qs) = VSinjt + A2 VSin(2ot +g)$VSin(S&+$). 17. 

Then the second term of equation 9, the inertia load 
considering distorted sinusoidal input, can be expressed 
in the time domain ss 

F, (1.t) = AlBlVSin(ot+ @I + #I) + $A2 B 2VSin 

@wt+ @I+ d2 +Ji) 

+ X2A3B3VSin(30t+92+ 1, +$3) . 18. 

Evidently then, bythe method superpositibn, the results 
of Equation 12, giving the effect of the fluid load, and 
the results of Equation 18, giving the effect of the rod 
inertia, are directly additive and result in the final 
expression for the polished rod load (PRL). 

PRL r F. L&T) + Fr UN 

eQuL Pl 
2 

= S*nh pal 1=o 
(-l)i F (o,(Zi+ 1184 e-(2i+1sal 

+ AIBlVSin(tit+ dl+$I) 

+ A+ 2B2 Vs*nCht t++ 62 + %)+ 

X2A3B3Vsin(3wt + 82+&3 + ti3) 
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Each of the above factors is defined in terms of well 
parameters in Appendix C. It is this expression that 
should be programmed for computer calculation of the 
polished rod load as time or crank angle o t varies. 

ADDITIONAL OBSERVATIONS 

It will be recalled that dynamometer cards, as re- 
corded at the well, are load-displacement traces. The 
displacement of the polished rod may be expressed for 
the fundamental of a sinusoidal input as 

x =*x~os wt. j. 

In the absence of the fluid load at the pump, the 
inertia load at the polished rod can be expressed as 

f = f Sin&t+ p) 
m 

k. 

Eliminating t between these expressions gives an 
implicit relationship for the force as a function of the 
displacement. The resulting analytical expression is the 
equation uf a family of ellipses. For the fundamental, 
the following typical polished rod diagrams result from 
the inertia load depending upon the values of the phase 
angle p. 

Q=O P.4tY Q-SO0 

w. 2 

The second harmonic in the input velocitywouldresult 
in a force of the nature shown below for various phase 
angles : 

P-O e-49 P= SO” 

Fig. 3 

The above figures are easily recognizable as the 
familiar Lissajou patterns obtained for frequency-phase 
relationships in distributed systems. If one considers, 
then, only the distributed rod line mass (the fluid is 
ignored), a system containing approximately 10 per cent 
second harmonic and for a 30’ phase angle. has a 
typical basic card shape as shown below: 

Fig. 4 

The typical characteristics of many dynamometer 
cards are evident from this composite representation 
and if one allows for the added fluid load and additional 
coulomb friction in the well system, many cards can be 
visualized. The nature of the fluid load is discussed 
further in thefollowingsections ongraphicalconstruction 
and the Lowery well example. 

GRAPHICAL CONSTRUCTION 

An acceptable approximation d a dynamometer card 
shape may be found graphic ally by determining or assum- 
ing the nature of the fluid load on the pump ss a function 
of time, and adding to this the inertia load caused by 
movements of the rod line. To obtain the fluid load, a 
card shape is assumed ss in Figure 5,where the magni- 
tude f, represents the static weight of the fluid on the 
pump This load is then translated to the right by an 
amount lj& + 6. The negative of the fluid load is shifted 
to t.he right 36l+ 6 and attenuated by e-e ? as in Figure 
6. This process is repeated until the shifted load 
concides with the original load, which results in the 
composite fluid load as seen at the polished rod (Figure 
6). 

C \ 
I 

-+- - ---- -- - -- -- - . d 
/ b 

/-t 

Fig. 5 

Fig. 6 

It is this time referenced load that must be added to 
the elliptical load caused by rod moment. And direct 
addition of the fluid load from Figure 6 to the inertia 
load of Figure 4 results in the following graphical 
construction for the polished rod load: 

Fig. 7 

Example: The above general graphical procedure will 
be applied to the Lowery well for which published data 
has been made available. 
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The well parameters are as follows: 

w = 

X = 

m 

1.67 radians/ set 

.9125 ft 

v = 
m 

F EI 
m 

Z z 

fjc = 

a = 

Xl I 

z E 

x 5 

m 5 

8 = 

6 * 

P 
= 

q 
= 

a = 

1.52 ft/sec 

1450 lb 

D z 820 

.233 set 

.16 

A2 
0 

2x = 
w 3.26 set 

f/10 = .326 set 

l7, = 
30 

2.13 set 

44 E 
xi’ 

2.2 set 

B = .233 set 

8 

1 

2 
7 

Then F(l,t) = 510 Cosw t + 2.16 c (-1)” F 
( 21 - 1) e l=o 

Graphical and Calculated 

where 
e-. 1f-W -I- 1) 

F(o,t) = 1450 
I 
+ 0 - Cos 9.6WSo+ S(t-.326,, + 

( q$ S(k213) f- &$) S(t-2.2) 
t 

S.F. 

and S. F. shifts the expression to the right in time by 
6 Z ~3 P = .233 set and enables F(o,t) to repeat itself 
every 277 sec. 

