Paper Presenters Price
(45) INVESTIGATION OF FAULT AND ITS EFFECT ON BUILD-UP PRESSURE DISTRIBUTION USING NUMERICAL AND ANALYTICAL APPROACHES

The fault effects on the build-up pressure distribution of oil wells were investigated by using numerical and analytical approaches. The limitations and benefits of analytical and numerical solutions of the build-up test were listed in the research. The effects of reservoir boundaries on well responses by using analytical solutions were analyzed. Schlumberger software package “ECLIPSE” was used for the numerical simulation, where the model was discretized to 200 by 200 by 5 grid blocks with the length of each side of the grid block as 75 feet horizontally and 7.5 feet vertically. The model with one production oil well and one injection well with the same characteristics were simulated to prove the well image theory, compare it to the analytical solution and validate the model. The boundary of the reservoir, excluding the fault, was never reached due to the presence of the observation well. Multiple cases, such as one sealing fault, two intersecting faults, semi-permeable faults were analyzed in the model. Horner plots and derivative type curves were built to define the signature of the reservoir. Sensitivity analysis was proposed for each case to provide the correlations between the reservoir parameters. Early time off-trend behaviour in build-up test data by using numerical approach was investigated. Semi-permeable fault signature was defined as the decrease of the slope on the derivative type curve after the establishment of the radial flow. The Horner plot in case of two intersecting faults showed the slope four times more than in case of a homogeneous reservoir.


Serhii Kryvenko, Texas Tech University

$7.50
2018045 INVESTIGATION OF FAULT AND ITS EFFECT ON BUILD-UP PRESSURE DISTRIBUTION USING NUMERICAL AND ANALYTICAL APPROACHES
Price
$7.50
(2019042) A SUCCESSFUL BAKKEN FAILURE REDUCTION PROGRAM

Oasis Petroleum has ~1000 rod pump wells in the Bakken producing from 8000’ - 10,000’. A focused effort has been made over the past few years to reduce the failure rate from ~1.0 failures/well/year to the current rate of .68 failures/well/year. This has been the result of a holistic approach which has encompassed improvements in rod design, surveillance, training, development of Standard Operating Procedures and Best Practices, trialing new technology and POC optimization. This paper will document some of the successes and failures during this journey.


Will Whitley, Matt Chapin, Lauren Coles and Karla Traweek 
Oasis Petroleum

$7.50
A SUCCESSFUL BAKKEN FAILURE REDUCTION PROGRAM
A SUCCESSFUL BAKKEN FAILURE REDUCTION PROGRAM
Price
$7.50
(2019033) ALII (ARTIFICIAL LIFT INTAKE ISOLATION) TOOL, A NEW TECHNOLOGY FOR ISOLATING THE PRODUCTION TUBING ON PUMPING WELLS FOR SAFE AND EFFICIENT ROD AND PUMP CHANGES

The Artificial Lift Intake Isolation (ALII) tool is a new technology for rod pumping wells that when activated isolates the production tubing. The tool provides positive well control prior to breaking wellhead containment providing significant cost savings, safety and environmental protection. The tool is a simple two-part system, the first being the valve portion which is run just below the client’s pump-seating nipple in the production tubing string. The second is the actuator, which runs on the bottom of the insert rod pump. Tool activation is accomplished by simply running a rod pump with the actuator attached. When the pump is seated, the valve is opened for production; and when unseated the valve closes, isolating the tubing. The tool can be cycled multiple times. No additional equipment is required for tool operation and 100% positive shut off is provided which eliminates the need for kill fluids and eliminates the chance of formation gases or other fluids being released at the surface. There is no need for control lines to open and close the tool and there is the capability for utilizing the pump jack to cycle the tool open and closed. The tool also provides the capability for pressure testing the tubing when in the closed position. A number of benefits accrue through application of the tool to pumping wells and includes cost savings from reduced rig time to surface and re-run rod pumps, reduced trucking costs, reduced storage costs for kill fluids and minimizes the number of non-pumping days. Increased safety is realized as the tool provides positive well control prior to a well workover eliminating the chance of formation gases or other fluids being released at the surface. Environmental advantages include reducing the environmental footprint by decreasing water usage saving the local water supply. 


Kent Perry, Gas Technology Institute
Graeme Hines, Donald Slipchuk and Pete Krawiec, Revelation Management, LTD.

