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INTRODUCTION 

One purpose of obtaining a surface dynamometer card is to learn 
how well the downhole pump is functioning. Several methods have been 
used to develop a finite mathematical model of a simplified pumping 
system to predict or evaluate pump behavior given dynamometer polished 
rod loads and displacement at the surface. The purpose of these methods 
was to develop a computerized method of analyzing surface dynamometer 
cards. The alternative is to evaluate the card by visual inspection, 
which is very subjective, requires a skilled analyst, and yields re- 
sults which are strictly qualitative in nature. The work done by 
Gibbs, in particular, has apparently been successful, considering the 
ex ense involved in using or obtaining one of his patented programs.' 
Otler than the expense, the programs are generally designed for appli- 
cations with main frame computers, and the development of the equations 
used in the programs seems to have been left purposefully ambiguous. 

The purpose of this paper is to present a relatively comprehensive 
and user-friendly program for use with micro-computers based on a 
finite difference method initially developed by Roy Knapp at the Uni- 
versity of Kansas.2 

STATEMENT OF THE PROBLEM 

A sucker-rod pumping system consists of the basic units (See Fig. 1 
for a diagram of the system.): 

I:{ p 
rime mover 

surface pumping unit 
(3) downhole pump 
(4) tubing string 
(5) the column of fluid being pumped 

Several simplifications are neccessary to be able to determine the 
dynamic characteristics of the combination of all the elements: 

(1) The prime mover is assumed to move at a constant angular 
velocity at the crank. 

(2) The inertial effects of counter weights and pumping unit 
were neglected. 

(3) The solution of the problem is restricted to a single 
diameter rod string. 

The key to the analysis of the performance of a sucker rod pumping 
system is the method by which the forces at the .polished rod are evaluated 
by an approximation of the one-dimensional wave equation. This process 
of evaluation is based on a differential equation and a set of boundary 
conditions. This differential equation, which describes the motion of 
a long slender rod is the one-dimensional wave equation, with a viscous 
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damping term added to simulate the damping of the rod vibrations by 
the pump. The problem is that of approximating the wave equation and 
boundary conditions with a set of mathematical equations which are 
suitable for use within a computer program. 

DEVELOPMENT OF THE EQUATIONS 

The one-dimensional wave equation is used to simulate the behavior 
of the rod string. The boundary conditions, which are neccessary to 
obtain a solution of the wave equation, describe the motion of the 
polished rod, the downhole pump operation, and the initial stress and 
velocity of the rod string. The wave equation, along with the condi- 
tions which describe the pump operation and polished rod motion are the 
three factors which must be modeled mathematically to solve the problem. 
In this section the boundary conditions will be discussed and then the 
wave equation will be modeled for the whole system. 

Polished Rod Motion 

The motion of the polished rod is determined by the geometry of 
the surface pumping unit. Five linear dimensions are used to describe 
the motion of the polished rod in terms of the crank angle (illustrated 
in Fig. 2). The equation used to calculate thepolished rod position 
is given by:3 

Cl + c2 COS (0 R + 0) 
S(e) = UT { L5 [ ARCOS C3 + 2 C4 COS (0 R + Dj- ]> 

C4 SIN (0 R + D) 
+ ARCSIN C3 + 2 C4 COS (0 R.+ D)) 

where: 

Cl = (L12 + L22 + L32 - L42) / (2 L2 L3) 
c2 = Ll / L3 
c3 = 1 •t (Ll / L2)2 
c4 = Ll L2 
c5 = (L2 h + L32 - (L4 - LU2) /(,,[; L2 L3) 

\ 

- L3 + (L4 + UT Ll) 
D = (n / 2) (1 + UT) - 2 L2 (L4 + UT Ll) 
Ll = crank length > 

L2 = fixed bar length 
L3 = driving bar length 
L4 = pitman length 
L5 = driven bar length 
UT = 1 for a Class I unit and -1 for a Class II unit 
R = 1 for normal rotation and -1 for reverse rotation 
8 = crank angle in radians 

The crank speed (or angular velocity) is assumed to remain constant. 

Wave Equation 

The waveeqation describes the longitudinal vibrations of a long 
slender rod. In a sucker-rod pumping system, viscous and nonviscous 
damping are forces present. However, nonviscous effects, such as hy- 
steresis loss and coulomb friction are considered very small compared 
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viscous damping and can be neglected. 
by:' 

The damped wave equation is given 

a% (x,t) = 
atL 

acceleration 
term 

32U(x,t) = 
E - 

Ar = 
C = 

After adding 

pAra2U = 
--$m- 

E Ar &J (x,t) - c au (x,t) (1) n 
?Xf at 

= rod stretch - damping 
term term 

displacement from the equilibrium position of the sucker rod 
modulus of elasticity 
cross-sectional area of the rods 
damping coefficient 

the effect of gravity on the rod load, the equation becomes:4 

E Ar a2U - c au + Wb 
ax2 at 

au = au (x,t) 
P = density of the rod material 
pAr = weight per ft. of the rods in air 

;b 
= force of gravity 
= weight of the rods in fluid in lb./ft. 

