(2022040) Autonomous Chemical Optimization and Remote Monitoring: A Case Study

Presenters

Dylan Bucanek, ChampionX
Jeff Clack, ConocoPhillips 

With the development of new digital technology over the last several years, our industry has seen many benefits of remote monitoring and automation in sectors within drilling, completion, and production. One area that has lagged is remote monitoring and automation of production chemicals applications. This paper will review initial pilot testing of automated chemical pumps on a group of newly completed wells. The initial objectives of this pilot test were to 1) seek to identify potential chemical cost savings during the early life of the well by autonomously linking chemical injection rates to production volumes; 2) confirm that chemicals are being consistently applied at the prescribed dosages; 3) set up notifications alerting personnel of potential problems, such as low tank volume or inadequate power supply; 4) be able to use the historical chemical tank level data to assist in approval of chemical delivery invoices; 5) determine if operational efficiency of chemical vendor can be improved by needing to check tank volumes and pump rates less frequently; 6) help identify other applications in which this technology could be beneficial such as saltwater disposal chemicals or methanol injection for compressors. Methods, Procedures, Process: Automated chemical pump controllers with built-in communication devices are used to monitor and optimize chemical injection rates. The chemical pump controllers are then able to be remotely monitored and controlled using optimization software. A prescribed dosage target of chemical to production volume is assigned in the software where the software then calculates dosing rate each time a new well test is entered. The software sends the new dosing rate to the chemical controller. We also configured the software to send automated emails to the Well Optimization Analysts and the chemical vendor representatives to alert personnel of low tank volumes or low voltage issues. Results, Observations, Conclusions: The supply voltage would drop so low during the night that the pump would stop pumping. We had to upgrade our solar power system on certain wells to provide enough power to consistently achieve target chemical injection volumes. We then set up low voltage alarms so that we are immediately notified if there is a problem with the system. Also, by remotely monitoring tank levels and alarming on low tank levels we ensure that chemical deliveries are made on time. Another benefit from monitoring and trending tank levels is the ability to use the historical data to assist in confirming chemical invoices. Novel/Additive Information: Chemical programs have historically been controlled manually by a chemical vendor technician or operator on location in a reactive manner. Chemical tanks running dry, the loss of power, and lack of accountability can all be mitigated and resolved by automating chemical injection and enabling remote control. 
 

Presentation Information

Annual Conference Info

NEXT CONFERENCE: APRIL 15-18, 2024