$7.50
ALII (ARTIFICIAL LIFT INTAKE ISOLATION) TOOL, A NEW TECHNOLOGY FOR ISOLATING THE PRODUCTION TUBING ON PUMPING WELLS FOR SAFE AND EFFICIENT ROD AND PUMP CHANGES
ALII (ARTIFICIAL LIFT INTAKE ISOLATION) TOOL, A NEW TECHNOLOGY FOR ISOLATING THE PRODUCTION TUBING ON PUMPING WELLS FOR SAFE AND EFFICIENT ROD AND PUMP CHANGES
Price
$7.50
(2019048) AN ECONOMIC AND RISK BASED APPROACH TO OFFSET WELL PREPARATION FOR NEARBY FRACS IN THE DELAWARE BASIN

With the increase in activity in the Delaware Basin, preparing wells for the pressure spikes seen from offset fracs is crucial in order to maintain safe operations.  It is important to take risk and economics into account when deciding how to prep a well. Most importantly, historical data should be factored into the decision making process and used to build the program guidelines.  Factors that should be accounted for are artificial lift type, surface equipment ratings, producing interval, frac azimuth, and 

relative distance and position to the well being fractured.

 


Ryckur Shuttler and Daniel Benavides
Anadarko Petroleum

$7.50
AN ECONOMIC AND RISK BASED APPROACH TO OFFSET WELL PREPARATION FOR NEARBY FRACS IN THE DELAWARE BASIN
AN ECONOMIC AND RISK BASED APPROACH TO OFFSET WELL PREPARATION FOR NEARBY FRACS IN THE DELAWARE BASIN
Price
$7.50
(2019040) ANALYSIS AND OPTIMIZATION OF SUCKER-ROD PUMP DESIGN

Rod lift design methods remain overwhelmingly unchanged since the mid-20th century. Meanwhile, drilling and completion technology has undergone a dramatic transformation. The innovation gap between the two technologies and low-flow artificial lift has resulted in the need for improved design and workflow methods to more effectively operate an unconventional well throughout its lifecycle. New design and workflow processes have been developed that improve upon today’s common practices through the observation of unconventional well characteristics and root cause analysis of equipment failure. This new design and workflow process has resulted in improved performance for unconventional wells in the Permian Basin.


Levins Thompson, Zack Smith and Ricky Roderick
Don-Nan Pump and Supply

$7.50
ANALYSIS AND OPTIMIZATION OF SUCKER-ROD PUMP DESIGN
ANALYSIS AND OPTIMIZATION OF SUCKER-ROD PUMP DESIGN
Price
$7.50
(2019044) APPLICATION OF WATER TREATMENT PROGRAMS TO PREVENT FOULING AND CORROSION DURING DRILL-OUT

Case study of mill-out operations in the Permian Basin which evaluate chemical program and processes used. Results show how existing processes and chemicals used or lack thereof, can affect equipment and undo the preventative chemical treatments used during the hydraulic fracturing process. The study looks at field water testing performed during various mill-out operations and considered workover rig vs coiled tubing, equipment set up, water & chemicals used, and operational challenges. Water analyses were completed on injection water and returns at various interval of the mill-out. Effectiveness of chemical treatment was also monitored when biocide was used. Four field case studies are presented for horizontal wells. Two wells were milled-out utilizing workover rigs and two wells were completed using coiled tubing. Testing results show the impact of equipment setup and operations process on the water quality and efficiency of the chemicals used. Water fouling was prevalent in all cases, with coiled tubing jobs showing the highest degree of water contamination and chemical inefficiency. Changes in water treatment program during operations showed significant improvement and sustainable results. Potential corrosion of the work string due to water fouling and composition was also observed, and the effects of changes in chemicals were monitored. This is important because it identified operational improvements that can reduce equipment replacement costs, chemical overuse and protect wells from fouling due to high bacteria. This case study provides a comprehensive review of mill-out operations and provides guidelines for improving chemical efficiency and potential of  extending life of the work string.

 


Tanhee Galindo, GeoKimika Oil & Gas

$7.50
APPLICATION OF WATER TREATMENT PROGRAMS TO PREVENT FOULING AND CORROSION DURING DRILL-OUT
APPLICATION OF WATER TREATMENT PROGRAMS TO PREVENT FOULING AND CORROSION DURING DRILL-OUT
Price
$7.50
(2019028) BEAM VSD ECONOMICS

Variable Frequency Drives (VFD) are a well-known method of pumping beam wells. By running the well continuously and adjusting pumping speed based on pump fillage, they provide unique benefits to reduce failures in difficult environments as compared to operating in pump-off control (POC); these environments might include solids, buckling tendencies at pump-off, and CO2 WAG environments. Although the industry recognizes the VFD benefits, many candidates remain on POC due to the capital investment required for a VFD purchase. This paper discusses two assets within Oxy Permian EOR and analyzes the economics of VFDs in order to assess if expanded usage is justified.