(used to subtract the weight of the rods for each Ax) 
After rearranging, the above equation becomes: 

a2u = Wa a2U + C au - Wb 
m-- E Ar g z ___- E Ar at E Ar 

To approximate the function a finite difference analogy must be 
used. The finite difference representation used here is a truncated 
Taylor Series expansion:5 

U(X = Ax,t) - 2 Atj(x.t) f U(x - A&t) a2u;$t) F 

aW(x,t) = U(x,t + t) - 2 U(x,t) + U(x,t - t) 
at2 At 

_aU(x,t) 2 U(x,t + t) - U(x,t) 
at At 

Where the first two terms are centered difference approximations, and 
the last term is a backward difference approximation. 

After rearranging the equation and making the following substitutions: 

i for x 
i+l for x + x 
i-l for x - x 
j for t 
j+l for t + t 
j-l for t - t 
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The equation now becomes: 

U(i + 1,j) = 2 U(i,j) - U(i - 1,j) + 
(Axz/At2) [ida /(E Ar g)] [U(i j + 1) - 
2 U(i,j) + U(i,j - 1)] + (C Ax?) / (E Ar At) 
[U(i,j + 1) - U(i,j)] - Ax2[Wb/(E Ar)] 

This is the form of the main equation that is used in the program. 
The number of data points, which represent the number of values of 
polished rod load versus displacement chosen from the dynamometer card, 
are denoted by (j) in the above equation. 

U(l,j) = the values of displacement from the dynamometer card or 
as calculated by the displacement condition at the surface 
(as described above) 

U(U) = U(M) - Ax/ (E Ar)PRL(j) 
where: 
PRL(j) = load at the polished rod and 
Ax/(E Ar)PRL(j) = load (lbs.) converted to strain (ft.) 

The terms ,U(l,j) and U(2,j) represent the two surface boundary condi- 
tions, and form the first two rows of a two dimensional array, with 
(i) rows and (j) columns, where (j) represents the data points and 
(i) represents the sections delta x (Ax) in length. The number of 
sections of x is one less than the number data points. 

Equation No. 2 is used to calculate the subsequent rows of the 
array. The value of the element U(3,2) is calculated by using the 
values of the elements U(l,2), U(2,1), U(2,2) and U(2,3). A wrap- 
around condition is used to calculate the special cases of the elements 
of the first and last columns. For example, U(3,l) is calculated by 
using the values of U(l,l), U(2,Npts), U(2,1), and U(2,2). The last 
row of values in the array represents the displacement of the pump. 

The rod stretch due to the weight of the rods added to these 
values yields the pump displacement relative to the polished rod dis- 
placement. The pump load is the dynamic load at the bottom of the rod 
string. A Taylor series expansion is used to calculate the load using 
the last three rows of the displacement array (U). 

For example, the pump load at position (1) is given by: 

Pump Load at (1) = E Ar/Ax(l.5 U(i,l) - 
2 U(i - 1,') + .5 U(i - 2,$) 

This completes the solution of the problem. The equations are 
now in the form needed for programming into the computer. 

RESULTS AND CONCLUSIONS 

For very slow pumping speeds (less than about one stroke per minute), 
a polished rod dynamometer card is in the shape of a parallelogram, as 
shown in Figure 3. The card is rectangular and the difference between 
the constant peak polished rod load and minimum polished rod load is 
the same as the difference between the peak and minimum pump load. 
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This difference represents the weight of the fluid lifted. Also, the 
difference in displacement between the polished rod and the pump is 
equivalent to the stretch of the rod string due to the weight of the 
fluid lifted. The computer program yields results for very slow pumping 
speeds which are within one percent of the theoretical values. The only 
difference between very slow and normal pumping speeds in the calcula- 
tions is that the damping coefficient is approximately zero for very 
slow pumping speeds. 

For normal pumping speeds the results are promising but not as 
precise or accurate as those for very slow pumping speeds (Figure 4). 
The problem is that the damping factor must be empirically derived and 
probably will not be exactly the same for any two systems. It is easy 
to conclude that the damping term varies with the velocity of the 
sucker rod string, since it is negligible at very slow polished rod 
speeds as show above, but must be included when pumping at normal 
speeds. According to Gibbs, the damping term is related to the pumping 
speed, the dimensions of the rod string, and the difference between 
the polished rod and pump horsepower, which means that it is related 
to the polished rod velocity. However, according to Gibbs6 and Lea4, 
the damping factor is relatively small and varies over a narrow range 
for normal pumping systems, and can be approximated by a constant. 
The best results seem to be obtained by using a constant damping factor 
for the upstroke, and a constant factor for the downstroke. 

For more accurate results, other than defining the value of the 
damping coefficient more precisely, the variations in prime mover speed 
should be included when calculating the polished rod displacement. The 
program would also be applicable to a wider variety of pumping systems 
if the option of a change in cross-sectional area of the rod string 
was considered. This can be done by including the area term in the 
solution of the wave equation, instead of treating it as a constant 
as was done here. 
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(a) CLASS I GEOMETRY 
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Figure 2 - Unit geometry for beam pumping units 

Figure 1 
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