1.-g? 

The above expression, when plotted with t as the 
variable, results in the following comparison of dyna- 
mometer card and measured card: 

CONCLUSIONS 

It should be noted that the unit geometry in general 

Measured 

Fig. 8 

(along with imperfect though adequate counterbalance) 
introduces distortion containing small percentages of 
second, third, and fifth harmonics. Of special interest 
is the fact that application of the final analysis to 
pertinent well situations will reveal that, many times, 
the intermittent fluid load is reflected at the polished 
rod in such phase relationship as to appear as additional 
second harmonic distortion. Therefore, this load phase 
relationship, together with unit distortion, makes the 
analysis of the second harmonic critically important 
since normal pumping speeds often result in second 
harmonic resonance. Resonance at the second harmonic 
frequency is accompanied by major changes in the load 
time plot for only minor variations in the input velocity 
or pumping speed. And it should further be noted that a 
system operating below resonance may appear as an 
inertia or equivalent electrical inductive system; while 
passing through resonance to frequencies somewhat 
higher, the same system may appear as an elastic or 
an equivalent electrical capacitive system. This com- 
plete change in system nature may account for the 
erratic change in card shape with little change in 
pumping speeds. 

Determination of the various components in their 
proper time phase relationships which characterize 
dynamometer cards has been accomplished, But the 
primary disadvantage in the application of the procedure 
is the questionable shape of the fluid load. 

Additional research is needed in the areaof the bottom 
hole load function, particularly as it may be modified by 
higher harmonics of the driving velocity at the pump. 

It would also be of interest to find the bottom hole 
velocity and displacement. This process should be 
straightforward; however, the final step of correlating 
the fluid load with polished rod cards mayprove difficult 
since accurate timing or phasing data are not available. 

Numerical values of the damping constant c for 
various well conditions also need to be examined more 
closely. This examination would become especially 
important in trying to duplicate analytically the well 
conditions at resonance for the various harmonics since 
small deviations in c cause large deviations in the 
theoretical polished rod card. 
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APPENDIX A 
the phase relationship of the forces arising from the 
second harmonic and since the fluid load at the pump cm 

add in phase, the second harmonic distortion can result 
in forces or loads which determine the predominant 
shape of the dynamometer card. The frequency domain 
expression for the input velocity required in Equation 
9 -- with one taking into account the distorted input -- 
can be expressed as 

v(Ls) = VSinwt + X2VSin(20t+ gz) +X3VSin(3wt + Q3 ). 

In this expression X and h are the fractional harmon- 
ic content of the seco& and t&d harmonics, and 0 and 
Q3 are the phase angles of the respective harmo&s. 

APPENDIX C 

FLUID LOAD AT THE PUMP 

It is now necessary to assume the time form of the 
lumped fluid load at the pump. From observations of 
recorded time dependent pump load diagrams and from 
theoretical considerations, the general form is known. 
Figure Al shows the load time variation, from which an 
analytical expression in terms of the magnitude (static 
fluid load fs ), the rate of load increase, time duration, 

and the rate of decrease are given by Equation AI. 

. 

The various terms in Equation 19 are defined below 
in terms of well parameters: *I, 

A1 = ]al+ iai( = (\,,-I % 1 

$1 = tan-15 
a, 

Fig. Al 

f(o,s) = 
fse Iis 

.I(;- ’ 2)(l+e-Xs)+ 
,-6s _ e -@s 

. AI 
-7s 2s 2 2 

l-e s+l”/x) 8 cu-e, 
The variables X, d , D , and ‘6 have not been fully deter- 
mined; however, nominal values for properlyfunctioning 
equipment appear to be 

A = T/10 = 1 
10 SPM A2 = 

6 17/30 = * 

8 44/75 = & 

6 z/j = M 
I- F 

To reoresent the fluid load in the time domain as 

PI2 = 

B = 
2 

+, = tan -1 “5 

b2 

required* by Equation 12 demands 
quency domain expression giving 

inversion of the fre- 

*(t-A) 
- cos- 

A ) S(t - c) 

) 

F(o,t) E fs 
I 
+(I - Co+) S + +( 1 

0,) 

t-d t-o 

+$ad S(t-$) + (&ij-) s (t-0) 1 S-F- AI1 

where S.F. is a factor which,shifts the whole expression 
to the right in time by 6 = ,9L seconds and also causes 
the expression to repeat periodically every seconds. 

APPENDIX B 

INPUT OR DRIVING FUNCTION VELOClTY 

In general, the inputvelocityis not aperfect sine wave. 
Unit geometry, counterbalance, power available, etc., 
result in a distorted input generally containing signifi- 
cant second and third harmonics. These harmonics often 
materially alter the final card shape, because, for 
example, a system driven at one-half resonance of the 
natural fundamental frequency of the rod string will be 
operating at resonance for the second harmonic. Since 

cd I the fundamental input velocity frequency 

M = mass of the rod string 

k L spring constant of the polished rod 

C = damping along polished rod (3) 
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