Daniel Lee, Steve Gault and Mike McNeely
OXY USA Inc.

$7.50
BEAM VSD ECONOMICS
BEAM VSD ECONOMICS
Price
$7.50
(2019026) CASE STUDY - USE OF CAPILLARY STRING ASSISTED ARTIFICIAL LIFT AT THE ADAIR SAN ANDRES UNIT

The Apache-operated Adair San Andres Unit (ASAU) currently employs fifteen capillary string (cap string) equipped producing wells, representing 16% of the active producer count. Apache started converting producing wells to cap strings in 2016.  This idea was introduced to Apache at the 2012 CO2 Conference in Midland and later reinforced during a field tour of Whiting’s North Ward Estes CO2 flood in 2015.  The chief benefit using a cap string is production stability.  A review of these installations 

is categorized by a reduction in production variance, meaning an increase in stability - be it oil and gas production, or water-oil and gas-liquid ratio (GLR).  This equates to less rig intervention, more uptime.  Of note: 1) a cap string will successfully operate below the minimum GLR of 400 SCF/BBL/1000’ required by plunger lift, 2) conversion to cap string assisted lift is not affected by the wellbore geometry, and 3) ASAU installations are packer-less.


Rebecca Larkin and Joe Lopez
Apache Corp.

$7.50
CASE STUDY - USE OF CAPILLARY STRING ASSISTED ARTIFICIAL LIFT AT THE ADAIR SAN ANDRES UNIT
CASE STUDY - USE OF CAPILLARY STRING ASSISTED ARTIFICIAL LIFT AT THE ADAIR SAN ANDRES UNIT
Price
$7.50
(2019054) COMPARATIVE STUDY OF WELL SOAKING TIMING (PRE VS. POST FLOWBACK) FOR WATER BLOCK REMOVAL FROM MATRIX-FRACTURE INTERFACE

Water block after hydraulic fracturing is one of the major challenges in shale oil recovery which affects the optimal production from the reservoir. The water blockage represents a higher water saturation near the matrix-fracture interface, which decreases the hydrocarbon relative permeability. The removal of water blockage in the field is typically carried out by soaking the well (i.e., shut-in) after hydraulic fracturing. This soaking period allows water redistribution, which decreases the water saturation near the matrix-fracture interface. However, previous field reports show that there is not a strong consensus on whether shut-in is beneficial in term of production rate or ultimate recovery. Due to the large number of parameters involved in hydraulic fracturing and tight formations, it is challenging to select which parameter plays the dominant role in determining the shut-in performance. Furthermore, literature on field case studies does not frequently report the parameters which are of researchers’ interest. In other words, the challenge of evaluating shut-in performance not only lies on the complexity of parameters and effects involved within the reservoir, but also the limited number of field case studies which report a comprehensive list of fracturing and reservoir parameters.




This paper aims to investigate the effect of well soaking timing on shut-in performance. This question is motivated by the fact that in the field, shut-in can take place either immediately after hydraulic fracturing but before the first flowback (i.e., pre-flowback) or sometime after the first flowback (i.e., post-flowback). The timing of shut-in is believed to influence the production performance, because it dictates how much water will imbibe from the fractures. A numerical core-scale model is built and validated by a successful history match with numerous experimental data. Our model demonstrates that shut-in performed after the first flowback (i.e., post-flowback) can help ensure a higher regained oil relative permeability than shut-in performed before the first flowback (i.e., pre-flowback). A discussion on the water blockage mitigation from these two shut-in timings is also presented. As a result, this study proposes that flowback should be carried out immediately following hydraulic fracturing, even if an extended shut-in is to be performed later.


Nur Wijaya, Texas Tech University

$7.50
COMPARATIVE STUDY OF WELL SOAKING TIMING (PRE VS. POST FLOWBACK) FOR WATER BLOCK REMOVAL FROM MATRIX-FRACTURE INTERFACE
COMPARATIVE STUDY OF WELL SOAKING TIMING (PRE VS. POST FLOWBACK) FOR WATER BLOCK REMOVAL FROM MATRIX-FRACTURE INTERFACE
Price
$7.50
(2019045) DATA SHARING - PROS, CONS, AND HOW TO LEVERAGE

