Sucker Rod Pump

(2022022) Collaboration In Developing a New Guide Material For West Texas Rod Lifted Wells

Failures due to Rod wear and tubing wear account together for an approximate range between 50% to 70% of the OPEX in Rod Lifted systems. Industry has made significant improvements by separating the steel components during their relative movement by using different materials in between them and as sacrifice components. The rod guide is one of them and it comes today in several shapes and compositions. One of those compositions, and the most successful one, is the plastic guide.

(2022021) Autonomous Control of Well Downtime to Optimize Production and Cycling in Sucker Rod Pump Artificially Lifted Wells

For decades sucker rod pump artificially lifted wells have used devices called pump off controllers (POC) to match the pumping unit’s runtime to the available reservoir production by idling the well for a set time where variable frequencies drives are not available. In doing this the POC allows the well to enter a set period of downtime when the downhole pump fillage is incomplete to avoid premature failures, and then brings the well back online to operate before production is lost.

(2022020) Artificial Intelligence and Automation for Surface Rod Lift Production

Production performance monitoring has existed in Rod Lift Artificial Lift for decades, however there has lacked any action based on performance parameters. The Total Production Real Time (TPRT) Monitoring System incorporates data acquisition with artificial intelligence and automation to provide safer production operations for personnel and environment. TPRT collects live production data at surface on Rod BOPs, Stuffing Boxes, and Rod Rotators then drives actuation based on performance outside of expected performance parameters.

(2022018) End-to-End Rod Control - Predictability in the Rod String

Black Mamba Rod Lift’s helical centralizer stabilizes the rod string during pumping chaos. Chaos is understood as sucker rod buckling and negative loading (compression), which is impossible to eliminate in beam lift wells. The source of compression is often from nature (gas interference, fluid pound, gas pound) but can be operator induced (seating the pump, pump tagging), or compression as part of the pumping method and operation (pump friction, fluid load transition).

(2022017) Downhole Sucker Rod Sensor – Mystery Solved

With the increase in the number of horizontal wells drilled in the past 15 years, the technology for predicting downhole conditions and troubleshooting problem wells has not kept up with the increased complexity of these deeper and deviated wellbores. The systems in use are no longer accurate or sensitive enough to determine what is causing the problem(s) resulting in shorter meantime between failure and higher workover cost to the operators.

(2022016) Comparison Of Corrosion/Wear Resistant Barrel Coatings And Their Failure Behavior Under Acidic Conditions

Surface coatings are commonly used in many industries including oil and gas; with the aim of hardening the part surfaces to improve wear resistance without compromising the corrosion resistance -or even improve when applicable. Sucker rod pumps employ several parts with coated surfaces as well, including the pump barrels. Both standardized surface modifications and specialty applications for pump barrels are readily available in market for different well conditions, including extreme well solids and H2S and CO2 service.

(2022012) Evaluating the Use of Martensitic Steels for Sucker Rods

The use of martensitic alloys in sucker rod applications has several significant advantages over ferritic-pearlitic alloys. Processing differences in making the different microstructures will be discussed, along with the resulting property and performance differences. An evaluation of the guidelines for optimal strength in various corrosive environments will be provided. Studies on the fatigue performance of martensitic and ferritic steels will be presented.
 

(2022009) A Revolutionary Packer Type Gas Separator That Involves G-Force to Exceed Traditional Gas Separation Efficiency In Oil And Gas Wells

A revolutionary packer-type gas separator was designed to improve gas separation efficiency downhole. A deep analysis of gas separation methods was done to better understand the nature of the process and to design a tool that could generate enhanced conditions for the gas separation phenomenon. During the research stages where data from Permian fields were analyzed to develop this new design of gas separator, the engineering team found three main challenges in downhole gas separation.

(2022007) Decreasing Tubing Wear From Sucker Rod Coupling In Deviated Wells

In a reciprocating rod lift application, production tubing failure due to metal-to-metal contact with sucker rod couplings is a common problem in the highly deviated sections of the tubing string. The coupling is forced to be the point of contact against the tubing wall, which causes high friction and excessive tubing wear during the reciprocating motion. This excessive tubing wear typically leads to a hole in the tubing wall, resulting in high workover costs for the producer.

(2022006) Cloud Based Monitoring of Pumping Well Performance

Data from fluid level, dynamometer, pressure, and motor power measurements were acquired by a standalone programmable monitoring system that uses internet and cellphone communication with the Cloud for remote monitoring of well performance. The system named Remote Asset Monitoring or RAM is described in detail in this paper that presents results from the tests that lasted several weeks, beginning with well pump down, just after new pump installation and continuing during normal production operation.

Annual Conference Info

NEXT CONFERENCE: APRIL 17-20, 2023