Success in the oil and gas industry comes with effectively juggling four key elements: money (made or lost), risk, technical capability, and competition. Information is key to managing this process. Data sharing is the controlled process of providing information to and obtaining information from your competitors in such a manner to ensure your success (and theirs, as well). When well executed, data sharing can help one optimally find and develop highly profitable properties with minimal risk for failure. Unfortunately, poorly executed, the data sharing process can tilt the pursuit in the other direction, as well. This paper was prepared to provide the reader with an understanding of the data sharing process and how to effectively leverage information to succeed in such a competitive and technically challenging environment. There are many data sources available, with varying degrees of cost and value. A great deal of data is available for free from public sources, in a variety of formats. There is also an entire industry made up of companies that, for a fee, provide consistent methods to retrieve public data. They also provide value-added services to validate, scrub, and, sometimes, interpret the data. There are also services to find relevant information or, if necessary, to generate data. Each of these methods incurs some cost, whether it be directly financial, in terms of effort, or risk (due to reliability concerns). A great advantage of these methods is that there is no need to release valuable data to one’s competitors. The disadvantage is that a great deal of valuable information is not available via these avenues. This is where data sharing comes in, from consortia to directly sharing with potential competitors. Data sharing can be extremely valuable, not only in obtaining data but also in developing relationships that build information conduits and can lead to profitable operations that can only be pursued with a partner. While there is considerable value to this approach, there are challenges and hazards that need to be navigated. This paper describes the various methods of retrieving, purchasing, and sharing data and how to utilize data sharing as a mechanism to effectively compete in a challenging environment.


Jim Browning, Texas Tech University

$7.50
DATA SHARING - PROS, CONS, AND HOW TO LEVERAGE
DATA SHARING - PROS, CONS, AND HOW TO LEVERAGE
Price
$7.50
(2019050) DATA-DRIVEN PROGNOSTIC METHOD FOR EQUIPMENT IN OIL AND GAS INDUSTRY

Catastrophic accidents in offshore drilling operations have greatly endangered human lives, environment and capital assets. Although risks in offshore oil and gas operations cannot be completely eliminated, a substantial amount of risks can be minimized through preventive and mitigative measures. A key aspect of the offshore drilling risk is the reliability of drilling systems. According to the World Offshore Accident Dataset and many other investigations, the overwhelming majority of disastrous accidents in offshore drilling operations were caused by equipment failures and human errors. The capabilities to predict the lifetime and provide early and effective warnings in real time are crucial to ensure reliable and safe offshore operations. The objective of this research is to mitigate offshore drilling risks by developing a scientific framework for data-driven failure prognosis for complex drilling systems operating in heterogeneous and extremely harsh environments. A novel data-driven reliability model in conjunction with a systems and economic impact analysis is developed integrating multi-source (e.g., operations and maintenance records, in-situ monitoring data) and multi-modal (e.g., lifetime data, degradation profiles) data. Numerical cases studies will be presented to demonstrate the proposed method. 

 


Yisha Xiang, Mario Beruvides and Lloyd Heinze
Texas Tech University

$7.50
DATA-DRIVEN PROGNOSTIC METHOD FOR EQUIPMENT IN OIL AND GAS INDUSTRY
DATA-DRIVEN PROGNOSTIC METHOD FOR EQUIPMENT IN OIL AND GAS INDUSTRY
Price
$7.50
(2019037) DETERMINING OPTIMIZED GAS INJECTION RATE FOR GAS LIFTED WELLS TO MAXIMIZE LIFT EFFICIENCY

Problem being addressed: Determining optimized Gas Injection Rate for Gas Lifted wells to maximize lift efficiency. Challenges: While Gas Lift is the most natural artificial lift method, ever-changing surface and downhole conditions cause significant inefficiencies. The changing conditions require frequent adjustments to surface-injected gas rates to maintain the most efficient lifting gradient. If the proper adjustments are not made, these inefficiencies may hinder production and increase lease operating expenses. Solution: By using Apergy’s proprietary hunting algorithm, Bloodhound, optimal gas injections rates are determined by the magnitude in the bottom hole pressure drawdown, with use of a permeant down hole gauge. Through continuous and proportional rate adjustment, the Bloodhound algorithm learns from previous set point deltas and tests against the inferred optimal rate, as well as changing conditions. Results: In under-injection scenarios, Bloodhound can accelerate the recovery of oil by up to 10 percent, regardless of the well’s position on its natural decline. In over-injecting scenarios, wells can maintain oil production rates while using up to 50 percent lift gas. Both results can be successfully achieved with few engineering hours, manually calculating or modeling well performance curves to determine inferred optimal rate. 

 


Dustin Sandidge, Apergy

$7.50
DETERMINING OPTIMIZED GAS INJECTION RATE FOR GAS LIFTED WELLS TO MAXIMIZE LIFT EFFICIENCY
DETERMINING OPTIMIZED GAS INJECTION RATE FOR GAS LIFTED WELLS TO MAXIMIZE LIFT EFFICIENCY
Price
$7.50
(2019032) DEVELOPMENT OF A ROD GUIDE MODEL WHICH GENERATES A MINIMUM LEVEL OF TURBULENCE, PERFORMING CFD ANALYSIS AND HYDRODYNAMIC COMPARISONS BETWEEN DIFFERENT GUIDE DESIGNS

A hydrodynamic analysis for different rod guide designs simulating downhole fluid conditions was made using computational fluid dynamics (CFD) analysis, which is widely used for solving the partial differential equations of fluid motion by discrete approximation.  A particular turbulence kinetic energy graphic for each guide sample was created and compared to each other. The results shows a significant difference between the samples and the new rod guide design with conclusive proof of a better hydrodynamic performance. 


Ricardo Padron, Tenaris

$7.50
DEVELOPMENT OF A ROD GUIDE MODEL WHICH GENERATES A MINIMUM LEVEL OF TURBULENCE, PERFORMING CFD ANALYSIS AND HYDRODYNAMIC COMPARISONS BETWEEN DIFFERENT GUIDE DESIGNS
DEVELOPMENT OF A ROD GUIDE MODEL WHICH GENERATES A MINIMUM LEVEL OF TURBULENCE, PERFORMING CFD ANALYSIS AND HYDRODYNAMIC COMPARISONS BETWEEN DIFFERENT GUIDE DESIGNS
Price
$7.50
(2019024) DOG LEG SEVERITY (DLS) AND SIDE LOAD (SL) RECOMMENDATIONS

Dog Leg Severity (DLS) had been used for many decades as recommendations to try to drill oil and gas wells and provide "trouble free" operating conditions. Many of these recommendations were historically based on vertical, shallow (<5000 ft.) deep wells. But as wells continued to be drilled deeper, the recommendations were still applied. With the current drilling and operating practices of deviated and/or horizontal wells, these recommendations may no longer be applicable. Additionally, the deviation measurement interval (degrees/100 ft.) also may no longer be accurate when trying to match downhole problems using existing rod string design software. Furthermore, as wells have become deeper and many now also exclusively are drilled as deviated/ horizontal, side loading (SL) may be a more appropriate condition to be used to determine problems. This paper will review the historic DLS recommendations, provide insight on deviation measurement interval, discuss the importance of SL, and provide new recommendations for drilling wells that should provide better, longer term, less problematic operating wells.


Norm Hein, Oil & Gas Optimization Specialist, Ltd.
Lynn Rowlan, Echometer Company

$7.50
DOG LEG SEVERITY (DLS) AND SIDE LOAD (SL) RECOMMENDATIONS
DOG LEG SEVERITY (DLS) AND SIDE LOAD (SL) RECOMMENDATIONS
Price
$7.50
(2019017) DOWNHOLE EQUIPMENT REPLACEMENT GUIDELINES

In 2017 and 2018 Oxy EOR conducted a series of RCFA schools. As part of these schools, information was gathered on the range of equipment replacement for failure types. In 2018, a cross functional team of experienced stakeholders vetted this information and compiled a list of equipment replacement guidelines. This paper will share these guidelines. 


Steve Reed, Calvin Stewart, Steve Gault, Saul Tovar, Joel Gallegos and Rynn Peeler
OXY USA Inc.

$7.50
DOWNHOLE EQUIPMENT REPLACEMENT GUIDELINES
DOWNHOLE EQUIPMENT REPLACEMENT GUIDELINES
Price
$7.50
(2019047) DYNAMIC FILTRATION TEST EXPERIMENTS DESIGN

The purpose of this project is to conduct a Dynamic Filtration Test to Investigate the Effect of Preformed Particle Gels (PPGs) on Un-swept, Low-Permeable Zones/Areas. A filtration test is a simple means of evaluating formation damage. This work use schematically dynamic filtration test experiment design apparatus to carry out the various filtration test experiments. It use different core samples, various brine concentration, and various gel types.  The permeability   of each sandstone core samples is calculated before and after the filtration test. Experiments are still being observed.  The objective of this study is to find methods that minimized the damage caused by PPGs on un-swept, low-permeable zones/areas, thus improving PPG treatment efficiency. This approach will identify the best properties of the PPGs, which can neither penetrate conventional solid rocks nor form cakes on the rocks’ surface. 

 


Mahmoud Elsharafi, Jenom Pyeng , Tapiwa Gasseler, and Jedeshkeran Chandraseqaran
Midwestern State University

$7.50
DYNAMIC FILTRATION TEST EXPERIMENTS DESIGN
DYNAMIC FILTRATION TEST EXPERIMENTS DESIGN
Price
$7.50
(2019053) EFFECTIVENESS OF HIGH VISCOSITY FRICTION REDUCERS IN PERMIAN WELL COMPLETIONS

Friction reducer is a hydraulic fracturing fluid additive meant to lower costs by decreasing the friction pressure in tubulars during pumping operations. High viscosity friction reducers (HVFRs) have become increasingly popular in well stimulation applications in lieu of conventional slick water fluid systems involving linear and cross-linked gels. However, various factors must be considered when assessing the effectiveness of using HVFRs under certain frac operation conditions. This paper aims to evaluate how effective of a solution HVFRs are while determining the optimal operating conditions for this additive.


Omar Zeinuddin, Texas Tech University

$7.50
EFFECTIVENESS OF HIGH VISCOSITY FRICTION REDUCERS IN PERMIAN WELL COMPLETIONS
EFFECTIVENESS OF HIGH VISCOSITY FRICTION REDUCERS IN PERMIAN WELL COMPLETIONS
Price
$7.50
(2019046) ENERGY FROM SALTWATER MUD

There is a growing need for energy throughout the world and this increase in demand for energy has now also put a strain on the current sources of energy. In the process of oil/gas production, there are large amounts of water released into the atmosphere as well as into the ground or soil. This water contains chemicals such as Sulphur and Nitrogen oxides, Bitumen, Calcium, Base oil, and Sodium. It is commonly referred to as “wastewater” and is disposed of. The goal of this project is to investigate the possibility of acquiring energy from this wastewater. This is can be done by using various types of soils and water. Various mixtures were created using soils mixed with different percentages of clay and water with varying salinity. A small source of electricity was then applied to the saltwater mud to provide a voltage to the experiment. The chemicals in the mud are then expected to amplify the input voltage and create enough energy to power electrical devices. To prove this, a bulb or small fan will be connected to the mud via an electrode. It was found that clay soil produced more energy than sandy soil. Also, an increase in water volume would dilute the mixture and this would slow down the transfer of energy in the mud. The results of this work can be useful for the environment and the decreasing energy sources.


Mahmoud Elsharafie, Kelton Vidal and Chiedza Tokonyai
Midwestern State University

$7.50
ENERGY FROM SALTWATER MUD
ENERGY FROM SALTWATER MUD
Price
$7.50
(2019023) ENERGY SAVINGS ON BEAM PUMP SUCKER ROD SYSTEMS / CONTROL SOLUTIONS WITH FIELD CASE STUDIES

One of the largest lease operating expenses is electrical cost. Only a small portion of electrical cost is value-added conversion of electricity to fluid lifting power. The rest is lost to downhole friction, fluid flow friction, pumping unit, and electrical to mechanical power conversion inefficiencies.  Overall “line to fluid” system efficiency will typically range from 20% to 40%. Some cases will be as low as 10%.



Some of those energy losses are inevitable.  Some can be reduced through improved operation and controls. This paper will present power studies of various control schemes on actual wells, highlighting the best solutions for reducing power consumption. 



The study will examine: line starters with timers, line starters with pump off controllers, pump off controllers with variable speed drives and advanced embedded controllers. Electrical average voltage(V), power factor, maximum current(A), average current(A), total apparent power(KVA), total reactive power(KVAR) and total real power(KW) will be show for each variation. Apparent costs and ROI of implementing and/or changing to a new control system will be presented.    


Jordan Hanson, Control Solutions

Unico

Hy-Bon/EDI

$7.50
ENERGY SAVINGS ON BEAM PUMP SUCKER ROD SYSTEMS / CONTROL SOLUTIONS WITH FIELD CASE STUDIES
ENERGY SAVINGS ON BEAM PUMP SUCKER ROD SYSTEMS / CONTROL SOLUTIONS WITH FIELD CASE STUDIES
Price
$7.50
(2019003) EVALUATION OF C GRADE RODS AND T COUPLING USAGE IN SAN ANDRES CONVENTIONAL

In 2016, a recommendation was made in EOR to begin utilizing Grade “C” when replacing rods in San Andres wells or wells less than 5,000’ deep. The advantage of the Grade “C” rods believed to be better corrosion resistance, tubing leak reduction, and lower material cost. It was also recommended that “T” coupling be considered as an alternative to Spray Metal (“SM”) couplings as they are softer and should fail preferentially to the tubing. As with any technology that is new to the field in question there is concern about wide spread use until sufficient data is gathered on a smaller subset of wells to prove up the concept. As failure frequency is a key metric when evaluating artificial lift performance, and it can take several years to develop sufficient data, an analysis method needed to be utilized to track the equipment performance over a shorter duration so that use can be expanded as early as possible. This was accomplished by developing statistical data for sucker rod and coupling installations and failures over a specific time period comparing the failure rate of the “C” rods and “T” couplings versus the “KD” rods and “SM” couplings that are typically run. The analysis showed that the “C” grade rods and “SM” couplings were not showing an increased failure rate and therefore provided support to start expanding their use in EOR, which should result in significant cost savings. To further understand the corrosion differences between C-Rods and KD-Rods corrosion coupons were constructed from sections of actual rods and placed in several wells of varying characteristics. This paper will also present the findings from this corrosion test, which is currently nearing completion. 


Garrett Best, Steven Reedy, Calvin Stewart and Steve Gault
OXY USA, Inc.

$7.50
EVALUATION OF C GRADE RODS AND T COUPLING USAGE IN SAN ANDRES CONVENTIONAL
EVALUATION OF C GRADE RODS AND T COUPLING USAGE IN SAN ANDRES CONVENTIONAL
Price
$7.50
(2019036) EXAMPLES OF FORCES NOT ACCOUNTED FOR BY THE WAVE EQUATION

Different types of forces NOT accounted for by the wave equation are 1) mechanical friction, 2) piston force acting on the polished rod due to tubing back pressure and 3) true vertical rod weight.  Mechanical friction will be discussed from 1) over-tight stuffing box, 2) down hole sticking due to a severe dogleg in the wellbore profile and 3) friction from paraffin along a section of the rod string.  The application of these external mechanical forces acting on the rod string impacts measured surface loads, down hole stroke length and plunger velocity, plus the calculated rod loading at the pump or other locations in the rod string.   

Damping coefficients are used to subtract out fluid damping as a function of velocity along the rod string using the wave equation.  Unaccounted for mechanical friction cannot be modeled by adjusting the damping factors in the wave equation.  Mechanical friction impacts both the shape of the pump card and the measured surface dynamometer card loads versus position and, as friction on the rods goes up then the surface load range also changes.  Field measured dynamometer data will be used to show examples of these different types of forces NOT accounted for by the wave equation

 


O. Lynn Rowlan, Carrie Anne Taylor and Ken Skinner
Echometer Company
Clint Haskins, Fluid Finder
 

$7.50
EXAMPLES OF FORCES NOT ACCOUNTED FOR BY THE WAVE EQUATION
EXAMPLES OF FORCES NOT ACCOUNTED FOR BY THE WAVE EQUATION
Price
$7.50
(2019008) FIELD-DRIVEN INITIATIVE TO IMPROVE ARTIFICIAL LIFT EFFICIENCY AND RELIABILITY WITH AN ENGINEERED SUCKER ROD PUMP BALL VALVE INSERT

To increase recovery rates – the greatest challenge facing the industry – operators must not only look to step-change technologies, but improvements to existing technology. Even incremental increases in recovery rates can impact economics when multiplied across numerous wells. For example, approximately two-thirds of onshore wells use beam operated pump jacks with reciprocating rod pumps. Our objective was to improve the efficiency and reliability of sucker pumps by engineering a new ball valve insert.  Prototype testing demonstrated that the lowest pressure drop was provided by an insert design with the tangent angle equal to Pi (3.14, π), as it forced the fluid into a vortex spin. Based on a number of flow rates (including two phase flow) the TangentFlow Insert decreased pressure drop by 40% on average resulting in 58% more flow than the bar-bottom inserts. In addition, compared to the bar-bottom inserts, which produced significant ball chatter, the TangentFlow Insert had a consistently low decibel reading with increasing flow rates, as the ball remained stationary. This results in reduced gas breakout, which in turn further reduces pressure drop, fluid pound and pump damage.  One-year field results from 50 wells in the Red River reservoir of Montana and North Dakota demonstrate that the TangentFlow Insert reduced pressure drop across both the standing and traveling valves to increase average surface flow by 8%. Considering the average water to oil ratio in the area, this provides an additional 3.1 bbl/day/well. This increase applied over 50 wells translates to approximately 54,603 bbl/year, or $3.33MM in revenue at current oil prices.  The design of the TangentFlow Insert improves the efficiency and reliability of sucker rod pumps by minimizing the effects of pressure drop, gas breakout, solids accumulation (wax), casing wear and ball wear, which together improve pump efficiency and production flow. Because the design enables the ball to remain stationary, smaller and lighter balls can be used, allowing for higher flowback solids and reduced cage wear, respectively. The TangentFlow Insert is manufactured to replace conventional bar-bottom inserts without needing to change out the entire pump assembly, making them applicable to 90% of pumps presently used in the industry.


Corbin Coyes, TangentFlow Inc.

$7.50
FIELD-DRIVEN INITIATIVE TO IMPROVE ARTIFICIAL LIFT EFFICIENCY AND RELIABILITY WITH AN ENGINEERED SUCKER ROD PUMP BALL VALVE INSERT
FIELD-DRIVEN INITIATIVE TO IMPROVE ARTIFICIAL LIFT EFFICIENCY AND RELIABILITY WITH AN ENGINEERED SUCKER ROD PUMP BALL VALVE INSERT
Price
$7.50
(39) FORECASTING THE RESERVOIR DATA OF OILFIELD IN LIBYA BY USING DECLINE CURVE ANALYSIS

Decline Curves Analysis commonly ordinarily applied to evaluate the original hydrocarbon in place, hydrocarbon reserves, and forecasting future production performance. The Decline Curves Analysis development was presented by Johnson and Bollens in (1928) and later on (1945) which is called "loss-ratio". Many discussions of the mathematical relationship between the past time, production rate, and the cumulative production depend on the decline rate. Decline Curve Analysis is a technique which might be stratified for a single well or whole reservoir by either production engineer or reservoir engineer. In oil industry, remaining reserves are the substantial target. The objective of this study is to determine and clear estimation of a reservoir performance in Libyan Oilfields by using Decline Curves Analysis and estimate the reservoir life. Also, in this work we simulate the production operation data to find out the better matching of forecasting results and the economic impact of the selected reservoir. This research is an attempt to determine one of Libyan reservoir performance and determine which one of the three classifications of the Decline Curves are Exponential, Hyperbolic, and/or Harmonic by using one of the most widespread important reliable methods to estimate the depletion of reservoir pressure with the consideration of the method limitations, the changes in the facilities downstream, and hydrocarbons production rate.


Mahmoud Elsharafi, Mohamed Hussen Masuad, and Faisal Bergigh
Midwestern State University
 

$7.50
FORECASTING THE RESERVOIR DATA OF OILFIELD IN LIBYA BY USING DECLINE CURVE ANALYSIS
FORECASTING THE RESERVOIR DATA OF OILFIELD IN LIBYA BY USING DECLINE CURVE ANALYSIS
Price
$7.50
(2019005) GROUNDING FOR ESP LIGHTNING PROTECTION

How and where ground wires are connected determines the runtime and successful withstanding of switching and lightning surges. This is extremely evident with lightning protection of electric submersible pumps (ESP).  Electric surge suppressors on the same ground wire can and will interact bidirectionally in a lightning storm. Instances of ESP failures due to improperly installed surge suppression are not uncommon.  Understandably the value of surge suppression has been questioned.  This paper proposes separate ground wires for each surge device with all wires bonded together at the wellhead.  Justification for this is derived from multiple engineering reports on wellsite electrical installations, electrical theory and reported extended ESP run-life.


Tom Brinner, Subsaver, LLC
Don Parrott, G&W Consulting

$7.50
GROUNDING FOR ESP LIGHTNING PROTECTION
GROUNDING FOR ESP LIGHTNING PROTECTION
Price
$7.50
(2019030) HIGH RATE UNCONVENTIONAL GAS LIFT

The purpose of this paper is to discuss the history of different gas lift design methods and the theory behind a new design method.  In January 2019, Production Lift Companies and Concho Resources ran a new gas lift design method in two unconventional wells in the Permian Basin.  This new method is designed to exploit the initial high bottom hole pressure in unconventional wells to produce higher rates that, before now, were only possible with an ESP.  This life of well design will also follow the well’s decline and efficiently produce the well at lower rates.  When completed correctly, the well can be switched to PAGL, Plunger Lift or GAPL without pulling the tubing.  



The traditional gas lift design method for unconventional wells is to run unloading valves until you reach a minimum spacing of 500’ (Fig. 1) and then continue the 500’ spacing to the packer.  The 500’ spacing was adopted by the industry in the late 80’s as “Best Practice” and has remained the standard today. 

 


Jay Miller, Production Lift Companies
Kenneth Estrada, Concho

$7.50
HIGH RATE UNCONVENTIONAL GAS LIFT
HIGH RATE UNCONVENTIONAL GAS LIFT
Price
$7.50